Ввод кабелей в трансформаторную подстанцию
Принципиальная Схема Трансформаторной Подстанции
Чем больше секций на электростанции, тем труднее поддерживать одинаковый уровень напряжения, поэтому при трех и более секциях сборные шины соединяют в кольцо.
В качестве защитных устройств в конструкцию подстанции включены разрядники.
Питание собственных нужд СН подстанции выполняется от специальной шины, на которую электроэнергия поступает по вводам 0,4 кВ от трансформаторов 7, и Т2.
Однолинейная схема электроснабжения предприятия. Часть 1.
Существенным недостатком является использование разъединителей в качестве оперативных аппаратов. Мы имеем огромный опыт работы с электрической инфраструктурой — в том числе и высоковольтной, что позволяет нам выполнять любые задачи вне зависимости от уровня их сложности.
Все элементы соединяются друг с другом в определенной последовательности, обеспечивающей работу всей схемы. Схема РУ между рабочей перемычкой и трансформаторами такая же как у рассмотренной выше ответвительной или концевой подстанции.
Однолинейная схема двухтрансформаторной подстанции с первичным напряжением 35 кВ представлена на рис. Освоены в эксплуатации энергоблоки , МВт, осваиваются блоки МВт.
Цеховые КТП, как правило, не имеют распределительного устройства на стороне ВН, питающий кабель присоединяется к трансформатору через шкаф высоковольтного ввода, который может содержать высоковольтный коммутационный аппарат выключатель нагрузки или разъединитель , аппарат зашиты предохранитель , и блок шинных накладок, которыми формируется схема электроснабжения выше 1 кВ. Железнодорожные потребители в основном относятся к первой и второй категориям, и для их питания используют чаще трансформаторные подстанции с двумя трансформаторами, один из которых может быть резервным.
В схеме подстанции по рис. Все элементы соединяются друг с другом в определенной последовательности, обеспечивающей работу всей схемы.
Принцип работы трансформатора
Виды подстанций и их особенности
А кроме того, следует опираться на нормативную документацию. Недостатки ОРУ — занимают большие площади, подвержены влиянию окружающей среды замерзание, запыление, загрязнение. Второй разъединитель перемычки QS4 с ручным приводом используется при ремонте QS3 для создания видимого разрыва цепи, Трансформатор Т2 остается в работе, получая электроэнергию по вводу W2.
Питание ответственных потребителей производится не менее чем двумя линиями от разных сдвоенных реакторов, что обеспечивает надежность электроснабжения.
Разрабатывая такие схемы подстанций необходимо выбирать коммутационные аппараты с учетом назначения установки и ее мощности.
Но чтобы оборудование использовалось эффективно его монтаж должны производитель специалисты. Учет энергии, расходуемой на собственные нужды подстанции, ведется со стороны вторичного напряжения ТСН.
При повреждении в трансформаторе релейной защитой отключается выключатель Q2 и посылается импульс на отключение выключателя Q1 на подстанции энергосистемы.
Устройства с длительной параллельной работой используются редко. Выполнение последнего условия затрудняется при очень сложной схеме электроустановки, однако значительное упрощение схемы может вызвать трудности для выполнения первого условия в отношении надежности электроснабжения.
В системах с заземленной нейтралью могут возникать короткие замыкания симметричные трехфазные и несимметричные : а двухфазные; в двухфазные через землю при замыканиях в одной точке; г двухфазные через землю при замыканиях в различных точках.
Самый сложный вопрос в защитах трансформатора 10/0,4 кВ
Похожие материалы
Схема двухтрансформаторной подстанции с первичным напряжением 35 кВ Рис.
Разрядник F V3, защищающий изоляцию оборудования РУ кВ от перенапряжений располагается на одной с трансформатором напряжения TV выкатной тележке. Обычно для 1 и 2-ой используют двухтрансформаторные подстанции, а для 3-ей — установки с одним. Обходная система шин может быть использована, когда особенность функционирования потребителя требует постоянных оперативных переключений.
Для этого в ее конструкцию включаются различные защитные приспособления. Пунктиром показана блокировочная связь разъединителей и их заземляющих ножей, которая не позволяет включать разъединитель при включенном заземляющем ноже и включать заземляющий нож при включенном разъединителе.
Особенность первичных схем состоит в том, что они делятся на группы: ТП и РП в зависимости от назначения, конструктивного исполнения, подключения и прочих характеристик. При таком решении понижающие трансформаторы работаю параллельно и при нарушении одной цепи выключатель автоматически отключается. Пунктиром показана блокировочная связь разъединителей и их заземляющих ножей, которая не позволяет включать разъединитель при включенном заземляющем ноже и включать заземляющий нож при включенном разъединителе. От шин 10 кВ отходят четыре линии, питающие потребителей.
Принципиальная схема комплектной трансформаторной подстанции. Рисунок 5.
Оформить заявку
Но чтобы оборудование использовалось эффективно его монтаж должны производитель специалисты. Схема трансформаторной установки Схема небольшой и большой мощности Решения по этому вопросу обычно принимаются с учетом системы электроснабжения объекта и перспектив его развития. При замене любого линейного выключателя обходным необходимо отключить QO, отключить разъединитель перемычки QS3 , а затем использовать QO по его назначению. В этой схеме можно использовать шиносоединительный выключатель для замены выключателя любого присоединения.
За ним следует предохранитель и основной трансформатор. Принципиальные схемы в зависимости от способа изображения делятся на однолинейные и многолинейные, развернутые и совмещенные.
На схеме рис. Схема РУ кВ проходной подстанции. Условные обозначения КТП. Схема РУ между рабочей перемычкой и трансформаторами такая же как у рассмотренной выше ответвительной или концевой подстанции.
Строительство подстанции в Германии от А до Я
НЕТ КОММЕНТАРИЕВ
Электростанции, работающие параллельно в энергосистеме, существенно различаются по своему назначению. Комплектные трансформаторные подстанции выпускаются на ряде заводов.
Достаточно широкое применение получила схема шестиугольника рис. Допустимость последней операции зависит от мощности трансформатора и его номинального напряжения. Комплектные трансформаторные подстанции далее — КТП или их части, устанавливаемые в закрытом помещении, относятся к внутренним установкам, устанавливаемые па открытом воздухе, — к наружным.
Нормально один разъединитель QS3 перемычки отключен, все выключатели включены.
Выключатель Q1 в мостике включен, если по линиям W1, W2 происходит транзит мощности. Секционированные схемы Для питания нескольких силовых трансформаторов и РП, подключенных к силовым электрическим приемникам, может применяться схема с одной системой сборных шин.
Комплектная трансформаторная подстанция устройство схема соединений
Ответвительная подстанция присоединяется глухой отпайкой к одной или двум проходящим линиям. Выполнение последнего условия затрудняется при очень сложной схеме электроустановки, однако значительное упрощение схемы может вызвать трудности для выполнения первого условия в отношении надежности электроснабжения. Структурные схемы ТЭЦ Рисунок 2. Особенности и сроки эксплуатации Требования монтажа молнезащиты Выбор любой системы электроснабжения должен выполняться в соответствии с планируемыми нагрузками.
Мы имеем огромный опыт работы с электрической инфраструктурой — в том числе и высоковольтной, что позволяет нам выполнять любые задачи вне зависимости от уровня их сложности. Все одинаковые аппараты помечены цифрами, то есть при наличии 2-х токовых реле, обозначения будут выглядеть как — 1КА и 2КА. Но чтобы оборудование использовалось эффективно его монтаж должны производитель специалисты.
Заказать обратный звонок
Вследствие однотипности и простоты операций с разъединителями аварийность из-за неправильных действий с ними дежурного персонала мала, что относится к достоинствам рассматриваемой схемы. Такое распределение присоединений увеличивает надежность схемы, так как при КЗ на шинах отключаются шиносоединительный выключатель QA и только половина присоединений.
Кабельные линии и трансформаторные подстанции в городских распределительных сетях
Систему электроснабжения города можно условно разделить на две части. К первой относятся электроснабжающие сети - электрические сети и понижающие подстанции напряжением 35-220 кВ, предназначенные для распределения электрической энергии между районами города.
В качестве источников питания им служат местные электростанции или районная энергосистема. Сборные шины 6-10 кВ понижающей подстанции являются центром питания (ЦП) городских электрических сетей. Распределение электрической энергии от ЦП или РП между трансформаторными подстанциями (ТП) осуществляется, как правило, по распределительным сетям 6-10 кВ.
В настоящее время в городах кабельные сети почти полностью вытесняют воздушные, несмотря на более высокую стоимость, т.к. улицы городов и территории предприятий не загромождаются электрическими проводами и опорами.
В настоящее время применяются силовые кабели для линий напряжением до 220 кВ, однако при напряжениях 35 кВ и выше преимущество еще сохраняется за воздушными линиями ввиду конструктивных трудностей, связанных с изготовлением силовых кабелей на столь высокие напряжения.
Городские распределительные сети 6-10 кВ и 380/220 В, как правило, выполняют только кабельными. Исключение составляют районы малоэтажной и индивидуальной застройки (коттеджные поселки и садоводческие товарищества).
Кабельные линии прокладывают в земле по непроезжей части улиц (под тротуарами, газонами и т.п.). Одиночные кабели в микрорайонах укладываются в траншеи либо в блоках из железобетонных панелей, асбоцементных или керамических труб. Кабели с металлическими оболочками и конструкции, на которых проложены кабели, должны быть заземлены. При прокладке кабелей в земле глубина траншеи должна быть не менее 0,7 м, расстояния между соседними кабелями не менее 100 мм, от края траншеи до крайнего кабеля - не менее 50 мм.
По улицам и площадям, насыщенным подземными коммуникациями, и при числе кабелей более 10 их рекомендуется прокладывать в коллекторах и кабельных туннелях. Разделка и соединение кабелей практически не отличаются от промышленных.
Марки силовых кабелей и их область применения в городских сетях приведены в табл. 1.
Таблица 1. Кабели, применяемые в городских электрических сетях
Кабели в свинцовой оболочке с бумажной пропитанной изоляцией
Кабели в алюминиевой оболочке с пропитанной бумажной изоляцией
Кабели с резиновой изоляцией
Кабели не распространяющие горение, с низким дымо- и газовыделением
Кабели с изоляцией из сшитого полиэтилена
Кабели с пластмассовой изоляцией, в пластмассовой оболочке
Шланговые кабели
Основные марки неизолированных проводов, которые используются в воздушных линиях городских электрических сетей:
А - из семи и более алюминиевых проволок одного диаметра, скрученных концентрическими повивами (сечение 16-500 мм2);
АКП - то же, но межпроволочное пространство заполнено смазкой повышенной термостойкости;
АС - сталеалюминиевый провод (сечение 16-500 мм2);
АСКС - то же, но со смазкой.
В настоящее время на воздушных линиях напряжением до 10 кВ рекомендуется использовать самонесущие изолированные провода (СИП). СИП для воздушных линий до 1 кВ представляет собой конструкцию, при которой вокруг нулевого несущего троса скручены изолированные фазные жилы, а также, при необходимости, жила уличного освещения.
Конструктивные параметры воздушных линий городских электрических сетей приведены в табл. 2.
Таблица 2. Габаритные размеры воздушных линий городских электрических сетей
Габаритные размеры
Распределительные подстанции (РП) напряжением 6-10 кВ выполняются в виде отдельно стоящих зданий с комплектными распределительными устройствами одностороннего обслуживания типа КСО.
Современные трансформаторные подстанции (ТП) в городах выполняются комплектными с использованием унифицированных блочных схем. Они различаются по количеству установленных трансформаторов, назначению и схемам коммутации.
Наибольшее распространение получили блочные комплектные трансформаторные подстанции (БКТПу) внутреннего обслуживания и комплектная трансформаторная подстанция наружной установки (КТПН) и наружного обслуживания.
Схема траснформаторной подстанции БКТПу-630
Подстанция БКТПу представляет собой готовое изделие, полностью укомплектованное оборудованием, за исключением силовых трансформаторов, которые монтируются после установки подстанции на фундамент. В ней возможна установка силовых трансформаторов отечественного и импортного производства, как с масляной, так и с сухой литой изоляцией.
На подстанции такого типа могут быть установлены трансформаторы мощностью до 1000 кВА (например, типа ТМГ). РУ-10 кВ выполнено как герметичное комплектное распределительное устройство одностороннего обслуживания с элегазовой изоляцией. РУ-0,4 кВ также комплектное, типа ЩО-59, с предохранителями ПН-2 и рубильниками на номинальные токи 250, 600 и 1000 А.
Устройство автоматического включения резерва (АВР) при установке трансформаторов мощностью до 630 кВА выполняется на контакторах, а при установке трансформаторов 1000 кВА - на автоматических выключателях.
При необходимости в РУ-0,4 кВ предусматривается установка специальной панели для питания сети уличного освещения. Панель освещения имеет две системы шин и два контактора, что позволяет менять режим освещения в зависимости от времени суток (вечером и ночью) путем переключения питания с одной системы шин на другую.
В районах малоэтажной застройки для питания силовых и осветительных нагрузок промышленных, городских и поселковых сетей могут применяться однотрансформаторные подстанции КТПН в моноблочном комплектном исполнении с трансформаторами мощностью 63-400 кВА.
Шкаф КТП разделяется на три отсека сплошными металлическими перегородками. Отсек с трансформатором и высоковольтными предохранителями и отсек РУ-0,4 кВ располагаются на нижнем уровне, а шкаф РУ-10(6) кВ - на верхнем уровне.
Конструкция КТП предполагает использование как воздушных, так и кабельных вводов высокого и низкого напряжения. Подстанция устанавливается на утрамбованной и выровненной площадке или на фундаменте. КТП с воздушным вводом подключается к линии посредством разъединителя, который устанавливается на ближайшей опоре.
На головных участках кабельных линий жилых и общественных зданий устанавливаются вводные распределительные устройства (ВРУ), которые являются конечными элементами городской электросети. Здесь обычно проходит граница балансовой ответственности между энергоснабжающей организацией и потребителями.
Вводные устройства снабжены предохранителями и другими коммутационными аппаратами, что позволяет обеспечить надежную защиту городских электросетей от повреждений, вызванных неисправностями у потребителей, и возможность отключения потребителей при ремонтах и профилактических испытаниях.
С введением в 1980 году ГОСТ 19734-80 «Устройства вводно-распределиельные для жилых и общественных зданий» все ВРУ выполняются унифицированными и комплектуются из стандартных панелей.
В качестве примера рассмотрим УВР-8503. Серия включает 8 типов вводных и 62 типа распределительных панелей, что позволяет использовать их в наборе для всех типов жилых и общественных зданий с различным числом питающих и отходящих линий. В состав вводной панели 2ВР-1-25 для питания потребителей II - III категории входят следующие элементы: трехполюсный рубильник и предохранитель типа ПН-2 в каждой фазе, лампа для освещения с автоматом АЕ-1031 и конденсатор системы подавления помех.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Оборудование трансформаторных подстанций, как устроены подстанции
Сложная иерархия современных электрических сетей включает в себя огромное количество различного электротехнического оборудования, среди которого трансформаторные подстанции выполняют роль звена, связующего и перераспределяющего электроэнергию. Они располагаются около или внутри населенных пунктов и обеспечивают комфортные условия для проживания людей.
В сельской местности еще можно встретить конструкции старых столбовых подстанций, работающих на открытом воздухе, которые принимают по высокой стороне воздушной линии 10 или 6 кВ и отдают 0,4 подключенным потребителям.
Внутри населенных пунктах с многоэтажными зданиями в целях безопасности чаще применяются кабельные линии, скрытые в земле, а трансформаторное оборудование располагается внутри специальных построек, закрытых на замки от несанкционированного проникновения.
Здание подобной трансформаторной подстанции, преобразующей напряжение 10 кВ в 0,4 показано на фотографии.
Внешнее отличие габаритов показанных подстанций, преобразующих напряжения одинаковых величин, свидетельствует о том, что они оперируют разными мощностями.
Подобные трансформаторные подстанции (ТП) получают электроэнергию по высоковольтным линиям электропередач 10 кВ (или 6) от удаленных распределительных устройств.
Фотография силового трансформатора, расположенного на ОРУ-110 и осуществляющего преобразование электроэнергии 110 кВ в 10, передаваемое по ЛЭП на ПС-10, показана на очередной фотографии.
Этот трансформатор имеет уже большие габариты и оперирует с мощностями до 10 мегаватт, располагается на открытой, огороженной территории, которая конструкцией оборудования четко разграничена на две стороны:
высшего напряжения 110;
Сторона 110 кВ воздушной ЛЭП соединяется с другой подстанцией, которая имеет еще большие габариты и преобразовывает огромные энергетические потоки.
Размеры только вводной опоры единичной воздушной ЛЭП позволяют визуально оценить значительность потоков электроэнергии, пропускаемых через нее.
Приведенные фотографии свидетельствуют, что трансформаторные подстанции в энергетике перерабатывают энергию электричества различных напряжений и мощностей, монтируются разнообразными конструкциями, но имеют общие черты.
Состав оборудования трансформаторной подстанции
Каждая ПС создается под конкретные условия эксплуатации с расположением:
на открытом воздухе — открытые распределительные устройства (ОРУ);
внутри закрытых помещений — ЗРУ;
в металлических шкафах, встроенных в специальные комплекты — КРУ.
По типу конфигурации электрической сети трансформаторные ПС могут выполняться:
тупиковыми, когда они запитаны по одной либо двум радиально подключенным ЛЭП, которые не питают другие ПС;
ответвительными — присоединяются к одной (иногда двум), проходящим ЛЭП с помощью ответвлений. Проходящие линии питают другие подстанции;
проходными — подключены за счет захода ЛЭП с двухсторонним питанием методом «вреза»;
узловыми — присоединяются по принципу создания узла за счет не менее чем трех линий.
Конфигурация сети электроснабжения накладывает условия на рабочие характеристики подстанции, включая настройку защит для обеспечения безопасной работы.
Основные элементы ПС
В состав оборудования любой подстанции входят:
силовой трансформатор, который непосредственно осуществляет преобразование электроэнергии для ее дальнейшего распределения;
шины, обеспечивающие подвод приходящего напряжения и отвод нагрузок;
силовые коммутационные аппараты с тоководами, позволяющие перераспределять электроэнергию;
системы защит, автоматики, управления, сигнализации, измерения;
вводные и вспомогательные устройства.
Он является основным преобразующим элементом электроэнергии и выполняется трехфазным исполнением. В его конструкцию входят:
корпус, выполненный в форме герметичного бака, заполненного маслом;
обмотки стороны низкого напряжения (НН);
обмотки вводов высокого напряжения (ВН);
переключатель регулировочных отводов у обмоток;
вспомогательные устройства и системы.
Более подробно устройство силового трансформатора и автотрансформатора изложено в другой статье.
Чтобы трансформатор работал к нему надо подвести питающее и отвести преобразованное напряжение. Эта задача возложена на токоведущие части, которые называют шинами и ошиновкой. Они должны надежно передавать электрическую энергию, обладая минимальными потерями напряжения.
Для этого их создают из материалов с улучшенными токопроводящими свойствами и повышенным поперечным сечением. В зависимости от размеров ПС шины могут располагаться на открытом воздухе или внутри закрытого сооружения.
Шины и ошиновка электрически разделяются между собой положением силового выключателя. Причем ошиновка без каких-либо коммутационных аппаратов напрямую подключена к вводам трансформатора. Ее конструкция не должна создавать механических напряжений в фарфоровых и всех остальных деталях вводов.
Для ошиновки используют кабели или пластины, которые монтируют на медные шпильки трансформаторных вводов через наконечники или переходники.
У подстанций, защищенных от воздействия атмосферных осадков, шины обычно делают цельными алюминиевыми или реже медными полосами. На открытом воздухе для них чаще используют многожильные не закрытые слоем изоляции провода повышенного сечения и прочности.
Однако, в последнее время наметился переход на системы шин, устанавливаемые жестко. Это позволяет экономить площадь на ОРУ, металл токоведущих частей и бетон.
Такие конструкции применяются на новых строящихся подстанциях. За их основы взяты образцы, успешно работающие несколько десятилетий в странах Запада на оборудовании 110, 330 и 500 кВ.
Для расположения шин применяется определенная конфигурация, которая может использовать:
Под термином «система шин» подразумевается комплект силовых элементов, подключающих все присоединения на распределительном устройстве. На подстанциях с двумя трансформаторами одного напряжения создаются две системы шин, каждая из которых питается от своего источника.
Протяженная система шин при большом количестве присоединений может разделяться на отдельные участки, которые называются секциями.
Силовые коммутационные аппараты
Трансформаторные подстанции при эксплуатации необходимо подключать под напряжение или выводить из работы для профилактического обслуживания или в случае возникновения аварийных ситуаций и неисправностей. С этой целью используются коммутационные аппараты, которые создаются различными конструкциями и могут:
1. отключать аварийные токи максимально возможных величин;
2. коммутировать только рабочие нагрузки;
3. обеспечивать разрыв видимого участка электрической схемы за счет переключения только при снятом с оборудования напряжении.
Коммутационные аппараты, способные отключать аварийные ситуации, работают в автоматическом режиме и называются «автоматическими выключателями». Они создаются с различными возможностями коммутации нагрузок за счет конструктивных особенностей.
По принципу использования запасенной энергии, заложенной в работу исполнительного механизма, их подразделяют на:
По способам гашения электрической дуги, возникающей при отключениях, они классифицируются на:
Для управления исключительно рабочими режимами, характеризующимися только номинальными параметрами сети, создаются «выключатели нагрузки». Мощность их контактной системы и скорость работы позволяют успешно переключаться при обычном состоянии схемы. Но, ими нельзя оперировать для ликвидации коротких замыканий.
При разрыве электрической цепи под нагрузкой создается электрическая дуга, которая ликвидируется конструкцией выключателя. В обесточенной схеме для отделения определенного участка от напряжения используют более простые устройства:
Разъединителями оперируют, как правило, вручную при снятом напряжении. На подстанциях 330 кВ и выше управление разъединителями осуществляется электродвигателями. Это объясняется большими габаритами и механическими усилиями, которые сложно преодолеть вручную.
При включении разъединителя участок его цепи собирается в электрическую схему, а при отключении — выводится.
Отделители создаются для автоматического разделения напряжения с защищаемого участка при создании на нем бестоковой паузы удаленным выключателем. Более подробно работа отделителя изложена в этой статье.
Взаимное расположение коммутационных аппаратов и шин
Любая трансформаторная подстанция создается по определенной электрической схеме, предполагающей обеспечение надежной работы, простоты управления в сочетании с минимумом затрат на ввод и эксплуатацию. С этой целью к трансформаторному устройству разными способами подключаются отходящие ЛЭП.
Наиболее простая схема предполагает подключение к ТП посредством силового выключателя Q одной секции шин, от которой отходят все присоединения. Для обеспечения условий безопасного ремонта оборудования выключатели со всех сторон отделяются разъединителями.
Если на ПС много присоединений, когда в схеме используются 2 силовых трансформатора, то может применяться секционирование за счет использования дополнительного выключателя, который постоянно находится в работе, а при возникновении неисправности на одной из секций разрывает цепь, оставляя в работе ту секцию, где нет поломки.
Использование в такой схеме обходной системы шин, образованной за счет подключения дополнительных выключателей и небольшой корректировки электрических цепей, позволяет переводить любое присоединение на питание от обходного выключателя, безопасно выполнять ремонт и обслуживание собственного.
Большими удобствами обслуживания и повышенной надежностью обладают распределительные устройства, собранные на основе двух рабочих систем шин с обходной, когда они дополнительно разделены на секции.
В исходном состоянии все отход ящие ЛЭП получают электроэнергию от обоих трансформаторов. Для этого шинные и секционные выключатели питают секции шин, а присоединения равномерно распределены по ним через свои коммутационные устройства.
Обходная СШ каждой секции вводится под напряжение только для случая перевода через нее питания присоединения, выключатель которого выведен в ремонт.
При возникновении короткого замыкания на одной из секций она отключается защитами со всех сторон, а все остальные с подключенными к ним ЛЭП остаются в работе. За счет такой схемы при КЗ на ОРУ обесточивается минимальное количество потребителей от всех работающих.
Приведенные схемы показаны для примера. Их существует большое разнообразие, которое позволяет наиболее оптимально эксплуатировать оборудование трансформаторной подстанции.
Защиты, автоматика, системы управления
Работа оборудования трансформаторной подстанции происходит в автоматическом режиме под дистанционным наблюдением оперативного персонала. Чтобы предотвратить серьезные повреждения внутри сложной дорогостоящей системы применяются автоматические защитные устройства.
Они имеют чувствительные датчики, которые воспринимают начало возникновения аварийных процессов и, обрабатывая полученную информацию, передают ее на защиты.
Такими датчиками могут работать механические приборы, реагирующие на:
возникновение вспышки света;
резкое возрастание давления внутри закрытой ячейки;
начало газообразования внутри жидкостей или другие признаки.
Однако, основная нагрузка по определению начала аварийных режимов возложена на электрические устройства — измерительные трансформаторы тока и трансформаторы напряжения.
Они с высокой точностью моделируют электрические процессы, происходящие в первичной схеме силового оборудования и передают их в органы сравнения, которые определяют момент возникновения неисправностей.
Полученный сигнал от них воспринимают логические блоки, обрабатывающие поступившую информацию для передачи исполнительной команды на отключающие устройства конкретных автоматических выключателей.
У малогабаритных трансформаторных подстанций, размещенных внутри крытых сооружениях, защиты могут располагаться в отдельной ячейке или шкафу.
На подстанциях, преобразующих напряжение 110 кВ и выше, для размещения релейных вторичных цепей требуется отдельное здание с большим количеством панелей. На них монтируют системы управления, автоматики и защиты:
К этим устройствам подключаются системы сигнализации, работающие в местном и дистанционном режиме для передачи оперативному персоналу достоверных сведений о происходящих коммутациях в электрической сети. Наиболее важная информация о положении ответственных элементов оборудования передаются по каналам телесигнализации.
Используемые многие десятилетия релейные защиты постепенно вытесняются микропроцессорными малогабаритными модулями, облегчающими эксплуатацию.
Однако, их массовое использование сдерживается высокой стоимостью и отсутствием точных международных стандартов для всех производителей. Ведь при поломке отдельного специфичного блока пользователю приходится обращаться к конкретному заводу для замены возникшей неисправности.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Схемы комплектных трансформаторных подстанций КТП
Трансформаторной подстанцией (ТП) называется электрическая установка, предназначенная для преобразования напряжения и распределения электрической энергии потребителям. Подстанция, изготовленная в заводских условиях, называется комплектной трансформаторной подстанцией (КТП).
Комплектная трансформаторная подстанция - подстанция, состоящая из трансформаторов и блоков (КРУ или КРУН и других элементов), поставляемых в собранном или полностью подготовленном для сборки виде. Комплектные трансформаторные подстанции (далее — КТП) или их части, устанавливаемые в закрытом помещении, относятся к внутренним установкам, устанавливаемые па открытом воздухе, — к наружным.
КТП мощностью 63 - 400 кВА тупикового типа с воздушным (кабельным) вводом ВН и воздушно-кабельными выводами НН и напряжением 6(10) кВ
В конструкцию КТП входят силовой трансформатор и шкаф высоковольтного и низковольтного оборудования (0,38/0,22 кВ).
Цеховые КТП, как правило, не имеют распределительного устройства на стороне ВН, питающий кабель присоединяется к трансформатору через шкаф высоковольтного ввода, который может содержать высоковольтный коммутационный аппарат (выключатель нагрузки или разъединитель), аппарат зашиты (предохранитель), и блок шинных накладок, которыми формируется схема электроснабжения выше 1 кВ.
Глухое подключение (без коммутационного аппарата) возможно только для радиальных схем питания КТП, когда коммутация высоковольтного выключателя на питающем РУ приводит к отключению/включению только одного трансформатора. При магистральной и смешанной схемах питания КТП коммутационный аппарат на вводе КТП обязателен. Назначение этого коммутационного аппарата — снятие напряжения для вывода в ремонт трансформатора и других элементов схемы, относящихся к данной секции шин.
РУ НН формируется из набора шкафов: шкаф/шкафы низковольтного ввода, секционный шкаф (для двухтрансформаторных КТП), линейные шкафы, которые содержат соответствующие коммутационные аппараты (вводные, секционный, линейные) — автоматические выключатели или предохранители с рубильниками.
Электрические соединения оборудования подстанции и подсоединение к нему отходящих линий представлены на рис. 1.
В таблице приведены наименование и функциональное назначение оборудования КТП.
Обозначение на схеме | Наименование и тип оборудования | Назначение |
QS1 | Разъединительный пункт РП IV | Включение и отключение КТП |
TV | Трансформатор ТМ-160/10 | Преобразование напряжения 10 кВ в напряжение 0.38/0,22 кВ |
FU1 - FU3 | Предохранитель ПК-10 | Защита трансформатора от токов короткого замыкания |
FV1 - FV3 | Разрядники РВО-10, РВН-0,5 | Защита КТП от атмосферных перенапряжений на линиях напряжением 10 и 0,38 кВ |
QS2 | Рубильник Р-3243 | Отключение низковольтного шкафа |
ТА1 - ТА5 | Трансформатор тока ТК-20У3 | Снижение тока для подключения счетчика энергии и реле защиты от перегрузок |
FU4 - FU6 | Предохранитель Е-27 | Защита линий уличного освещения от тока короткого замыкания |
КМ | Магнитный пускатель ПМЕ-200 | Автоматическое включение и отключение уличного освещения |
Р1 | Счетчик СА4У | Учет потребления активной энергии |
R1 - R3 | Резистор ПЭ-50 | Подогрев счетчика в холодное время |
SA1 | Переключатель ПКП-10 | Включение подогрева счетчика |
SA2 | Переключатель ПКП-10 | С для проверки наличия напряжения и освещения шкафа |
HL | Лампа накаливания | Сигнализация наличия напряжения на фазах и освещение шкафа |
SA3 | Переключатель ПКП-10 | Переключение на автоматическое или ручное управление уличным освещением |
XS | Штемпельная розетка | Подключение приборов и электроинструмента |
SQ | Конечный выключатель ВПК-2110 | Отключение линий напряжением 0,38 кВ при открывании дверцы шкафа |
КК | Тепловое реле ТРН-10 | Защита трансформатора от токов перегрузок |
QF1 - QF3 | Автоматические выключатели А3700 | Включение и выключение линий напряжением 0,38 кВ |
КА1 - КА3 | Токовое реле РЭ-571Т | Защита линий напряжением 0,38 кВ от однофазных замыканий проводов на землю |
Схема столбовой КТП
Комплектные трансформаторные подстанции мачтового типа служат для приема, преобразования и распределения электроэнергии трехфазного переменного тока частотой 50 Гц с номинальным напряжением 6(10) кВ на стороне высокого напряжения и 0,4 кВ па стороне низкого напряжения.
Комплектная трансформаторная подстанция мачтового типа используется для электроснабжения сельскохозяйственных, жилых, промышленных и других объектов.
КТП подключается к линии электропередачи посредством разъединителя, который устанавливается на ближайшей опоре. Размещение шкафов низкого напряжения КРУН и высоковольтного оборудования на КТП производится в соответствии с типовыми проектами.
В комплекте с КТП мачтового типа поставляются разъединитель, силовой трансформатор, высоковольтные разрядники и предохранители. Принципиальная электрическая схема подстанции представлена на рисунке.
Схема КТП мачтового типа
Схема однофазной мачтовой трансформаторной подстанции
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Расценка по устройству ввода в ТП?
Вводы кабелей в шкафы управления
Автор: Света. Подскажите расценочку Установка кабельнных вводов в шкафы управления в местах прохода кабельных линийВодонепроницаемый Кабельные Вводы IMC Горячие PG7 Пластик
Помогите подобрать расценки на гидроизоляцию вводов
Автор: Екатерина. Добрый день! Помогите пожалуйста, не могу подобрать расценку к данным видам работ: гидроизоляция вводов диаметром 250-300мм в два слоя с последующей обмазкой проникающей гидроизоляцией гидроизоляция вводов электро щитовой с пучком кабелей .
Правильно ли будет проставить в объем "минус 28 опор"?
Автор: Владимир. Если это ввод в здание,ТП,РП и.т.п.,возмите расценку на устройство вводов из 33сб.У меня программа закрыта,но Вы и сами эти расценки найдёте.
Тепловые сети - смена вводов сетей в здание
Автор: Татьяна. Тепловые сети (ГВС и теплоснабжение) от котельной до зданий проходят надземно по опорам. Проводится смена вводов этих сетей в здание. По каким сборникам правильно осметить эти работы сб16+сб65р или сб22+24+66р,
Прокладка кабеля
Подскажите, пожалуйста, прокладка кабеля в трансформаторной подстанции как брать?
Похожие темы: Найти еще: кабеля
Подскажите какой кабель в чем прокладывать?
Автор: Наталия. Добрый день,у меня есть кабель контрольный,кабель монтажный,кабель огнестойкий,провод пв3,кабель UTP и есть металлорукав гибкий,труба стальная,лоток перфорированный.
Повторное использование силового кабеля
Автор: Елизавета. Виды силового кабеля для стационарной прокладки: кабель ВВГ, ВВГ-П, ВВГнг, ВВГнг-П, ВВГ нг-LS; кабель ШВВП, ШВВПл, ШВВПн; кабель ПВС, ПВСл, ПВСн; кабель NYM.
Расценка на заведение телефонного кабеля 25x2x24AWG в плинты
Автор: RRRinka. "Антонина пишет: т.е. емкость = кол-во пар, верно? " Ну например, вот здесь кабели УАТС 8 концов (то есть 8 кабелей) 25х2 кабели ТФОП 1 конец (1 кабель) 100х2 1 конец (1 кабель) 25х2 и 1 кабель 50х2. По-моему, все очевидно.
Трансформаторные подстанции высочайшего качества
Ввод кабельной линии в здание или кабельное сооружение
Ввод кабельной линии в здание или кабельное сооружение. Вариант 1 (А5-92-46)
1. Вводы кабелей в здания, кабельные сооружения и другие помещения должны быть выполнены в асбестоцементных безнапорных трубах или в отфактурованных отверстиях железобетонных конструкций.
2. После ввода труб в здание или кабельное сооружение необходимо восстановить гидроизоляцию стен.
3. Кабели в концах труб уплотнить по чертежу А5-92-45.
Ввод кабельной линии в здание или кабельное сооружение. Вариант 2 (А5-92-47)
Общие примечания см. чертеж А5-92-46
Ввод кабельной линии в здание или кабельное сооружение. Вариант 3 (А5-92-48)
Общие примечания см. чертеж А5-92-46
Ввод кабельной линии в здание или кабельное сооружение. Вариант 4 (А5-92-49)
Нов-электро
Включение в работу комплектной трансформаторной подстанции
Безусловно, к этому времени все электромонтажные работы должны быть закончены в соответствии с проектной документацией, получена и проверена сдаточная документация по ЭМР, получено временное разрешение Ростехнадзора на подачу напряжения для проведения ПНР и другие разрешительные документы.
Бывают ситуации, когда при подаче напряжения случаются «неприятности» из-за ошибок монтажа, проектных нестыковок или банально, оставленных инструментов на сборных шинах.
Во избежание подобных ситуаций, рекомендуется составлять подробную программу включения (подачи напряжения), ввода в работу электроустановок с поэтапным описанием порядка действий персонала.
Ниже, пример разработанной программы включения в работу комплектной трансформаторной подстанции КТП-13. КТП представляет двух трансформаторную подстанцию, где трансформаторы расположены в отдельных камерах, а с РУНН соединены шинными мостами.
1. Предупредить строительно-монтажные организации о начале проведения работ по вводу КТП-13 в работу.
2. Выкатить в ремонтное положение масляные выключатели ф.9 и ф.13 ПС-130 РУ-6 кВ.
3. Выкатить в ремонтное положение автоматические выключатели КТП-13: ВАВ -1 (QF1), ВАВ-2 (QF2), САВ (QF3).
4. Вывести в ремонтное положение выключатели и модули ячеек №№5-26 (QF5-QF26).
5. Осмотр трансформаторов Т-1, Т-2 и распределительного устройства 0,4 кВ КТП-13:
- подключение кабеля 6кВ к трансформатору Т-1 и Т-2;
- отсутствие пыли и посторонних предметов;
- проверить усилие затяжки всех резьбовых соединений;
- проверить и подтянуть соединение с контуром заземления
6. Проверить отключенное положение выключателей вторичных и измерительных цепей SF11, SF12, SF21, SF22.
7. Произвести замер сопротивления изоляции (мегаомметр 2500 кВ):
- питающий кабель 6 кВ ввод №1 КТП-13 _______ МОм
- питающий кабель 6 кВ ввод №2 КТП-13 _______ МОм
- шинный мост НН от Т-1 до ТП-13 _______ МОм
- шинный мост НН от Т-2 до ТП-13 _______ МОм
- секция шин №1 КТП-13 _______ МОм
- секции шин №2 КТП-13 _______ МОм
8. Вкатить в рабочее положение автоматические выключатели КТП-13: ВАВ -1(QF1), ВАВ-2(QF2), САВ (QF3).
9. Установить ключ АВР в положение «0» ручное.
10. Подать питание на трансформатор Т-1 ф.9 ПС-130 РУ-6кВ. Убедиться в его работе.
11. Замерить выходные параметры: напряжение НН трансформатора №1.
12. Включить питание цепей управления (оперативное напряжение) КТП-13 ввод-1 SF12, ввод-2 SF22.
13. Проверить работу сигнализации.
14. Включить питание измерительных цепей (вольтметр, счетчик) SF11, SF21. Установить положение ключей в положение «0».
15. Включить питание БМРЗ от ШОТ (SF01). ШОТ необходимо запитать по временной схеме или подать напряжение от заблаговременно заряженных аккумуляторных батарей.
16. Включить вводной автомат ВАВ-1.
17. Проверить напряжение на 1 секции шин (по показаниям вольтметра).
18. Включить секционный автомат САВ.
19. Проверить напряжение на 2 секции шин (по показаниям вольтметра).
20. Отключить секционный автомат САВ и вводной автомат ВАВ-1
21. Убедиться в отсутствии напряжения на 1 секции шин
22. Подать питание на трансформатор Т-2. ф.13 ПС-130 6кВ. Убедиться в его работе.
23. Замерить выходные параметры: напряжение НН трансформатора №2.
24. Включить вводной автоматический выключатель ВАВ-2
25. Проверить напряжение на 2 секции шин (по показаниям вольтметра).
26. Включить секционный автомат САВ.
27. Проверить напряжение на 1 секции шин (по показаниям вольтметра).
28. Отключить секционный автоматический выключатель САВ.
29. Включить вводной автоматический выключатель ВАВ-1.
30. Произвести фазировку 1 и 2 секции шин.
31. Проверить работу АВР КТП-13:
32. Восстановить исходную схему: ВАВ-1, ВАВ-2 включены, САВ отключен, положение ключа АВР «1» «автоматический»
- отключить ввод №2 (Т-2) ф.13 ПС-130 6кВ, убедиться в правильной работе АВР. Результат: КТП-13 ВАВ-2 отключился, САВ включился, ВАВ-1 включен.
- включить ввод №2 (Т-2) ф.13 ПС-130 6кВ, убедиться в правильной работе АВР. Результат: КТП-13 ВАВ-2 остался отключен, САВ включен, ВАВ-1 включен.
33. Замерить выходные параметры:
- напряжение
- сопротивление петли фаза ноль
34. Произвести корректировку выходного напряжения при необходимости на стороне НН.
35. Произвести корректировку уставок выключателей в соответствии с замеренными параметрами.
Читайте также: