В чем заключается принцип однородности памяти компьютера
Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатом вычислений.
Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.
3. Принцип адресности
Структурно основная память состоит из перенумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.
Фон Нейман описал, каким должен быть компьютер, чтобы он был универсальным и удобным средством для обработки информации. Он прежде всего должен иметь следующие устройства:
► арифметико-логическое устройство, выполняющее арифметические и логические операции;
► устройство управления, которое организует процесс выполнения программ;
► запоминающее устройство (или память) для хранения программ и данных, которое состоит из пронумерованных ячеек, легко доступных для других устройств компьютера;
► внешнее устройство для ввода-вывода информации.
Основные принципы работы компьютера:
● сначала с помощью внешнего устройства в память компьютера вводится программа;
● устройство управления считывает содержимое ячейки памяти, где находится первая инструкция программы, и организует ее выполнение (арифметические или логические операции, чтение данных с внешних устройств или из памяти, вывод данных на внешние устройства или запись в память);
● переход на следующую (или заданную) ячейку памяти и выполнение следующей инструкции;
повторение предыдущих шагов.
Компьютеры, построенные на этих принципах, относят к типу фон-неймановских.
На сегодняшний день это подавляющие большинство компьютеров, в том числе и IBM PC – совместимые. Но есть и компьютерные системы с иной архитектурой – например системы для параллельных вычислений.
ПРИНЦИП ПОСТРОЕНИЯ ЭВМ
Архитектура современных ПК основана на магистрально-модульном принципе.
Модульный принцип позволяет потребителю самому подобрать нужную ему конфигурацию компьютера и производить при необходимости его модернизацию. Модульная организация системы опирается на магистральный (шинный) принцип обмена информации. Магистраль или системная шина - это набор электронных линий, связывающих воедино по адресации памяти, передачи данных и служебных сигналов процессор, память и периферийные устройства.
Обмен информацией между отдельными устройствами ЭВМ производится по трем многоразрядным шинам, соединяющим все модули, - шине данных, шине адресов и шине управления.
Разрядность шины данных задается разрядностью процессора, т.е. количеством двоичных разрядов, которые процессор обрабатывает за один такт.
Данные по шине данных могут передаваться как от процессора к какому-либо устройству, так и в обратную сторону, т. е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины передачи данных можно отнести следующие: запись/чтение данных из оперативной памяти и из внешних запоминающих устройств, чтение данных с устройств ввода, пересылка данных на устройства вывода.
Выбор абонента по обмену данными производит процессор, который формирует код адреса данного устройства, а для ОЗУ - код адреса ячейки памяти. Код адреса передается по адресной шине, причем сигналы передаются в одном направлении, от процессора к устройствам, т. е. эта шина является однонаправленной.
По шине управления передаются сигналы, определяющие характер обмена информацией, и сигналы, синхронизирующие взаимодействие устройств, участвующих в обмене информацией.
Микропроцессор (CPU, от англ. Central Processing Unit) – это центральный блок ПК, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.
В состав микропроцессора входят:
● устройство управления (УУ) - формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ; опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов;
● арифметико-логическое устройство (АЛУ) -предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический сопроцессор);
● микропроцессорная память (МПП) - служит для кратковременного характера, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины, ибо основная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессор. Регистры - быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имеющих стандартную длину 1 байт и более низкое быстродействие);
● генератор тактовой частоты (ГТЧ). Он генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины.
Основные характеристики микропроцессора
1. Тактовая частота процессора – число вырабатываемых за одну секунду импульсов, синхронизирующих работу узлов компьютера (в МГц). Характерные тактовые частоты микропроцессоров: 40 МГц, 66 МГц, 100 МГц, 130 МГц, 166 МГц, 200 МГц, 333 МГц, 400 МГц, 600 МГц, 800 МГц, 1000 МГц и т. д. до 3 ГГц.
Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов.
УСТРОЙСТВА ПАМЯТИ ЭВМ
Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных. Классификация памяти представлена на рисунке:
Во второй половине XX века два крупнейших ученых независимо друг от друга сформулировали основные принципы построения компьютера.
К основополагающим принципам Неймана-Лебедева можно отнести следующие:
1. Состав основных компонентов вычислительной машины.
2. Принцип двоичного кодирования.
3. Принцип однородности памяти.
4. Принцип адресности памяти.
5. Принцип иерархической организации памяти.
6. Принцип программного управления.
Рассмотрим подробно каждый из принципов Неймана-Лебедева. Любое устройство, предназначенное для автоматических вычислений, должно содержать определённый состав основных компонентов: блок обработки данных, блок управления, блок памяти и блоки ввода/вывода информации.
Перечисленные в функциональной схеме блоки есть и у современных компьютеров. К ним относятся:
- Арифметико-логическое устройство — АЛУ, в котором происходит обработка данных.
- Устройство управления (УУ) отвечает за выполнение программы и согласование взаимодействий всех узлов компьютера. В современных компьютерах АЛУ и УУ изготавливаются в виде единой интегральной схемы — микропроцессора.
- Память — устройство, где хранятся программы и данные. Различают внутреннюю и внешнюю память. Основная часть внутренней памяти предназначена для оперативного хранения программ и данных, её принято называть оперативным запоминающим устройством — ОЗУ. К внутренней памяти относится и ПЗУ (постоянное запоминающее устройство, англ. ROM — Read Only Memory для диктора рид онли мемори), в нём содержится программа начальной загрузки компьютера. Основное отличие ПЗУ от ОЗУ заключается в том, что при решении задач пользователя содержимое ПЗУ не может быть изменено. Внешняя память, называемая ещё долговременной, используется для длительного хранения программ и данных.
- Устройства ввода используются для преобразования данных в удобную для обработки компьютером форму.
- Устройства вывода преобразуют работу ЭВМ в удобную для восприятия человеком форму.
Отличительной особенностью функциональной схемы компьютеров первых поколений от являлось то, что программное управление всеми процессами ввода-вывода происходило от процессора.
Рассмотрим принцип двоичного кодирования информации. Он заключается в том, что в ЭВМ используется двоичная система счисления. Это означает, что любая информация, предназначенная для обработки на компьютере, а также и программы, представляются в виде двоичного кода, т. е. последовательности нулей и единиц.
Благодаря использованию двоичного кодирования для представления не только данных, но и программ, форма их представления становится одинаковой, а это означает, что их можно хранить в единой памяти, поскольку нет принципиальной разницы между двоичным представлением машинной команды, числа, символа и др. В этом заключается принцип однородности памяти.
Оперативная память компьютера представляет собой набор битов — однородных элементов с двумя устойчивыми состояниями, одно из которых соответствует нулю, другое — единице. Группы соседних битов объединяются в ячейки памяти, которые пронумерованы, т. е. имеют свой адрес. Это соответствует принципу адресности памяти.
На современных компьютерах может одновременно извлекаться из памяти и обрабатываться до 64 разрядов, т. е. восьми байтовых ячеек. Это стало возможным при реализации принципа параллельной обработки данных.
С позиции пользователя существуют два противоречивых требования, предъявляемых к памяти компьютера: память должна быть как можно больше, а скорость работы — как можно быстрее.
Противоречие заключается в том, что при увеличении объёма памяти неизбежно уменьшается скорость работы, поскольку увеличивается время на поиск данных. С другой стороны, более быстрая память является и более дорогой, что увеличивает общую стоимость компьютера.
Преодолением противоречия между объёмом памяти и её быстродействием стало использование нескольких различных видов памяти, связанных друг с другом. В этом состоит принцип иерархической организации памяти.
Основным отличием компьютеров от любых других технических устройств является программное управление их работой.
Важным элементом устройства управления является счётчик адреса команд, где в любой момент времени хранится адрес следующей по порядку выполнения команды. Используя значение из счётчика, процессор поочередно считывает из памяти команду программы, расшифровывает её и выполняет. Действия выполняются до завершения работы программы.
Современные персональные компьютеры разнообразны — это и настольные, и переносные, и планшетные устройства. Они различаются по размерам, назначению, но фунциональное устройство у них одинаковое.
Оно определяется архитектурой персонального компьютера.
Архитектура — это наиболее общие принципы построения компьютера, отражающие программное управление работой и взаимодействием его основных функциональных узлов.
Для рассмотрения взаимодействие основных функциональных узлов обратимся к функциональной схеме компьютера.
На ней представлены основные узлы современного компьютера, к которым, как вам уже известно, относятся процессор, внутренняя память, устройства ввода, устройства вывода и внешняя память.
В компьютерах с классической фон-неймановской архитектурой все процессы ввода-вывода находились под управлением процессора. Поскольку процессор является самым быстрым устройством, то любое обращение к устройствам ввода-вывода и ожидание отклика от них замедляло общее время работы.
В современных компьютерах эту проблему решают специальные электронные схемы, которые обеспечивают обмен данных между процессором и внешними устройствами. Они называются контрОллерами, а на функциональной схеме они обозначены буквой К.
При наличии контроллеров данные могут передаваться по магистрали между внешними устройствами и внутренней памятью без использования процессора.
Это существенно снижает нагрузку на работу центрального процессора, а значит приводит к повышению эффективности работы всей вычислительной системы.
Обмен данными между устройствами осуществляется с помощью магистрали.
Магистраль (шина) — устройство для обмена данными между устройствами компьютера.
Магистраль включает в себя шину адреса, шину данных и шину управления.
Шина адреса используется для указания физического адреса устройства;
Шина данных используется для передачи данных между узлами компьютера;
Шина управления организует сам процесс обмена (сигналы чтение/запись, данные готовы/не готовы, обращение к внутренней/внешней памяти и др.)
В современных компьютерах применяется магистрально-модульная архитектура, главное достоинство которой лежит в гибкости конфигурации, т. е. возможности изменить конфигурацию компьютера путём подключения к шине новых внешних устройств, а также замене старых внешних устройств.
Если спецификация на шину опубликована производителем, т. е. является открытой, то говорят о принципе открытой архитектуры. В этом случае пользователь самостоятельно может выбрать дополнительные устройства для формирования компьютерной системы, учитывающей именно его предпочтения.
Мир современных компьютеров широк и многообразен. Персональные компьютеры давно стали многоядерными. Это относится в том числе к смартфонам и планшетным компьютерам.
Однако, существуют не только персональные компьютеры, но и значительно более нагруженные вычислительные системы. Мы начали урок с путешествия в один из дата-центров Яндекса и вы видели огромное количество серверов, которые позволяет обеспечивать пользователей качественными сервисами в режиме 24х7 с высокой скоростью доступа.
Существуют сегодня и суперкомпьютеры, способные решать научные задачи, производить вычисления, связанные с космическими телами, исследованиями микромира и др.
Технические характеристики электронной техники находятся вблизи предельных значений, а это означает необходимость новых технологических решений. Сегодня ведутся исследования в области нанотехнологий, квантовых и биологических компьютеров. Одна из задач вашего поколения — найти новые технологические решения для увеличения мощности компьютеров будущего.
Во второй половине XX века два крупнейших ученых независимо друг от друга сформулировали основные принципы построения компьютера.
К основополагающим принципам Неймана-Лебедева можно отнести следующие:
1. Состав основных компонентов вычислительной машины.
2. Принцип двоичного кодирования.
3. Принцип однородности памяти.
4. Принцип адресности памяти.
5. Принцип иерархической организации памяти.
6. Принцип программного управления.
Рассмотрим подробно каждый из принципов Неймана-Лебедева. Любое устройство, предназначенное для автоматических вычислений, должно содержать определённый состав основных компонентов: блок обработки данных, блок управления, блок памяти и блоки ввода/вывода информации.
Перечисленные в функциональной схеме блоки есть и у современных компьютеров. К ним относятся:
- Арифметико-логическое устройство — АЛУ, в котором происходит обработка данных.
- Устройство управления (УУ) отвечает за выполнение программы и согласование взаимодействий всех узлов компьютера. В современных компьютерах АЛУ и УУ изготавливаются в виде единой интегральной схемы — микропроцессора.
- Память — устройство, где хранятся программы и данные. Различают внутреннюю и внешнюю память. Основная часть внутренней памяти предназначена для оперативного хранения программ и данных, её принято называть оперативным запоминающим устройством — ОЗУ. К внутренней памяти относится и ПЗУ (постоянное запоминающее устройство, англ. ROM — Read Only Memory для диктора рид онли мемори), в нём содержится программа начальной загрузки компьютера. Основное отличие ПЗУ от ОЗУ заключается в том, что при решении задач пользователя содержимое ПЗУ не может быть изменено. Внешняя память, называемая ещё долговременной, используется для длительного хранения программ и данных.
- Устройства ввода используются для преобразования данных в удобную для обработки компьютером форму.
- Устройства вывода преобразуют работу ЭВМ в удобную для восприятия человеком форму.
Отличительной особенностью функциональной схемы компьютеров первых поколений от являлось то, что программное управление всеми процессами ввода-вывода происходило от процессора.
Рассмотрим принцип двоичного кодирования информации. Он заключается в том, что в ЭВМ используется двоичная система счисления. Это означает, что любая информация, предназначенная для обработки на компьютере, а также и программы, представляются в виде двоичного кода, т. е. последовательности нулей и единиц.
Благодаря использованию двоичного кодирования для представления не только данных, но и программ, форма их представления становится одинаковой, а это означает, что их можно хранить в единой памяти, поскольку нет принципиальной разницы между двоичным представлением машинной команды, числа, символа и др. В этом заключается принцип однородности памяти.
Оперативная память компьютера представляет собой набор битов — однородных элементов с двумя устойчивыми состояниями, одно из которых соответствует нулю, другое — единице. Группы соседних битов объединяются в ячейки памяти, которые пронумерованы, т. е. имеют свой адрес. Это соответствует принципу адресности памяти.
На современных компьютерах может одновременно извлекаться из памяти и обрабатываться до 64 разрядов, т. е. восьми байтовых ячеек. Это стало возможным при реализации принципа параллельной обработки данных.
С позиции пользователя существуют два противоречивых требования, предъявляемых к памяти компьютера: память должна быть как можно больше, а скорость работы — как можно быстрее.
Противоречие заключается в том, что при увеличении объёма памяти неизбежно уменьшается скорость работы, поскольку увеличивается время на поиск данных. С другой стороны, более быстрая память является и более дорогой, что увеличивает общую стоимость компьютера.
Преодолением противоречия между объёмом памяти и её быстродействием стало использование нескольких различных видов памяти, связанных друг с другом. В этом состоит принцип иерархической организации памяти.
Основным отличием компьютеров от любых других технических устройств является программное управление их работой.
Важным элементом устройства управления является счётчик адреса команд, где в любой момент времени хранится адрес следующей по порядку выполнения команды. Используя значение из счётчика, процессор поочередно считывает из памяти команду программы, расшифровывает её и выполняет. Действия выполняются до завершения работы программы.
Современные персональные компьютеры разнообразны — это и настольные, и переносные, и планшетные устройства. Они различаются по размерам, назначению, но фунциональное устройство у них одинаковое.
Оно определяется архитектурой персонального компьютера.
Архитектура — это наиболее общие принципы построения компьютера, отражающие программное управление работой и взаимодействием его основных функциональных узлов.
Для рассмотрения взаимодействие основных функциональных узлов обратимся к функциональной схеме компьютера.
На ней представлены основные узлы современного компьютера, к которым, как вам уже известно, относятся процессор, внутренняя память, устройства ввода, устройства вывода и внешняя память.
В компьютерах с классической фон-неймановской архитектурой все процессы ввода-вывода находились под управлением процессора. Поскольку процессор является самым быстрым устройством, то любое обращение к устройствам ввода-вывода и ожидание отклика от них замедляло общее время работы.
В современных компьютерах эту проблему решают специальные электронные схемы, которые обеспечивают обмен данных между процессором и внешними устройствами. Они называются контрОллерами, а на функциональной схеме они обозначены буквой К.
При наличии контроллеров данные могут передаваться по магистрали между внешними устройствами и внутренней памятью без использования процессора.
Это существенно снижает нагрузку на работу центрального процессора, а значит приводит к повышению эффективности работы всей вычислительной системы.
Обмен данными между устройствами осуществляется с помощью магистрали.
Магистраль (шина) — устройство для обмена данными между устройствами компьютера.
Магистраль включает в себя шину адреса, шину данных и шину управления.
Шина адреса используется для указания физического адреса устройства;
Шина данных используется для передачи данных между узлами компьютера;
Шина управления организует сам процесс обмена (сигналы чтение/запись, данные готовы/не готовы, обращение к внутренней/внешней памяти и др.)
В современных компьютерах применяется магистрально-модульная архитектура, главное достоинство которой лежит в гибкости конфигурации, т. е. возможности изменить конфигурацию компьютера путём подключения к шине новых внешних устройств, а также замене старых внешних устройств.
Если спецификация на шину опубликована производителем, т. е. является открытой, то говорят о принципе открытой архитектуры. В этом случае пользователь самостоятельно может выбрать дополнительные устройства для формирования компьютерной системы, учитывающей именно его предпочтения.
Мир современных компьютеров широк и многообразен. Персональные компьютеры давно стали многоядерными. Это относится в том числе к смартфонам и планшетным компьютерам.
Однако, существуют не только персональные компьютеры, но и значительно более нагруженные вычислительные системы. Мы начали урок с путешествия в один из дата-центров Яндекса и вы видели огромное количество серверов, которые позволяет обеспечивать пользователей качественными сервисами в режиме 24х7 с высокой скоростью доступа.
Существуют сегодня и суперкомпьютеры, способные решать научные задачи, производить вычисления, связанные с космическими телами, исследованиями микромира и др.
Технические характеристики электронной техники находятся вблизи предельных значений, а это означает необходимость новых технологических решений. Сегодня ведутся исследования в области нанотехнологий, квантовых и биологических компьютеров. Одна из задач вашего поколения — найти новые технологические решения для увеличения мощности компьютеров будущего.
Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.
13. В чём заключается принцип адресности?
Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.
Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.
14. Какие архитектуры называются "фон-неймановскими"?
Классическая архитектура (архитектура фон Неймана) — одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд — программа. Это однопроцессорный компьютер. К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной, подробно рассмотренная в разделе 2.18 (рис. 2.26). Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью.
15. Что такое команда? Что описывает команда?
Команда — это описание элементарной операции, которую должен выполнить компьютер.
В зависимости от количества операндов, команды бывают:
16. Какого рода информацию может содержать адресная часть команды?
- сам операнд (число или символ);
- адрес операнда (номер байта, начиная с которого расположен операнд);
- адрес адреса операнда (номер байта, начиная с которого расположен адрес операнда), и др
17. Приведите примеры команд одноадресных, двухадресных, трёхадресных.
- одноадресная команда add x (содержимое ячейки x сложить с содержимым сумматора, а результат оставить в сумматоре)
- двухадресная команда add x, y (сложить содержимое ячеек x и y, а результат поместить в ячейку y)
- трехадресная команда add x, y, z (содержимое ячейки x сложить с содержимым ячейки y, сумму поместить в ячейку z)
Читайте также: