В чем суть процесса нормализации группы файлов
Набрёл на перевод про третью нормальную форму (ссылка в конце). Перевод вроде бы неплохой.
Далее цитата.
Попала в руки одна замечательная книжка — PHP 6 and MySQL 5 for Dynamic Web Sites , за авторством Larry Ulman. В целом, книга расчитана на новичков — середнячков, но затрагиваются и довольно серьёзные вещи, при чем объясняется весьма доходчивым языком.
Задела глава про нормальные формы. Довольно мудрёную тему автор раскрывает в весьма доходчивой манере. На русском издания я не нашел, поэтому перевел эту часть книги. Обьем статьи довольно большой, поэтому я разобью на несколько постов. В этом будет вводная часть.
Вкратце, что такое нормализация. Большинство современных субд разработаны на основе реляционной алгебры, которая появилась раньше самих реляционных субд под авторством некого доктора Кодда. Он же вывел несколько правил, или форм, по упорядочиванию данных и их отношений. Всего таких форм 6 + две вне конкурса, Бойса-Кодда и доменно-ключевая.
На практике редко нормализуют дальше 3-ей нормальной формы. Поподробнее узнать обо всех нормальных формах и теории по ссылкам внизу поста.
Все примеры из книги показаны на бд для форума с обычной для форумов структурой — посты, авторы, время и т.п.
Вот так выглядит схема до преобразования.
Ключи
Ключи являются составляющей частью нормализованных таблиц. Бывают двух видов — внешние и первичные.
Первичный ключ — это уникальный идентификатор, отвечающий следующим условиям:
- Он должен иметь значение, не NULL.
- Быть неизменным — значение ключа не должно меняться.
- Иметь уникальное значение для каждой строки.
Внешние ключи — это ссылки на первичные ключи других таблиц, которые удовлетворяют условиям выше.
Для начала нормализации следует указать хотя бы один первичный ключ. В примере это будет message ID.
Для указания первичного ключа, надо найти поле, которое будет подходить под все три условия. Если такого поля нет, его надо создать. В идеале, поле должно иметь тип integer.
Отношения
Отношения — это указатели, которые показывают, как соотносятся данные в одной таблице с данными в другой. Проще говоря, ссылка с одного столбца первой таблицы на другой столбец второй таблицы. Бывают трех видов — один-к-одному, один-к-многим, многие-к-многим.
Отношение один-к-одному означает что поле1 соотносится с полем2. Пример — у каждого человека свой номер паспорта. 1 человек- 1 паспорт. Тут отношение один-к-одному.
Один-к-многим указывает, что поле1 может соотносится как с полем2, так и с полем3, полемN… В книге приведён пример — у одного мужчины может быть много женщин и наоборот Автор юморист Один-к-многим самая распространённая связь между таблицами в нормализованных базах.
Отношение многие-к-многим бывает, когда нескольким значениям из одной таблицы соответствует несколько значений другой таблицы. Например, в категории блога может быть много постов, а у блога может быть много категорий. Еще такое отношение может встречаться в составных ключах. Такой связи следует избегать, поскольку она ведет к избыточности данных. В том-же вордпрессе категории и посты соотносятся через третью таблицу — wp_relationships.
На рисунке приведены условные обозначения всех трех отношений в нотации UML.
Создание структуры базы данных (схема) и отношений между таблицами можно ускорить, использую различные CASE-средства. В конце будет ссылка на mysql workbench, бесплатную кроссплатформенную программу.
Первая нормальная форма
Как писалось выше, нормализация — это приведение структуры бд в порядок в соответствии с несколькими правилами. Правилам нужно следовать точно, и приводить к формам нужно в порядке их следования.
Чтобы привести таблицу к 1НФ, нужно соблюсти два правила:
- Атомарность или неделимость. Каждая колонка должна содержать одно неделимое значение.
- Таблица не должна содержать повторяющихся колонок или групп данных.
Например, если таблица содержит в одном поле полный адрес человека (улица, город, почтовый код), не будет отвечать правилам 1НФ, поскольку будет содержать различные значения в одном столбце, что будет нарушением правила об атомарности. Или если бд содержит данные о фильмах и в ней есть столбцы актер1, актер2, актер3, также не будет отвечать правилам, поскольку будет иметь место повторению данных.
Начинать нормализацию следует с проверки структуры бд на совместимость с 1НФ. Все столбцы, которые не являются атомарными, должны быть разбиты на составляющие их столбцы. Если в таблице есть повторяющиеся столбцы, то им нужно выделить отдельную таблицу.
Чтобы привести таблицу к первой нормальной форме, следует:
- Найти все поля, которые содержат многосоставные части информации. На рисунке выше, поле message date содержит день, месяц, год и время, которое можно разбить на составные части, но в данном примере такая детализация даты не нужна. Mysql может работать и с таким форматом — благодаря типу DATETIME. В этом примере разбито имя пользователя на имя и фамилию. Еще примерами неудачных решений могут быть поля, в которых хранятся сразу все телефоны человека (мобильный, рабочий) или его интересы (готовка, танцы).
- Те данные, которые можно разбить на составные части, нужно выносить в отдельные поля. На рисунке выше так разнесено полное имя на имя и фамилию.
- Выносите повторяющиеся данные в отдельную таблицу. В примере с форумом такой проблемы нет, поэтому возьмем в качестве примера таблицу, содержащую информацию о фильмах. Там есть несколько полей actor, которые являются повторяемыми. Повторяемые поля тут несут две проблемы. Если хранить информацию об актерах таким образом, то их число будет лимитировано числом таблиц. Даже если их будет 100, то все равно это будет пределом для некоторых фильмов. И вторая проблема — будет большое количество пустых(NULL) ячеек для большинства остальных записей, чего также следует избегать. Решением этой проблемы станет создание отдельной таблицы для актеров, куда будет заносится информация обо всех необходимых фильмах. Имена актеров также разбиты, чтобы соблюсти атомарность. Также в этой таблице присутствует свой первичный ключ, что является необходимым условием для нормализации.
- Дважды проверьте, все ли таблицы подходят под условия первой нормальной формы.
- Простейший путь приведения к 1НФ — это пройтись глазами по всем столбцам. Проверьте каждый ряд на отсутствие повторения схожих данных и делимости.
- Разные источники трактуют процесс нормализации по своему, в основном более сухим, техническим языком. Более важен результат нормализации, а не повторение правил и умных слов.
Вторая нормальная форма
Для приведения таблиц ко второй нормальной форме (2НФ), приводимые таблицы должны быть уже в 1НФ. Нормализация должна проходить по порядку.
Теперь, во второй нормальной форме, должно быть соблюдено условие — любой столбец, который не является ключом (в том числе внешним), должен зависеть от первичного ключа. Обычно такие столбцы, имеющие значения, который не зависят от ключа, легко определить. Если данные, содержащиеся в столбце, не имеют отношения к ключу, который описывает строку, то их следует отделять в свою отдельную таблицу. В старую таблицу надо возвращать первичный ключ.
На рисунке выше и названия фильмов и имена актеров нарушают правила 2НФ (сами не являются ключами и не зависят от первичного ключа).
После всех преобразований, база данных с фильмами будет иметь минимум 4 таблицы.
Каждое имя режиссёра, название картины и имя актера хранится только один раз и все неключевые поля зависят от первичного ключа их собственной таблицы.
По факту, нормализация может быть утрированно названа процессом создания все новых и новых таблиц до тех пор, пока избыточность и повторения не будут полностью уничтожены.
Чтобы привести базу ко второй нормальной форме, надо:
Подсказки:
- Другой способ приведения схемы к 2НФ — посмотреть на отношения между таблицами. Идеальный вариант — создать все отношения вида один-к-многим. Отношения вида многие-к-многим нуждаются в реструктуризации.
- Если взглянуть еще раз на таблицу movies-actors, то можно заметить, что она является промежуточной таблицей. Она превращает отношение многие-к-многим между movies и actors в один-к-многим. Можно вводить такие промежуточные таблицы, у которых все столбцы являются ключами. В таких таблицах не требуется свой собственный первичный ключ, поскольку он может быть комбинацией двух внешних ключей.
- Нормализованная должным образом таблица никогда не будет иметь повторяющихся рядов (двух и более рядов, значения которых не являются ключами и содержат совпадающие данные).
- Чтобы упростить нормализацию, помните, что при приведении к 1НФ вы ищете дубли горизонтально (дубли столбцов), а при приведении к 2НФ — вертикально (дубли рядов).
Третья нормальная форма.
База данных будет находиться в третьей нормальной форме, если она приведена ко второй нормальной форме и каждый не ключевой столбец независим друг от друга. Если следовать процессу нормализации правильно до этой точки, с приведением к 3НФ может и не возникнуть вопросов. Следует знать, что 3НФ нарушается, если изменив значение в одном столбце, потребуется изменение и в другом столбце. В примере с форумом (рисунок вверху), проблем с приведением к 3НФ не возникнет, но можно рассмотреть как образец гипотетическую ситуацию, где это может произойти.
Возьмём, как образец, одиночную таблицу, которая хранит некую информацию о бизнес клиентах: имя, фамилию, телефон, адрес, город, штат, почтовый индекс и все в этом духе. Такая таблица не будет находится в 3НФ, поскольку тут много полей будет взаимозависимо — улица будет зависеть от города, город от штата, почтовый индекс тоже под вопросом. Все эти поля будут подчинены друг другу, а не человеку, к которому относится эта запись.
Чтобы нормализовать такую базу, нужно создать по таблице для штатов, городов (с внешним ключом, ведущим в таблицу штатов) и для почтовых кодов. Все они будут ссылаться назад на клиентскую таблицу.
Если вы чувствуете, что все эти действия могут быть излишними, вы правы. Честно, в верхних уровнях нормализации часто нет необходимости. Смысл в том, что нужно стараться нормализовать базу данных, но иногда приходиться идти на уступки ради того, чтобы не допустить чрезмерного усложнения. Потребности приложения и структура данных в базе подскажут, насколько потребуется проводить процесс нормализации.
Чтобы привести базу к третьей нормальной форме, надо:
2. Создайте соответствующие таблицы. Если есть проблемный столбец в шаге 1, создавайте раздельные таблицы для него. Как города и штаты, в примере с клиентами.
3. Создайте или выделите первичные ключи. Каждая таблица должна иметь первичный ключ. Для примера с клиентами это будут city ID и state ID.
4. Создайте необходимые внешние ключи, которые образуют любое из отношений. В нашем примере нужно добавить state ID в таблицу городов и city ID в таблицу клиентов. Это свяжет каждого клиента с городом и штатом, где они живут.
Подсказки:
Вообще, можно было бы и не нормализовывать базу с клиентами до такой степени. Если оставить города и штаты в таблице клиентов, самое страшное, что могло бы случиться — если бы город изменил название, нужно было бы менять его во всех записях о клиентах, которые живут в этом городе. Но города редко меняют свои имена.
Несмотря на то, что имеются правила как нормализовывать базы данных, разные люди сделают это разными способами. Проектирование баз данных допускает личные предпочтения и интерпретации. Важно, чтобы в базе не было явных нарушений нормальных форм, которые могут привести в дальнейшем к проблемам.
Нарушения правил нормализации
Убедившись, что база данных в 3НФ поможет гарантировать надёжность и жизнеспособность, не нужно полностью нормализовывать все базу, с которыми вы работаете. Перед тем, как использовать эти методы, имейте ввиду, что это может иметь долгосрочные разрушающие последствия.
Практика и опыт подскажут, как сделать модель базы данных, но лучше совершайте ошибки пробуя нормальные формы, хотя бы до тех пор, пока не поймете принцип.
Начну я с нормализации баз данных. В этом материале мы поговорим в целом о процессе нормализации, узнаем, зачем проводить нормализацию базы данных, что такое нормальная форма базы данных, а также какие нормальные формы существуют. В следующих материалах я подробно и с примерами расскажу про каждую нормальную форму.
Реляционная база данных
В целом под базой данных можно понимать любой набор информации, которую можно найти в этой базе данных и воспользоваться ей, однако если говорить в контексте SQL, то речь будет идти, конечно, о реляционных базах данных, а что же это такое?
Реляционная база данных – это упорядоченная информация, связанная между собой определёнными отношениями.
Логически такая база данных представлена в виде таблиц, в которых и лежит вся эта информация.
Примечание! Если Вас интересует язык SQL, рекомендую пройти мой онлайн-курс по основам SQL, который ориентирован на изучение SQL как стандарта, таким образом, Вы сможете работать в любой системе управления базами данных. Курс включает много практики: онлайн-тестирование, задания и многое другое.
Нормализация баз данных
В реляционных базах данных есть такое понятия, как «Нормализация».
Нормализация – это процесс удаления избыточных данных.
Также нормализацию можно рассматривать и с позиции проектирования базы данных, в таком случае мы можем сформулировать определение нормализации следующим образом.
Нормализация – это метод проектирования базы данных, который позволяет привести базу данных к минимальной избыточности.
Избыточность устраняется, как правило, за счёт декомпозиции отношений (таблиц), т.е. разбиения одной таблицы на несколько.
Зачем нормализовать базу данных?
У Вас может возникнуть вопрос – а зачем вообще нормализовать базу данных и бороться с этой избыточностью?
Дело в том, что избыточность данных создает предпосылки для появления различных аномалий, снижает производительность, и делает управление данными не гибким и не очень удобным. Отсюда можно сделать вывод, что нормализация нужна для:
- Устранения аномалий
- Повышения производительности
- Повышения удобства управления данными
Теперь давайте поговорим о самой избыточности данных, что же это такое.
Избыточность данных – это когда одни и те же данные хранятся в базе в нескольких местах, именно это и приводит к аномалиям.
Так как в этом случае необходимо добавлять, изменять или удалять одни и те же данные в нескольких местах. Например, если не выполнить операцию в каком-нибудь одном месте, то возникает ситуация, когда одни данные не соответствуют вроде как точно таким же данным в другом месте.
Давайте рассмотрим пример. Допустим, у нас есть следующая таблица, она хранит информацию о предметах мебели, в частности наименование предмета и материал, из которого изготовлен этот предмет.
Идентификатор предмета | Наименование предмета | Материал |
1 | Стул | Металл |
2 | Стол | Массив дерева |
3 | Кровать | ЛДСП |
4 | Шкаф | Массив дерева |
5 | Комод | ЛДСП |
А теперь допустим, что у нас возникла необходимость подкорректировать название материала, вместо «Массив дерева» нужно написать «Натуральное дерево», и чтобы это сделать нам необходимо внести изменения сразу в несколько строк, так как предметов, изготовленных из массива дерева, несколько, а именно 2: стол и шкаф.
А теперь представьте, что по каким-то причинам мы внесли изменения только в одну строку, в итоге в нашей таблице будет и «Массив дерева», и «Натуральное дерево».
Идентификатор предмета | Наименование предмета | Материал |
1 | Стул | Металл |
2 | Стол | Натуральное дерево |
3 | Кровать | ЛДСП |
4 | Шкаф | Массив дерева |
5 | Комод | ЛДСП |
Какое из этих названий будет правильным? А если представить, что мы можем внести еще какое-то новое значение при добавлении новых записей, например, просто «Дерево».
В этом случае в нашей таблице в скором времени будет и «Массив дерева», и «Натуральное дерево», и просто «Дерево», и вообще, что угодно, ведь это просто текст.
Идентификатор предмета | Наименование предмета | Материал |
1 | Стул | Металл |
2 | Стол | Натуральное дерево |
3 | Кровать | ЛДСП |
4 | Шкаф | Массив дерева |
5 | Комод | ЛДСП |
6 | Тумба | Дерево |
Однако по своей сути это один и тот же материал, мы просто решили или подкорректировать его название, или ошиблись при добавлении новой записи. Это и есть аномалия, когда одни данные в одном месте не соответствуют вроде как точно таким же данным в другом месте. Это всего лишь один вид аномалии, однако в процессе добавления, изменения и удаления данных может возникать много других противоречивых ситуаций, т.е. аномалий.
При этом, обязательно стоит отметить, что в нашей таблице всего 5 записей, а теперь представьте, что их миллион!
Именно поэтому мы должны устранять избыточность данных в базе, т.е. проводить так называемую нормализацию базы данных.
В данном конкретном случае мы должны название материала, из которого изготовлены предметы мебели, вынести в отдельную таблицу, а в таблице с предметами сделать всего лишь ссылку на нужный материал, тем самым, соотнеся эту ссылку с исходной записью, мы будем понимать, из какого материала сделан тот или иной предмет.
Идентификатор предмета | Наименование предмета | Идентификатор материала |
1 | Стул | 2 |
2 | Стол | 1 |
3 | Кровать | 3 |
4 | Шкаф | 1 |
5 | Комод | 3 |
Материалы, из которых изготовлены предметы мебели.
Идентификатор материала | Материал |
1 | Массив дерева |
2 | Металл |
3 | ЛДСП |
Таким образом, представляя материалы в виде отдельной сущности и создавая для нее отдельную таблицу, мы устраняем описанную выше аномалию.
Другими словами, каждая сущность должна храниться отдельно, а в случае необходимости использования этой сущности в другой таблице на нее делается всего лишь ссылка, т.е. выстраивается связь.
Нормальные формы базы данных
В целом процесс нормализации базы данных выглядит следующим образом: мы, следуя определённым правилам и соблюдая определенные требования, проектируем таблицы в базе данных.
При этом все эти правила и требования можно сгруппировать в несколько наборов, и если спроектировать базу данных с соблюдением всех правил и требований, которые включаются в тот или иной набор, то база данных будет находиться в определённом состоянии, т.е. форме, и такая форма называется нормальная форма базы данных.
Иными словами, следуя определённым правилам и соблюдая определенные требования мы приводим базу данных к определенной нормальной форме.
Нормальная форма базы данных – это набор правил и критериев, которым должна отвечать база данных.
Каждая следующая нормальная форма содержит более строгие правила и критерии, тем самым приводя базу данных к определённой нормальной форме мы устраняем определённый набор аномалий.
Отсюда можно сделать вывод, что чем выше нормальная форма, тем меньше аномалий в базе будет.
Процесс нормализации – это последовательный процесс приведения базы данных к эталонному виду, т.е. переход от одной нормальной формы к следующей.
Иными словами, процесс перехода от одной нормальной формы к следующей – это усовершенствование базы данных. Так как если база данных находится в какой-то определённой нормальной форме – это означает, что в базе данных отсутствует определенный вид аномалий.
Существует 5 основных нормальных форм базы данных:
- Первая нормальная форма (1NF)
- Вторая нормальная форма (2NF)
- Третья нормальная форма (3NF)
- Четвертая нормальная форма (4NF)
- Пятая нормальная форма (5NF)
Однако выделяют еще дополнительные нормальные формы:
- Ненормализованная форма или нулевая нормальная форма (UNF)
- Нормальная форма Бойса-Кодда (BCNF)
- Доменно-ключевая нормальная форма (DKNF)
- Шестая нормальная форма (6NF)
Если объединить оба этих списка и упорядочить нормальные формы от менее нормализованной до самой нормализованной, т.е. начиная с формы, при которой база данных по своей сути не является нормализованной, и заканчивая самой строгой нормальной формой, то мы получим следующий перечень:
- Ненормализованная форма или нулевая нормальная форма (UNF)
- Первая нормальная форма (1NF)
- Вторая нормальная форма (2NF)
- Третья нормальная форма (3NF)
- Нормальная форма Бойса-Кодда (BCNF)
- Четвертая нормальная форма (4NF)
- Пятая нормальная форма (5NF)
- Доменно-ключевая нормальная форма (DKNF)
- Шестая нормальная форма (6NF)
База данных считается нормализованной, если она находится как минимум в третьей нормальной форме (3NF).
В реальном мире нормализация до третьей нормальной формы (3NF) является обычной, стандартной практикой, так как 3NF устраняет достаточное количество аномалий, при этом производительность базы данных, а также удобство ее использования не снижается, что нельзя сказать о всех последующих формах.
Ситуации, при которых требуется нормализовать базу данных до четвертой нормальной формы (4NF), в реальном мире встречаются достаточно редко.
Заметка! Если Вас интересует язык SQL, рекомендую почитать мою книгу «SQL код», которая ориентирована на изучение SQL как стандарта, после прочтения книги Вы сможете писать SQL запросы в любой системе управления базами данных.
Если говорить о всех последующих нормальных формах (5NF, DKNF, 6NF), то в реальной жизни трудно даже представить ситуации, при которых потребуется нормализовать базу данных до этих форм.
Иными словами, 5NF, DKNF, 6NF – это в большей степени теоретические нормальные формы, немного отстраненные от реального мира.
Стоит отметить, что приведение базы данных к какой-то конкретной нормальной форме, обязательно требует, чтобы эта база данных уже находилась в предыдущей нормальной форме. Другими словами, если Вы хотите нормализовать базу данных до третьей нормальной формы, то база уже должна находиться во второй нормальной форме, т.е. нельзя нормализовать базу данных до третьей формы, если она еще не нормализована до второй.
Описание нормальных форм базы данных
В следующих статьях представлено подробное описание каждой нормальной формы и приведены примеры.
Статья расскажет о том, что такое нормализация баз данных, для чего она нужна, и какие виды нормализации существуют. Для наилучшего понимания отношений между таблицами в нормализованной базе данных будут приведены практические примеры.
При создании базы нужно учитывать некоторые правила. Исходя из вышесказанного, можно привести следующую формулировку: нормализация БД — это процесс организации данных определенным образом и рекомендации по проектированию. То есть таблицы и связи между ними (отношения) создаются в соответствии с правилами. В результате обеспечивается нужный уровень безопасности данных, а сама база становится более гибкой. Также устраняются несогласованные зависимости и избыточность.
Плюсы
Нормализация не является обязательной, но приносит следующие преимущества: — упрощается процесс выборки. Речь идет об упрощении работы по составлению запросов, то есть пользователь сможет получать нужную информацию относительно простыми запросами; — обеспечивается целостность данных. Можно говорить о минимизации искажения информации и снижении вероятности потери данных; — улучшается масштабируемость. При соблюдении правил нормализации формируются благоприятные предпосылки к росту БД; — отсутствует избыточность (data redundancy). Избыточность — известная проблема непродуктивного использования свободного места на жестком диске, затрудняющая обслуживание БД. В отдельных случаях эту проблему усугубляет и то, что в случае необходимости изменения записей однотипных данных, хранимых в нескольких местах (таблицах), пользователю придется вносить требуемые изменения везде, что весьма трудоемкое занятие. Гораздо проще сделать так, чтобы, к примеру, данные о городах хранились только в таблице Cities и нигде больше. Если подытожить вышесказанное, избыточность предполагает дублирование данных, а это не только усложняет работу с БД, но и увеличивает ее размер; — отсутствие несогласованных зависимостей. Несогласованные зависимости затрудняют доступ к данным, ведь путь к такой информации может быть неправилен и нелогичен. В той же таблице Cities логично искать города, количество жителей и т. п., но не адреса и имена жителей — для этой информации уже нужна другая таблица — Citizens.
Как выполнить нормализацию?
Чтобы привести БД к нормальной форме, необходимо: 1. Объединить имеющиеся данные в группы. 2. Выяснить логические связи между группами. Чтобы обеспечить правильность связей, связываемые поля должны иметь один тип.
Если таблица не нормализована, она может хранить информацию о нескольких сущностях и включать в себя повторяющиеся столбцы, а они, в свою очередь, могут хранить дублируемые значения. Если же нормализована, то каждая таблица хранит информацию лишь об одной сущности.
При нормализации предполагается использование нормальных форм по отношению к структуре имеющихся данных. Есть несколько правил нормализации. Каждое из них носит название «нормальная форма» (НФ). Каждая такая форма, кроме первой, предполагает, что к данным уже применили предыдущую нормальную форму. При выполнении первого правила БД представлено в первой нормальной форме (1НФ), при выполнении трех правил — в третьей нормальной форме (3НФ).
Таких форм (уровней) — семь, однако на практике для большей части приложений вполне достаточно нормализовать БД до третьей нормальной формы (строго говоря, БД и будет считаться нормализованной, когда к ней применяется 3НФ и выше).
Да, обеспечить полное соответствие правилам и спецификациям — задача не всегда выполнимая, ведь для нормализации придется создавать дополнительные таблицы, а это не всегда приемлемо или не находит отклика у клиентов. Но если правила приходится нарушать, надо понимать, что все, связанные с этим проблемы, включая несогласованные зависимости и избыточность, будут учтены, и что это допустимо для приложения, не нарушит его работоспособность.
Правила нормализации на примерах
Первая нормальная форма (1НФ)
Согласно правилам, все атрибуты в такой таблице должны быть простыми, все сохраняемые данные на пересечении столбцов и строк — содержать лишь скалярные значения. Также не должно быть повторяющихся строк.
Для примера возьмем таблицу с автомобилями:
Обратите внимание на нарушение нормализации в моделях BMW — в одной ячейке находится перечень из трех элементов: M5, X5M, M1, то есть можно говорить об отсутствии атомарности. После преобразования в 1НФ таблица меняет вид:
Вторая нормальная форма (2НФ)
Отношения будут соответствовать 2НФ, если сама БД находится в 1НФ, а каждый столбец, который не является ключом, зависит от первичного ключа.
Рассмотрим очередную таблицу:
Третья нормальная форма (3НФ)
Таблица должна находиться во 2НФ, плюс любой столбец, который не является ключом, должен зависеть лишь от первичного ключа.
В таблице в отношении атрибут первичным ключом является «Модель». Так как собственные телефоны у автомашин отсутствуют, телефон зависит только от магазина.
В результате можно говорить о наличии в связях следующих функциональных зависимостей:
Зависимость «Модель → Телефон» — транзитивна, поэтому отношение не находится в 3НФ.
Разделив исходное отношение, можно получить 2 отношения, и они уже будут находиться в 3НФ:
P. S. Очень надеемся, что теперь у вас сложилось представление о том, что такое нормализация базы данных. Если же вы хотите освоить работу с БД на профессиональном уровне, добро пожаловать на курсы OTUS!
Нормализация – это процесс (процедура) приведения таблиц базы данных к ряду нормальных форм (НФ) с целью избежания избыточности в базе данных, аномалий вставки, редактирования и удаления данных. Таблицы могут иметь неэффективную или не подходящую структуру, которую нужно нормализовать. Нормализация предусматривает разбивку исходной таблицы (отношения) на несколько новых таблиц (отношений).
Правильное применение механизма нормализации к базе данных дает следующие взаимосвязанные преимущества:
- минимизируются затраты на сохранение данных (избыточность данных). Другими словами, уменьшается размер базы данных;
- с возрастанием размера базы данных не так заметно возрастают временные затраты на доступ к данным;
- отсутствуют аномалии модификации в базе данных. К аномалиям модификации относятся аномалии вставки, редактирования и удаления данных.
Процесс нормализации включает в себя использование так называемых нормальных форм. На сегодняшний день известны следующие нормальные формы (рисунок 1):
- первая нормальная форма (1НФ);
- вторая нормальная форма (2НФ);
- третья нормальная форма (3НФ);
- нормальная форма Бойса-Кодда (НФБК);
- четвертая нормальная форма (4НФ);
- пятая нормальная форма (5НФ).
База данных считается правильно спроектированной (оптимальной или приближенной к оптимальной), если она отвечает требованиям нормальных форм. Не обязательно применять все 5 нормальных форм. Если количество атрибутов (столбцов) в базе данных небольшое, то достаточным есть применение первых трех нормальных форм. Взаимосвязь нормальных форм изображена на рисунке 1.
Рисунок 1. Взаимосвязь нормальных форм
2. Понятие избыточности данных. Пример
Избыточность данных возникает при неправильном проектировании таблицы базы данных. В этом случае таблица содержит повторяющиеся группы данных. Такие группы данных возникают, когда осуществляется попытка записать в одну ячейку таблицы более одного значения.
Пример. Пусть задана база данных учета учебного процесса в некотором учебном заведении, которая описывается таблицей (одной из таблиц) со следующей структурой
Рисунок 2. Структура таблицы базы данных учебного заведения
Для примера в таблицу внесены следующие данные (фрагмент таблицы).
Рисунок 3. Таблица с заполненными данными. Избыточность данных
В вышеприведенной таблице избыточность данных проявляется в следующих определениях:
3. Аномалия вставки. Пример
Аномалия вставки проявляется в случаях, когда нужно добавить данные к таблице. Здесь может возникнуть ситуация, когда для вставки данных нужно добавлять (выгадывать) лишние (несуществующие) данные. Иными словами, в базу данных невозможно записать данные об одной сущности, не указав данных о другой сущности. Значит, аномалия вставки – это добавление нежелательной или несуществующей (выдуманной) информации об одной сущности в момент вставки информации о другой сущности.
Пример. Задана следующая база данных, которая основана на одной таблице. В таблице определяется информация о преподавателях ( Преподаватель , Дисциплина , Кафедра ), студентах ( Студент , Номер зачетки , Адрес ), успеваемость студентов ( Оценка ).
Рисунок 4. Таблица с данными об успеваемости в учебном заведении
Пусть в эту базу данных нужно добавить нового преподавателя математики (столбцы Преподаватель, Дисциплина), который недавно принят на работу. Для этого необходимо, чтобы новый преподаватель обязательно оценил хотя бы одного студента. Иначе, в таком представлении базы данных, добавить данные будет невозможно. Значит, при добавлении преподавателя, нужно выгадывать несуществующие данные оценивания студента. Это и есть аномалия вставки.
Рисунок 5. Пример аномалии вставки. Добавление преподавателя в базу данных требует указания информации о студенте
То же самое можно сказать и о студенте. Если в базу данных нужно добавить студента, который будет оценен спустя некоторое время (в конце семестра), то нужно выгадывать оценку, которую он получит из дисциплины, которая еще только изучается. Преподаватель на этот момент может быть уже известен.
4. Аномалия редактирования. Пример
Значит аномалия редактирования возникает в случаях, когда в таблице базы данных существуют повторяющиеся данные. Такие данные тяжело обновлять при их редактировании, поскольку нужно вносить изменения во все ячейки таблицы, в которых эти данные фигурируют. Если при изменении повторяемых данных в одной ячейке не изменить так же эти данные в других ячейках, то компьютер будет воспринимать эти данные как разные (в отличие от человека).
Аномалия редактирования – это вынужденная необходимость изменения (обновления) данных во всей таблице в случае их изменения (обновления) в одной ячейке таблицы с целью избежания их двузначного трактования.
Пример. Задана таблица базы данных учета успеваемости в учебном заведении. Пусть преподаватель физики Петренко М.М. вышла замуж и изменила фамилию на Маркевич. Теперь во всех ячейках столбца (атрибута) Преподаватель нужно изменить имя преподавателя Петренко М.М. на Маркевич М.М. (рисунок 4).
Рисунок 6. Аномалия редактирования. Редактирование одних и тех же данных в одной ячейке требует изменения этих данных в других ячейках
5. Аномалия удаления. Пример
Аномалия удаления проявляется в случаях, когда нужно удалить данные из таблицы. Аномалия удаления – это потеря одних данных в таблице при удалении других данных в таблице.
Рисунок 7. Аномалия удаления. При удалении информации об оценивании студента теряется информация о преподавателе кафедры
Читайте также: