Внешняя память телефона где находится
Что общего у смартфонов, ноутбуков и умных часов? Все они имеют место для хранения системных файлов, приложений и пользовательских данных. Хранилище на телефонах Android делится на две категории. Внешнее и внутреннее хранилище. Но в чем разница между внешним и внутренним хранилищем? Какой из них использовать?
Чем внутреннее хранилище отличается от внешнего хранилища
Официальный Документация Android по хранению дает нам некоторые рекомендации. Когда вы устанавливаете приложение на свой телефон, оно создает уникальную личную папку, доступ к которой может получить только установленное приложение. Эти файлы хранятся во внутренней памяти, к которой другие приложения или пользователи не могут получить доступ.
Системные файлы Android также хранятся во внутренней памяти, недоступной для пользователя. Вы либо загрузите приложение, либо можете получить root-доступ на своем смартфоне для доступа к этим файлам.
Первичное внешнее хранилище доступно для пользователя, но остается частью встроенной памяти. Здесь вы храните свои фотографии, документы и другие данные, даже если у вас нет SD-карты. Короче говоря, встроенная память вашего телефона разделена на две части. Внутренний и наружный. Установленную SD-карту также можно назвать съемным внешним хранилищем.
Почему внутреннее и внешнее имеют значение
Файлы, хранящиеся в основном внешнем хранилище, доступны напрямую с помощью встроенного приложения для просмотра файлов. Другие приложения также могут получить доступ к этим данным. Вот где нужны разрешения. Когда приложение хочет получить доступ к этим данным, оно запрашивает разрешение на доступ к первичному или вторичному внешнему хранилищу. Приложение не может получить доступ к файлам, хранящимся во внутренней памяти, если они не принадлежат соответствующему приложению.
Но не все приложения это делают. Экосистема Android известна многими вещами, и почему-то конфиденциальность не является главной проблемой. Было много случаев, когда приложения были найдены виновен в краже пользовательских данных без разрешения или даже без ведома пользователей. В таких случаях важность первичного внутреннего хранилища, недоступного для других приложений, становится все более важной.
3. Дальнейшие мысли
Теперь мы знаем, что внутреннее хранилище используется для хранения файлов ОС и приложений, недоступных для других приложений. Мы также знаем, что существует два типа внешнего хранилища. Основное внешнее хранилище используется для хранения данных, доступ к которым разрешен другим пользователям. Например, настройки приложения хранятся во внутренней памяти, а файлы MP3, которые вы загружаете с помощью того же приложения, хранятся во внешнем хранилище (основном или дополнительном).
SD-карта является вторичным внешним хранилищем, но не является частью системы. Вы можете снять его и носить с собой куда угодно. Вы также можете подключить его непосредственно к ноутбуку или другим совместимым устройствам. Вы можете возразить, что к ноутбуку можно подключить и смартфон. Но когда вы подключаете смартфон через USB-кабель и подключаете внутренний диск, вы можете получить доступ только к первичному и вторичному внешнему хранилищу. Некоторые пользователи называют первичное внешнее хранилище встроенным общим хранилищем, поскольку оно является частью системы, но доступно для пользователя свободно.
Некоторые приложения позволяют пользователям хранить данные на SD-карте. Это дает пользователю гибкость и больший контроль над своими данными. Когда вы удаляете приложение, все данные, хранящиеся в папке приложения, также удаляются. Иногда не все данные удаляются или приложения оставляют пустые папки. Со временем это может накапливаться, приводя к проблемам с хранилищем и системным задержкам.
Многие смартфоны премиум-класса полностью удалили SD-карту, но вместо этого предлагают встроенную память с разными конфигурациями памяти. Они могут начинаться с 2 ГБ и доходить до 512 ГБ. Это делает еще более необходимым разделение встроенной памяти на внутреннюю и внешнюю.
Итак, в следующий раз, когда вы откроете «Настройки» на своем телефоне и перейдете в «Хранилище», чтобы проверить доступное пространство, это действительно основное внешнее хранилище, доступное по дизайну. Это называется только внутренним хранилищем, чтобы конечный пользователь мог лучше отличить его от SD-карт, которые они могли установить дополнительно.
Разрешения, разрешения
Следующий: У вас есть смартфон Xiaomi? Узнайте, как увеличить внутреннюю память на любом телефоне Xiaomi прямо сейчас.
При использовании приложений под Android иногда появляются вопросы: «А где приложение хранит созданные файлы?», «Можно ли до них достучаться?» и «Удалятся ли файлы при удалении приложения?» Давайте попробуем посмотреть, где же приложение может хранить свои данные и какие последствия это имеет для пользователя.
Внутреннее хранилище данных
Смысл следует непосредственно из названия. Внутреннее хранилище (internal storage) располагается всегда в памяти смартфона вне зависимости от того, есть ли возможность установки карты памяти (и тем более того, вставлена ли она). Эта область памяти является защищенной. Находится в системном разделе /data. По умолчанию все файлы, которые там располагаются, доступны только тому приложению, которое их создало. Разумеется, можно сделать файлы доступными для других приложений, но это надо делать специально. Если приложение не открывает файлы для доступа извне, достучаться к ним можно будет только получив root.
Назначение хранилища понятно: внутренние защищенные данные, к которым не должно быть нерегламентированного доступа. Проблемы (с точки зрения пользователя) могут быть в следующих случаях:
- Неоправданно большой объем данных. Хочется вынести данные на карту памяти, чтобы сэкономить внутреннее пространство для других нужд, а приложение не дает.
- По мнению пользователя, регламент доступа к данным должен быть другим, не таким, как предлагает приложение.
Пример: приложение «Лекции по истории России». В приложении хороший контент (и по содержанию, и по качеству звука). Но сохраняется он во внутреннюю память. На бюджетных устройствах, где этой памяти мало, становится затруднительным закачать заранее много лекций, а потом, отключившись от интернета, слушать их. Второй проблемой становится собственно регламент доступа к данным. Даже если ограничиться тематикой истории, у меня есть аудиофайлы, полученные из трех источников: данное приложение, подкасты и аудиоверсии роликов с youtube. Хочется взять и объединить навек в их земной юдоли под владычеством всесильным Властелина Мордора их все в единый плейлист, и слушать его одним аудиоплеером. Но на смартфоне без root это сделать невозможно.
Внешнее хранилище «личных» данных
С точки зрения разработчика, кроме внутреннего хранилища данных, для персональных целей приложения есть еще внешнее хранилище. Оно необязательно размещается на карте памяти. Это может быть и внутренняя память смартфона, но весь раздел с такими данными размещается в общем доступе. В корне раздела есть папка Android/data, а в ней — подпапки с именами пакетов приложений.
Плюсы такого подхода очевидны: данные доступны извне для целей пользователя. А если это карта памяти, то и емкость может быть ограничена только вашими финансами (в продаже уже можно найти карты памяти на 400 гигабайт). Минусы тоже понятны: в любой момент любое приложение (конечно, имеющее разрешение на доступ к «внешним» данным) может взять и стереть чужие файлы. Также файлы будут удалены системой при удалении приложения (или при очистке его данных).
Пример приложения: подкаст-менеджер BeyondPod (более-менее свежей версии, раньше файлы хранились по-другому). Пользователь имеет доступ к скачанным подкастам и может легко удалять их (например, в целях экономии места) или слушать их во внешнем плеере.
Общее внешнее хранилище
Располагается в корне «внешнего» раздела на одном уровне с папкой «Android». Предназначается для хранения данных, разделяемых между разными приложениями. Обычно в документации Google в качестве примера приводят картинки (фото с камеры — папка DCIM). Основная проблема данных файлов: они никогда не удаляются автоматически. Даже если приложение вы удалили.
Пример: мессенджер Telegram. После того, как вы удалили приложение, загруженные файлы никуда не исчезают. Они продолжают спокойно лежать на накопителе данных, занимая драгоценное место.
Как можно удалить файлы, не удаляя приложения
Здесь важно ввести еще одну классификацию файлов приложений. Она справедлива для внутреннего хранилища и для внешнего хранилища личных данных. Все данные делятся на два типа: собственно данные и кэш.
Данные (папка data) — некие файлы, которые, по логике Google, нужны для постоянной работы с ними. Если полностью их удалить, то приложение поведет себя точно так же, как если бы его переустановили (удалили и заново установили). Частичное удаление файлов может не привести ни к каким неприятным последствиям. Но важно понимать, какие конкретно данные вы удаляете (например, очевидно, что скачанные файлы подкастов можно удалять совершенно свободно — это не повлияет на работоспособность подкаст-менеджера).
Кэш — временные данные, которые сформированы в ходе работы приложения и нужны для ускорения этой работы. Например, данные, которые часто нужны в интернете, загружаются и в дальнейшем вместо загрузки открываются локально (разумеется, кэш может обновляться, чтобы не показывать устаревшие данные). Удалять кэш любого приложения можно совершенно спокойно, это штатная операция.
Очистка памяти и кэша вызывается из настроек приложения. Кнопка «Очистить кэш» очищает только кэш, а кнопка «Очистить данные» — и кэш, и данные приложения.
Удаление файлов приложения из общего внешнего хранилища выполняется только вручную. Более того, даже оценка того, от какого приложения эти файлы остались, тоже выполняется вручную.
Если основные названия чипсетов, как правило, на слуху, то на тип памяти мало кто вообще обращает внимание. Вместе с тем это важный параметр при выборе, например, игровых гаджетов. Память напрямую влияет на комфорт использования смартфона и его производительность. В статье мы расскажем, какая память бывает в карманных устройствах и на что обращать внимание при выборе.
В современных смартфонах есть три типа памяти: оперативная, внутренняя и внешняя. Но если характеристики карт памяти вы легко можете узнать при покупке, то типы ОЗУ и ПЗУ производители гаджетов зачастую не указывают. Чаще всего так происходит, когда компания использует медленную память и ей нечем похвастать — это должно стать первым звоночком при выборе устройства.
Оперативная память (RAM/ОЗУ)
С оперативной памятью в смартфонах всё сравнительно просто: во всех современных гаджетах используется технология LPDDR — модификация используемой на обычных ПК технологии DDR. Приставка LP (Low Power) означает низкое энергопотребление, которое достигается, в основном, за счёт снижения рабочего напряжения и пропускной способности.
В современных смартфонах встречается память LPDDR трёх поколений:
- LPDDR3 — пропускная способность до 2133 Мбит/с, частота до 933 МГц, напряжение 1,2 В;
- LPDDR4 — пропускная способность до 3200 Мбит/с, частота до 1600 МГц, напряжение 1,1 В;
- LPDDR4x — пропускная способность до 4266 Мбит/с, частота до 1600 МГц, напряжение 0,6 В.
Стандарт LPDDR3 к настоящему времени уже считается устаревшим, хотя всё ещё используется в бюджетных гаджетах. Память типа LPDDR4 ставится в топовые устройства, а также в смартфоны средней ценовой категории. Существует и более современный тип LPDDR4x с повышенной пропускной способностью и пониженным энергопотреблением. Именно LPDDR4x стоит отдать предпочтение, если вы хотите приобрести флагман.
Современная мобильная оперативка очень быстра, но всё-таки недостаточно для некоторых задач. Например, для съёмки видео на скорости порядка 1000 fps: такой возможностью могут похвастать Sony Xperia XZ, Samsung Galaxy S9 и Huawei P20 Pro. Чтобы съёмка такого видео стала возможной, производителям пришлось пойти на технические ухищрения и встроить DRAM-слой (Dynamic RAM или динамическое ОЗУ) прямо в CMOS-сенсор камеры. Благодаря такому решению, сверхскоростные записи сначала сохраняются в DRAM-слое, и только потом постепенно обрабатываются процессором.
У флагмана Sony объём такой памяти составляет 1 Гбит, а у Samsung — 2 Гбит. Это накладывает ограничения на максимальную длительность сверхскоростной съёмки, которая равна 0,182 секунды у Xperia XZ и 0,2 секунды у Galaxy S9.
Внутренняя память (ROM/ПЗУ)
Наиболее распространённый тип внутренней памяти в современных смартфонах — недорогой eMMC, взросший на базе карт памяти MMC, совместимых, в свою очередь, со стандартом SD. Иными словами, eMMC — это распаянная на материнской плате смартфона карта памяти.
Стандарт eMMC существует в огромном количестве версий, вот наиболее актуальные из них:
- eMMC 4.5 — 2011 год, пропускная способность до 200 МБ/с, скорость записи до 60 МБ/с;
- eMMC 5.0 — 2013 год, пропускная способность до 400 МБ/с, скорость записи до 90 МБ/с;
- eMMC 5.1 — 2015 год, пропускная способность до 600 МБ/с, скорость записи до 125 МБ/с.
В конце прошлого года ожидался анонс версии eMMC 5.2, но этого всё ещё не случилось.
Главным конкурентом eMMC выступает технология UFS, разработанная компанией Samsung. В отличие от технологии eMMC, которая не что иное, как модификация карт памяти, стандарт UFS изначально разрабатывался для создания быстрой внутренней памяти. В результате, UFS имеет не только большую пропускную способность по сравнению с eMMC, но и в два раза более низкое энергопотребление.
К настоящему времени выпущены спецификации трёх мажорных версий стандарта UFS:
- UFS 1.0 — 2011 год, пропускная способность до 300 МБ/с;
- UFS 2.0 — 2013 год, пропускная способность до 1200 МБ/с;
- UFS 3.0 — 2018 год, пропускная способность до 2900 МБ/с.
Говоря о поколениях UFS, стоит отметить ещё два важных момента. Первый — версии стандарта UFS 2.0 и UFS 2.1 немного отличаются между собой техническими деталями, но не скоростными характеристиками. Если же в бенчмарках и будет видна какая-то разница, то связана она может быть только с использованием более совершенных чипов, но не с версией спецификации. Второй — UFS 2.0/2.1 и UFS 3.0 поддерживают двухполосный режим (2-lane или dual lane), который удваивает максимальную пропускную способность интерфейса благодаря использованию двух каналов для чтения и двух каналов для записи информации. Смартфонов с двухполосной памятью UFS 2.1 сейчас выпущено немного, среди них — OnePlus 5, Samsung Galaxy S9 и Xiaomi Mi 6. Именно сверхбыстрая память помогает этим гаджетам вырываться на первые строчки в бенчмарках при сравнении с другими гаджетами на тех же чипсетах, хотя в реальной жизни разница с однополосной памятью едва ли будет заметна.
Спецификация UFS определяет только максимальную пропускную способность памяти, но не фактическую скорость чтения и записи на реальных устройствах. Поэтому, единственный способ узнать эти показатели — практические испытания. Исходя из результатов тестирования Huawei P10, UFS 2.1 может обеспечить фактическую скорость последовательной записи до 150 МБ/с, а последовательного чтения — до 750 МБ/с. У eMMC 5.1 те же показатели составляют всего 100 и 280 МБ/с для записи и чтения соответственно.
Слева направо: UFS 2.1, UFS 2.0, eMMC 5.1
Также стоит помнить, что скорость случайной записи и чтения для обоих типов памяти будет слишком сильно отличаться от последовательных скоростей и зависеть от различных факторов. Поэтому, её принято измерять не в МБ/с, а в количестве операций ввода-вывода в секунду (IOPS). UFS 2.0 имеет фактическую производительность 18000 IOPS при чтении и 7000 IOPS при записи, а eMMC 5.0 — 7000 IOPS при чтении и 3000 IOPS при записи. Отметим, что использование памяти в режиме последовательного чтения/записи характерно для съёмки видео или просмотра фильмов, а в случайном режиме — для повседневного использования гаджета.
eMMC и UFS поделили мобильную память между собой почти везде, за исключением iPhone и iPad. Как всегда, компания Apple пошла своим путём и, начиная с iPhone 6S, использует в своих гаджетах накопители типа NVMe. И протокол NVMe, и шина PCIe, поверх которой он работает, в «яблочных» гаджетах кастомные, поэтому называть накопитель внутри новых iPhone словом SSD не совсем честно. Хотя, такие детали мало кого волнуют, и именно Apple первой приблизилась к внедрению полноценного SSD в карманные гаджеты.
Apple никогда не раскрывает полных спецификаций своих компонентов, поэтому о скорости NVMe SSD внутри iPhone можно судить только по измеренной сторонними программами скорости. А она в iPhone 8 и iPhone X достигает, не много не мало, 1250 МБ/с на чтение и 350 МБ/с на запись. Для сравнения, у Galaxy S8 с памятью UFS 2.1 эти показатели составляют 800 и 200 МБ/с соответственно.
Сравнение скорости последовательного чтения из памяти iPhone 6S с другими смартфонами
Учитывая анонс спецификации UFS 3.0 в начале этого года, Samsung, главный двигатель прогресса в мире Android, едва ли последует примеру Apple и станет внедрять в свои гаджеты SSD. С другой стороны, даже память UFS 2.1 достаточно быстра для любых сценариев использования смартфонов (включая запись Ultra HD видео на скорости 60 fps), а Apple просто обеспечила себе запас производительности памяти на несколько лет вперёд. Так что при выборе Android-смартфона стоит обращать внимание на наличие памяти типа UFS 2.0 или UFS 2.1, а если хотите — можете дождаться устройств с UFS 3.0. Вполне возможно, что одним из первых таких гаджетов станет Galaxy Note 9 или Galaxy S10.
Внешняя память (microSD)
Вместо процветавшего ранее зоопарка форматов карт памяти, вплоть до экзотических микродрайвов для слота CF, на смартфонах уже долгое время безраздельно властвует microSD. О том, как правильно выбрать карту памяти для смартфона, мы написали целую статью, а здесь лишь кратко повторим основные советы.
Скорость карт памяти microSD обычно указывается в двух основных градациях: класса скорости и класса скорости UHS. Класс скорости обозначается на картах памяти числом внутри буквы «С», которое соответствует минимальной скорости последовательной записи данных. Всего существует пять классов скорости с чётными индексами, от Class 2 до Class 10. Последний соответствует скорости записи 10 МБ/с. Класс скорости UHS используется в картах памяти с поддержкой шины UHS, обозначается числом внутри буквы «U». Сейчас стандарт предусматривает два таких класса, U1 с максимальной скоростью записи 10 МБ/с и U3 с максимальной скоростью 30 МБ/с.
Даже если вы планируете записывать видео в разрешении Ultra HD, вам вполне хватит самого распространённого на данный момент типа скорости карты памяти — U1. А вот старые карты с обозначениями Class 6 и Class 8, не говоря уже о более медленных, вставлять в современные смартфоны не стоит: они будут ощутимо замедлять работу гаджета.
Начиная с Android 6.0 Marshmallow в операционной системе появилась возможность объединить внутреннюю и внешнюю память с помощью функции Adoptable Storage. При её включении, карта памяти форматируется и логически становится одним целым с внутренней памятью гаджета.
После активации функции система сама будет решать, где хранить те или иные файлы, включая установленные приложения и фотографии с камеры. Есть у такого решения и минусы: карта памяти окажется «привязана» к конкретному смартфону до следующего форматирования, а аппаратный сброс устройства удалит данные и на ней. Для правильной работы Adoptable Storage карта памяти должна иметь высокий класс скорости (желательно U1). В противном случае смартфон предупредит вас о возможном падении производительности после объединения разделов.
Ряд производителей, включая Samsung и Sony, блокирует эту функцию на своих гаджетах из-за возможных проблем совместимости с фирменным ПО. Вернуть Adoptable Storage можно, как правило, неофициальными способами и окольными путями (с помощью adb или имея root-доступ), но гарантировать правильную работу этой функции не сможет никто.
Заключение
Надеемся, что наша справка поможет вам разобраться в технологиях мобильной памяти. Конечно, при выборе гаджета в ценовой категории 10–20 тысяч рублей придирки будут излишни, но, согласитесь, было бы обидно получить в дорогом флагмане память устаревшего типа. Наиболее современной комбинацией технологий ОЗУ и ПЗУ на данный момент можно считать LPDDR4x и UFS 2.1 соответственно, но LPDDR4 и UFS 2.0 не слишком им уступают и также заслуживают внимания.
Напишите в комментариях, обращаете ли вы внимание на используемые технологии памяти при выборе смартфона, или другие компоненты смартфона имеют для вас большее значение?
Мы уже не раз шутили, что нынешние смартфоны по количеству ядер процессора, объемом оперативной памяти и встроенным хранилищам вплотную приблизились к ноутбукам. Схемотехника усложнилась, появились новые типы памяти и неподготовленный читатель сходу не разберется, чем LPDDR отличается от UFS. Несмотря на то, что многие не любят сравнения в духе «смартфон — это крохотный карманный компьютер», эта фраза очень близка к истине. И если вы ориентируетесь во внутренней кухне вашего ПК или ноутбука, разобраться с устройством смартфона не составит труда.
Оперативная память
ОЗУ (оперативное запоминающее устройство) — память с произвольным доступом для временного хранения данных, которое критически важно для функционирования программного обеспечения. Она работает в качестве временного буфера между дисковыми накопителями и процессором, в котором хранятся важные в данный момент данные и запущенные программы. Если упростить, то это очень быстрое временное хранилище для данных, которые обрабатываются другими элементами компьютера здесь и сейчас.
В компьютерах используется память DDR, в смартфонах ее уменьшенная и энергоэффективная альтернатива с приставкой LP (Low Power). В современных смартфонах как правило устанавливается память LPDDR четвертого поколения. Второе и третье считаются морально устаревшими, тем не менее «тройку» продолжают активно использовать в гаджетах начального уровня, где не нужна крейсерская скорость.
Впрочем, даже четвертое поколение не всегда справляется с нынешними задачами и увеличение объема памяти в некоторых случаях не спасает ситуацию. Например при записи супер-замедленного видео со скоростью под тысячу FPS пропускной способности в 3200 Мбит/с LPDDR4 попросту не хватает. Поэтому специально для флагманов и камерофонов была создана ускоренная память LPDDR4x с той же частотой 1600 МГц, но увеличенной до 4266 Мбит/с пропускной способностью.
А на горизонте маячит новый стандарт LPDDR5, способный выдавать до 6.4 Гбит/с. Такая скорость очень пригодится в тяжелых играх, приложениях для виртуальной реальности, видеосъемке в 4K или записи роликов SuperSlowMotion. Помимо ускорения LPDDR5 научится режиму глубокого сна, когда буферы ввода-вывода и внутренняя схема отключается, что позволяет экономить до 40% энергии.
А что с ОЗУ в iPhone?
В iPhone все намного запутаннее. Во время презентации новых продуктов Apple не особо охотно афиширует информацию об объемах ОЗУ, хотя в последнее время они очень много говорят о начинке своей техники. Не потому, что в Купертино считают ее бесполезной, а потому, что новые iPhone до недавнего времени не могли похвастать чем-то особенным. Из-за особенностей системы и оптимизации смартфонам Apple всегда хватало нескольких гигабайт: у iPhone XR было всего 3 ГБ, iPhone 11 получил 4 ГБ, а 11 Pro и 11 Pro Max — по 6 ГБ. Согласитесь, это звучит не так впечатляюще, как 12 ГБ у Galaxy Note 10 Plus или OnePlus 8 Pro.
Значит ли это, что нас дурят? Отнюдь. Дело в том, что приложения на Android использую Java и требуют дополнительный объем ОЗУ для процесса освобождения памяти после завершения программы. Эта штука называется garbage collection и работает она до тех пор, пока в системе остается свободная память. Как только активных программ становится много, начинаются сложности: эффективность garbage collection падает в разы, а на процесс затрачивается куда больше памяти, чем в действительности требуется приложению. Порой в 4 – 8 раз больше! Именно поэтому смартфонам на Android требуется существенно больше памяти, чем iPhone.
Что эта информация дает нам?
Лучшее понимание при выборе смартфона. Как вы уже поняли, у Apple с этим нет проблем, поэтому можно покупать, что приглянулось и не переживать. Главное, не брать что-то совсем уж древнее, где не будет хватать ни ОЗУ, ни мощности процессора.
Если говорить о вариантах на базе ОС Android, то в бюджетном аппарате можно не переживать за тип памяти, важнее будет ее количество. К середине 2020 года нормой для недорого апарата считаются 3 – 4 ГБ. Два тоже можно, однако открытые приложения и вкладки браузера будут постоянно перезагружаться из-за нехватки памяти. Да и через полгода-год использования он будет работать ощутимо медленнее.
В мощных аппаратах вполне хватит LPDDR4 объемом в 6 – 8 ГБ. Чтобы и игры запускать, и приложения в трее не перезагружать, и сохранять общую скорость работы системы.
В топовых камерофонах, от которых потребуется комплексная видеосъемка, лучше всего смотреть варианты LPDDR4x объемом в 8 – 12 ГБ.
Читайте также: