Vega 64 разгон памяти
В дебютном тестировании Radeon RX Vega 64, результаты которого мы опубликовали ранее, новый чемпион AMD, несмотря на все преимущества микроархитектуры GCN пятого поколения, попал в ту же ловушку, что и прошлые потребительские ускорители AMD, начиная еще с Radeon R9 Fury X. Колоссальный ресурс вычислительной мощности, заключенный в 12,5 млрд транзисторов GPU Vega 10, полностью раскрывается только в расчетах общего назначения (GP-GPU), где Radeon RX Vega 64 на равных соперничает с GeForce GTX 1080 Ti. Напротив, в качестве игрового ускорителя она вынуждена бороться с видеокартой NVIDIA второго эшелона — GeForce GTX 1080.
Тесты на штатных частотах не говорят однозначно в пользу какого-либо из двух соперников. Vega лучше всего проявила себя в работе с API нового поколения (DirectX 12 и Vulkan) и разрешении 3840 × 2160, но в иных случаях GeForce GTX 1080 имеет преимущество, подчас весьма существенное. Как бы то ни было, мы вынуждены признать, что в показателях быстродействия на ватт мощности разрыв между производителями GPU не только не сократился со времен Radeon R9 Fury X — теперь он как никогда велик.
Однако в исследовании возможностей нового флагмана AMD еще рано ставить точку. Покупателей игровых видеокарт производительность волнует намного больше, чем потребляемая мощность GPU, и у Vega еще остался неисчерпанный резерв быстродействия, который смогут раскрыть производители плат оригинального дизайна, да и владельцы референсных образцов Radeon RX Vega 64 могут попытать счастья с разгоном, благо AMD в этот раз не поскупилась на довольно эффективную систему охлаждения.
Говоря об архитектуре Vega, разработчики отмечают, сколько изменений в архитектуру и схемотехнику чипа пришлось внести по сравнению с семейством Polaris, чтобы достигнуть максимально высоких тактовых частот. И действительно, даже в конфигурации с воздушным охлаждением частотный потолок Radeon RX Vega 64 существенно выше, чем у лучших образцов Polaris, не говоря уже о Radeon RX Vega 64 Liquid Cooled Edition. Последняя модель вторгается в диапазон частот, свойственный конкурирующей архитектуре NVIDIA Pascal.
К тому же спецификации видеокарт Radeon RX Vega ничего не говорят об их максимальных частотах. Вместо предельной частоты, которой GPU позволено достигнуть, «верхняя» частота в таблице означает максимальную частоту, которую AMD гарантирует при стандартной вычислительной нагрузке. На практике Vega может выходить за это ограничение (в случае стандартной версии Radeon RX Vega 64 — ненамного, но мы с нетерпением ждем возможности увидеть предельные частоты Radeon RX Vega 64 Liquid Cooled Edition).
Производитель | AMD | |||||
Модель | Radeon R9 Fury X | Radeon RX 580 | Radeon RX Vega 64 Frontier Edition | Radeon RX Vega 56 | Radeon RX Vega 64 | Radeon RX Vega 64 Liquid Cooled Edition |
Графический процессор | ||||||
Название | Fiji XT | Polaris 20 XTX | Vega 10 XT | Vega 10 XL | Vega 10 XT | Vega 10 XT |
Микроархитектура | GCN 1.2 | GCN 1.3 | GCN 1.4 | GCN 1.4 | GCN 1.4 | GCN 1.4 |
Техпроцесс, нм | 28 нм | 14 нм FinFET | 14 нм FinFET | 14 нм FinFET | 14 нм FinFET | 14 нм FinFET |
Число транзисторов, млн | 8900 | 5700 | 12 500 | 12 500 | 12 500 | 12 500 |
Тактовая частота, МГц: Base Clock / Boost Clock | —/1050 | 1257/1340 | 1382/1600 | 1156/1471 | 1247/1546 | 1406/1677 |
Число шейдерных ALU | 4096 | 2304 | 4096 | 3584 | 4096 | 4096 |
Число блоков наложения текстур | 256 | 144 | 256 | 256 | 256 | 256 |
Число ROP | 64 | 32 | 64 | 64 | 64 | 64 |
Оперативная память | ||||||
Разрядность шины, бит | 4096 | 256 | 2048 | 2048 | 2048 | 2048 |
Тип микросхем | HBM | GDDR5 SDRAM | HBM2 | HBM2 | HBM2 | HBM2 |
Тактовая частота, МГц (пропускная способность на контакт, Мбит/с) | 500 (1000) | 2000 (8000) | 945 (1890) | 800 (1600) | 945 (1890) | 945 (1890) |
Объем, Мбайт | 4096 | 4096/8192 | 8096 | 8096 | 8096 | 8096 |
Шина ввода/вывода | PCI Express 3.0 x16 | PCI Express 3.0 x16 | PCI Express 3.0 x16 | PCI Express 3.0 x8 | PCI Express 3.0 x8 | |
Производительность | ||||||
Пиковая производительность FP32, GFLOPS (из расчета максимальной указанной частоты) | 8602 | 6175 | 13107 | 10544 | 12665 | 13738 |
Производительность FP32/FP64 | 1/16 | 1/16 | 1/16 | 1/16 | 1/16 | 1/16 |
Пропускная способность оперативной памяти, Гбайт/с | 512 | 256 | 484 | 410 | 484 | 484 |
Вывод изображения | ||||||
Интерфейсы вывода изображения | HDMI 1.4a, DisplayPort 1.2 | HDMI 2.0, DisplayPort 1.3/1.4 | HDMI 2.0, DisplayPort 1.4 | HDMI 2.0, DisplayPort 1.4 | HDMI 2.0, DisplayPort 1.4 | HDMI 2.0, DisplayPort 1.4 |
TBP, Вт | 275 | 185 | <300 | 210 | 295 | 345 |
Розничная цена (США, без налога), $ | 649 (рекомендованная на момент выхода) | 199/229 (рекомендованная на момент выхода) | 999/1499 (рекомендованная на момент выхода) | 399 (рекомендованная на момент выхода) | 499 (рекомендованная на момент выхода) | 699 (рекомендованная на момент выхода) |
Розничная цена (Россия), руб. | НД | 13 449 / 15 299 (рекомендованная на момент выхода) | НД | НД | НД | НД |
Что касается водяного охлаждения, то Vega не пошла по пути Radeon R9 Fury X, которая поставлялась исключительно в такой конфигурации. Radeon RX Vega 64 Liquid Cooled Edition производится в ограниченных количествах и продается только в составе игрового комплекта (видеокарта, две игры и скидка на железо — WQHD-монитор Samsung, материнскую плату и процессор Ryzen 7), который, кстати, недоступен в России. Тем не менее практика показывает, что компактные СЖО, наподобие той, которая установлена на Radeon RX Vega 64 Liquid Cooled Edition, хороши лишь для того, чтобы компенсировать последствия разгона GPU, но сами по себе не гарантируют более высоких тактовых частот. И наоборот, благодаря достаточно мощному воздушному кулеру GPU можно разогнать столь же успешно, как и под компактной СЖО.
Именно это мы собираемся сделать с референсным образцом Radeon RX Vega 64, а для сравнения возьмем GeForce GTX 1080, также в референсном исполнении, разогнанный до предела возможностей нашего экземпляра.
Как мы отметили в первой части обзора, драйвер Vega позволяет выбрать между тремя предустановленными профилями мощности — Power Save, Balanced и Turbo. Средняя позиция, Balanced, соответствует табличной мощности видеокарты (295 Вт), в то время как две крайних позиции устанавливают TBP на уровне 75 и 115%. Кроме того, референсные видеокарты семейства Vega имеют дополнительную микросхему BIOS, в которую «зашиты» более экономичные уровни TBP — 68, 90 и 105% в случае Radeon RX Vega 64.
Посмотрим, как три профиля из основной микросхемы BIOS влияют на тактовые частоты и энергопотребление видеокарты в классическом игровом тесте Crysis 3. Предельная тактовая частота GPU составляет 1630 МГц, но в профилях Balanced и Turbo большую часть времени процессор работает на частотах 1401–1536 МГц (разница между двумя настройками только в том, как часто мы наблюдали более низкие или, наоборот, высокие значения). Профиль Power Save, с другой стороны, не позволяет GPU разогнаться свыше 1536 МГц, и частота колеблется вокруг отметки 1401 МГц. При этом мы пока ничего не можем сказать в точности о напряжении питания GPU, т. к. сторонние утилиты разгона и мониторинга еще не приобрели совместимость с новой архитектурой. По крайней мере, если судить по разделу WattMan в настройках драйвера, максимальное напряжение составляет 1,2 В. Это немного меньше, чем у чипа Fiji (1,212 В в составе Fury X), и примерно на том уровне, который требуется чипам Polaris 20 для работы на референсных частотах Radeon RX 580 (1,15 В).
По среднему энергопотреблению ПК в игровом тесте Radeon RX Vega 64 превосходит GeForce GTX 1080 Ti в профиле Turbo (это мы уже видели в первой части тестирования), однако в профиле Balanced мощность уже на 17 Вт меньше по сравнению с GTX 1080 Ti, хотя заявленное энергопотребление Vega на 45 Вт выше, чем у GeForce GTX 1080 Ti. Тем не менее между Radeon RX Vega 64 и GeForce GTX 1080 по-прежнему пропасть, которую сокращает только профиль Power Save, и все равно карта NVIDIA остается на 30 Вт более экономичной.
TBP | Стабильная частота, МГц | Макс. частота, МГц | |
Power Save | 75% | 1401 | 1536 |
Balanced | 100% | 1401 – 1536 | 1630 |
Turbo | 115% | 1401 – 1536 | 1630 |
Разгон | 150% | 1630 | 1630 |
Если перейти от Crysis 3 к тесту FurMark, то мощность Vega возрастает, а мощность GTX 1080 и GTX 1080 Ti несколько снижается. Видеокарты AMD по-прежнему не столь жестко ограничены по энергопотреблению, как продукты конкурента.
Что касается разгона, то у референсного образца Radeon RX Vega 64 отличные аппаратные данные: скорость вращения вентилятора можно поднять с 2400 об/мин, которых она достигает в автоматическом режиме, до 4677 об/мин (это неприемлемо для постоянной эксплуатации, но позволит смоделировать условия более эффективной СО открытого типа или компактной СЖО), а лимит мощности регулируется в пределах до 150% номинала. А вот программные средства пока отстают. Во время тестирования AMD предоставила нам две версии драйвера — 17.30.1051-Beta6 от 7 августа и 17.30.1051-Beta6a от 11 августа. Именно более свежий драйвер предполагалось использовать для разгона, т. к. в ранней версии невозможно управление частотами GPU.
Поначалу, установив драйвер 17.30.1051-Beta6a, мы столкнулись с обескураживающим результатом. Видеокарта теряла стабильность при простом увеличении мощности до 150%, и даже при штатных настройках мы не могли завершить некоторые тесты. Управление частотой GPU в этой версии работает, но разгон остановился на отметке 1697 МГц (4% выше пиковой частоты без разгона — 1630 МГц). Учитывая, что драйвер явно сырой, мы не можем с уверенностью утверждать, что для Radeon RX Vega 64 это предел, хотя и это не исключено, пока возможность программного вольтмода остается закрытой.
Но в итоге экспериментов мы не остались с пустыми руками. Ранняя версия драйвера позволяет беспрепятственно увеличить мощность до 150%. За счет этого, а также усиленного охлаждения частота GPU в игровых тестах никогда не падает ниже 1630 МГц. Разгон HBM2 со штатной частоты 1890 МГц до 2190 МГц также помог, как мы увидим далее, существенно увеличить быстродействие.
По замерам мощности со стандартным и увеличенным TBP видно, насколько часто Radeon RX Vega 64 в действительности вынуждена «троттлить» при штатных настройках. Хотя у нас не было доступа к частотам GPU, энергопотребление системы в Crysis 3 возросло на 124 Вт по сравнению с профилем Balanced, а, чтобы сохранить температуру GPU в пределах 85 °C, работа вентилятора СО на частоте 4677 об/мин является необходимостью.
Потенциал архитектуры Vega гораздо лучше раскрывается в 4К-разрешении, чем в более щадящих режимах, а разгон устранил провалы быстродействия в отдельных тестах и обеспечил Radeon RX Vega 64 5-процентое преимущество перед GeForce GTX 1080 по средней частоте смены кадров. Между разогнанными видеокартами сохранился разрыв в пользу GTX 1080, но лишь в размере 4%.
3840 × 2160 | ||||||
---|---|---|---|---|---|---|
Полноэкранное сглаживание | AMD Radeon RX Vega 64 (1546/1890 МГц, 8 Гбайт), Turbo | AMD Radeon RX Vega 64 (1546/2190 МГц, 8 Гбайт), +50% TBP | NVIDIA GeForce GTX 1080 (1607/10008 МГц, 8 Гбайт) | NVIDIA GeForce GTX 1080 (1767/11108 МГц, 8 Гбайт) | NVIDIA GeForce GTX 1080 Ti (1480/11010 МГц, 11 Гбайт) | |
Ashes of the Singularity | Выкл. | 45 | 50 | 44 | 48 | 59 |
Battlefield 1 | 55 | 64 | 54 | 55 | 67 | |
Crysis 3 | 32 | 34 | 36 | 40 | 50 | |
Deus Ex: Mankind Divided | 28 | 32 | 28 | 31 | 38 | |
DiRT Rally | 43 | 48 | 50 | 56 | 66 | |
DOOM | 75 | 85 | 75 | 79 | 97 | |
GTA V | 47 | 51 | 52 | 59 | 71 | |
Metro: Last Light Redux | 43 | 48 | 47 | 52 | 65 | |
Rise of the Tomb Raider | 42 | 47 | 44 | 51 | 62 | |
Tom Clancy's The Division | TAA: Stabilization | 34 | 38 | 39 | 39 | 46 |
Total War: WARHAMMER | Выкл. | 39 | 42 | 39 | 41 | 52 |
Макс. | +16% | +16% | +30% | +56% | ||
Средн. | +11% | +6% | +15% | +41% | ||
Мин. | +6% | −3% | +0% | +22% |
Располагая тем ПО, которое на данный момент доступно для оверклокинга Radeon RX Vega 64, мы все еще далеки от того, чтобы в полной мере оценить потенциал нового GPU. Но можно подтвердить одно: Vega 10 — чрезвычайно энергоемкий GPU, даже в большей степени, чем можно подумать, если судить по спецификациям и тестированию на штатных настройках, которое мы провели в первой части обзора. Фактически энергопотребление и отвод тепла являются главным фактором, сдерживающим производительность видеокарты. Стандартная версия Radeon RX Vega 64 с воздушным охлаждением настолько стеснена рамками штатного TBP, что легко может освоить еще 124 Вт мощности даже без дополнительного повышения тактовой частоты GPU.
Где же находится истинный предел частот Vega 10, покажет будущее, когда производители видеокарт выпустят Radeon RX Vega 64 нестандартной конструкции, с более мощными системами охлаждения и откроется возможность программного вольтмода. Если спецификации Radeon RX Vega 64 Liquid Edition характеризуют потенциал большинства чипов Vega 10, а не только избранной партии отборных кристаллов, Vega еще способна на новые достижения (и, увы, антидостижения в плане энергоэффективности).
AMD немного изменила систему частотных характеристик. Теперь указывается базовое значение и среднеигровое значение Boost-частоты. Для Radeon RX Vega 64 это 1274 и 1546 МГц соответственно. Максимально возможное значение достигает 1630 МГц, и именно это значение отображается в утилите GPU-Z. Тактовая частота банков памяти 945 МГц при эффективной DDR-частоте 1890 МГц.
Напомним, что есть еще Radeon RX Vega 64 Liquid Cooled с водяным охлаждением и повышенными частотами: базовое значение 1406 МГц при Boost-частоте 1677 МГц.
Теперь поговорим о температурных характеристиках и частотах в игровой нагрузке. Все испытания проводились на открытом стенде при температуре внутри помещения 23–24 °C. В данных условиях реальные частоты GPU были ниже уровня 1500 МГц. В тесте Superposition benchmark (Extreme-режим) основной диапазон частот ядра был на уровне 1490–1510 МГц, в тесте Tom Clancy's The Division (2560x1440 Ultra) это 1450–1500 МГц, что проиллюстрировано ниже.
Частоты определяются достижением ограничений по мощности или температурного лимита. Поэтому повышение нагрузки или серьезный нагрев могут снижать частоты. В частности, при переходе к режиму 4K заметно небольшое падение среднего уровня частот в Tom Clancy's The Division на 10–20 МГц.
Максимальные температуры ядра при игровой нагрузке на уровне 79–80 °C, а скорость вращения вентилятора до 2400 об/мин. Это весьма неплохие показатели, поскольку референсные GeForce GTX 1080 имеют ограничение по температуре около 82 °C. А благодаря изменчивой скорости вентиляторов реальный уровень шума можно оценить как умеренный.
В программных настройках есть возможность переключиться в экономичный или Turbo-режим. Эти профили предусматривают разные ограничения по мощности, что влияет на итоговые частоты. Также есть второй BIOS, в котором прошиты сниженные лимиты мощности. И можно сказать, что вторая прошивка предусматривает более экономичные режимы работы. Посмотрим, как работает видеокарта с таким BIOS.
В Tom Clancy's The Division при разрешении 2560x1440 средние частоты падают примерно до 1430–1450 МГц, в разрешении 3840x2160 это уже 1380–1410 МГц.
Попутно мы видим снижение нагрева до 73 °C. В реальности пиковые температуры могут быть выше. Для наглядности сравним видеокарты на двух BIOS в непрерывном тесте Superposition benchmark при Extreme-установках. Левый нижний скриншот показывает характеристики по итогам 13-минутного теста с основным BIOS, правый скриншот показывает работу на втором BIOS с более экономичными параметрами.
Примечательно, что снижение Boost-частот у ядра небольшое, а пиковая температура падает с 80 °C до 76 °C. Есть и небольшое снижение скорости вентиляторов, хотя максимальные значения остаются на прежнем уровне в 2400 об/мин. Ниже мы сравним производительность видеокарты в этих двух режимах, чтобы увидеть реальные различия в быстродействии. Пока же можно сделать выводы о том, что карта Radeon RX Vega 64 не так горяча в работе, как можно было бы ожидать. Хотя в кристалле есть дополнительный термодатчик Hot Spot, данные с которого можно снимать через GPU-Z. И при тяжелой нагрузке в этой точке пиковая температуре может превосходить основное значение на несколько градусов.
Для наглядности приведем еще таблицу с официальными данными по лимитам мощности в разных режимах и при разных прошивках. Попутно в ней указаны и данные для топовой версии Liquid Cooled.
Разница между двумя версиями BIOS около 20 Вт. Судя по данным, указаны некие средние значения при игровой нагрузке (помним о заявленном максимуме в 295 Вт).
Температурно-шумовые характеристики определяются параметрами, которые доступны для ручной регулировки. Все тонкие настройки присутствуют в приложении AMD Radeon Settings по следующему пути: Игры — Глобальные настройки — Глобальный WattMan (Global WattMan).
В верхней части вкладки есть общий регулятор, который ограничивает мощность и этим влияет на частоты в Boost-режиме, понижая или повышая производительность. Начальные установки соответствуют сбалансированному режиму, есть экономичный режим и режим Turbo. Последний в русской версии не переведен и обозначен просто как «Режим». Также на этой вкладке есть панель мониторинга, где в режиме реального времени можно следить за всеми основными параметрами без использования сторонних программных средств.
Внизу панели есть раздел температурных настроек, управление лимитом мощности и скоростью вентиляторов. На скриншоте отражены его значения при стандартных установках.
В настройках есть целевая скорость вентилятора на уровне 2400 об/мин, и в нагрузке видеокарта работает именно при таком значении. Целевая температура указана в 75 °C, но с более «быстрым» BIOS она не выдерживается. Максимальная температура на уровне 85 °C. Целевые значения являются ключевыми, видеокарта работает в режиме баланса между ними, пытаясь не выйти за указанные рамки. Хотя в случае Radeon RX Vega 64 основным фактором, определяющим частоты и производительность, является лимит мощности. Если вам мало стандартных режимов, можно попытаться более гибко настроить видеокарту под себя, используя все эти параметры. Однако ручные настройки нужно производить крайне осторожно.
С еще большей осторожностью нужно подходить к вопросу разгона. Global WattMan дает широкие возможности для управления частотами ядра и памяти, позволяет контролировать их напряжения. Однако любой разгон требует повышения лимита мощности, что вместе с повышением частот приводит к резкому увеличению нагрева. В настройках Global WattMan доступна регулировка частоты GPU и частоты памяти HBM2. По умолчанию напряжения управляются автоматически, хотя есть возможность и ручного контроля. При наших экспериментах оказалось, что любое небольшое повышение частоты ядра приводит к снижению стабильности. И если видеокарта выдерживала тест в одной игре, то система могла зависнуть на другом тесте. И все зависело от времени работы и скорости прогрева GPU. В какой-то момент казалось, что придется отказаться от любого разгона и просто ограничиться повышением лимита мощности.
Решение было найдено благодаря ограничению напряжений. При разблокировке управления напряжения GPU для двух состояний ядра по умолчанию указаны напряжения 1,15 и 1,2 В. Мы ограничили их на уровне 1,14 и 1,175 В. Результат оказался мгновенным, удалось более-менее стабилизировать разгон ядра на уровне +2,5% в сочетании с ускорением памяти до 1050 (2100) МГц. Все это сопровождалось повышением лимита мощности до максимума при максимальной скорости вентиляторов в нагрузке.
При таких установках видеокарта работала на пределе возможностей стандартного охлаждения. Пройти тесты удалось лишь благодаря паузам между бенчмарками. К примеру, семь повторов теста Tom Clancy's The Division видеокарта не выдерживала, но если их разбить на два этапа с паузой между ними, то проблем не возникало. Конечно, нельзя говорить о пригодности такого разгона для постоянной эксплуатации, но нам интересно увидеть максимальные возможности Radeon RX Vega 64. Также разгон позволит оценить потенциал Radeon RX Vega 64 Liquid Cooled.
При наших установках пиковое значение частоты выросло до 1672 МГц. Реальная частота в Boost-режиме держалась на уровне 1620–1630 МГц практически во всех тестах. То есть итоговый прирост по частоте будет не 2,5%, а на уровне 8–10% относительно частот в номинале.
В итоге мы имеем три рабочие конфигурации видеокарты: стандартные установки (Balanced) на двух версиях BIOS и разгон. Сравним Radeon RX Vega 64 в этих режимах с референсной видеокартой GeForce GTX 1080, которая протестирована в номинале и в разгоне.
Настройка AMD Radeon Vega 56 / Vega 64
Сам являюсь их счастливым обладателем. И хотел бы создать тему с самой полной информацией про Веги. И гайдами по их настройке.
Инструкции от забугорных пользователей
Моя личная инструкция по настройке AMD Vega 56 / Vega 64 (как это все заработало у меня)
1) Подключите Vega 56 / Vega 64 в разьем PCI-Express X4 или X16 без райзеров напрямую в материнскую плату.
2) Отформатируйте HDD/SSD с виндой и устанавливайте Windows 10 (это важно! нулевый Windows, который устанавливался на карте Nvidia прибавляет геморроя. Только чистая установка с нуля.
3) Запускаем систему.
Панель управления/Система и безопасность/Дополнительные параметры системы/Дополнительно
Нажимаем на кнопку параметры > Параметры быстродействия > Дополнительно >
Видим надпись виртуальная память и нажимаем Изменить указываем по 15 гигабайт на каждую вегу. (Если столько памяти нет, можно ставить и по 8 гигов на карту, бывалые с форума говорят и так работает)
У меня их 4 поэтому будем ставить 60 000 мб.
Исходный размер 59000 — Максимальный размер 60000 мой случай
Исходный размер 32000- Максимальный размер 32000 — должно тоже работать
4) В панели управления меняем параметры питания
5) Скачиваем AMD драйвера Блокчейна
На нашем сайте вы также можете ознакомится c полным обзором этих драйверов и их настройкой: AMD Blockchain Driver — обзор драйвера, установка, скачать
6) Устанавливаем драйвера и все их компоненты и ждем пока карта успокоится. Во время установки ничего не трогаем и не дергаем, под конец установки программа предложит перезагрузку, обычно при нажатии на нее еще и зависнуть может. Смело пускаем систему в ребут.
7) После установки драйверов нажимаем на:
Игры > Глобальные настройки>
у нас будут два столбика
1 — Глобальная графика(Radeon RX Vega)
2 — Глобальный Wattman(Radeon Rx Vega)
в первом столбике нам нужно нажать на кнопку HBCC Memory Segment и перевести её в положение включено. И потом нажимаем применить. Драйвер уйдет в перезагрузку.
Тут важный нюанс. Иногда галочка уже включена, но HBCC на самом деле отключено. АМД знают об этой проблеме и в принципе предлагают на нее внимания не обращать, то есть если HBCC включен а хешрейт маленький то просто перенесите ползунок в положение отключено и о чудо HBCC на самом деле заработает.
Потом переходим в 2 — Глобальный Wattman(Radeon Rx Vega)
и ничего там не трогаем кроме настроек кулера.
SPEED (RPM) Вручную
Ставим ползунок в положение включено и поднимаем обороты кулера. Это нужно, чтобы при первом запуске майнера карта не нагрелась до 78 градусов и не начала дыметь прокладками.
8) Запускаем майнер. В моем случае это cast_xmr.
И смотрим на показатели Hashrate.
Там должно быть 1500-1900h/s в зависимости от карты. Если значения меньше выключаем майнер и идем в драйвера включать/выключать HBCC Memory Segment.
Оставьте майнер поработать так минут 15-20.
10) Пересаживаем карту на райзер и еще раз запускаем майнер. Если все ок, то подключаем вторую карту. Карту подключаем на отдельную косу и райзер на отдельную косу. Это не 1050 она в стоке очень капризная. 2 на косу = гемморой.
ВАЖНО! Не подключайте сразу 3-4 карты, из коробки они грузят бп жестко и вся система улетает в вечный ребут или крашит драйвера. АМД знают эту проблему и обещают пофиксить.
При подключении второй карты в драйверах появится прямоугольник AMD CrossFire он должен быть в положении Откл. (Отключен)
Обычно если по очереди включать он сразу отключен, если же нет то выключаем его.
Теперь у нас 4 столбца, соответственно на каждую карту свои настройки и Wattman.
Повторяем пункты 8 и 9. Предварительно добавив в батник следующую карту в пункте -G 0,1 вносим изменения.
11) Запускаем майнер. И идем в Wattman играться. Ставим -10 по ядру и -5 по питанию и память оставляем на стандартных значениях(800).
По мере работы майнера, каждую минуту накидываем -5 по ядру и -1 по питанию пока у нас не будет значение -20 ядро — 10 Ограничение энергопотребление.(%). Сразу ставить параметры -30/950/-10 не рекомендую, потому что иногда уходит в артефакты и черт бы понял почему.
После того как мы зафиксировали локальных успех, тоже самое делаем с памятью. Тут шаг может быть разный. Я кидаю по 20, пока на получится 940. Где то оставляю сток, потому что Hynix такой далеко не Samsung.
12) Если есть 3 и 4 карта добавляем их тоже по очереди и повторяем весь процесс. Иногда выглядит смешно, 4 карты в глобальной график у троих HBCC отключен у одной включен при этом по факту работает на всех картах.
13) Запускаем майнер и наслаждаемся стабильной работой. При подключении 2 и более карт иногда проседает хешрейт. У меня получается где то 1650-1900 h/s в секунду в зависимости от карты. И 1 ошибка на 20 000 шар где то. Работает все без остановки уже неделю. Потребление где то 220-240 на карту.
Помидоры прошу не кидайте, я знаю вы все биосы шьете одной правой и тайминги одной левой и реестре еще с рождения разбираетесь. Писал для новичков, таких как я. Всем успехов!
Читайте также: