В большинстве современных ibm совместимых компьютерах реализована архитектура какого типа
Средства разработки прикладных решений - это очень важная часть платформы персонального компьютера. От гибкости, богатства, удобства и надежности этих средств зависит популярность платформы. Платформа без средств разработки приложений под нее перестает существовать.
Все поставщики платформ поставляют и средства разработки прикладных решений в той или иной форме. Производители операционных систем предлагают всевозможные компиляторы и интерпретаторы, системы управления базами данных, системы организации взаимодействия (например, электронная почта ). Конечно, решения для популярных операционных систем предлагают не только фирмы-создатели, но и другие фирмы-разработчики.
Для платформ, у которых возможности осуществления разработки решений непосредственно на них ограничены (например, для сотовых телефонов), производители предлагают средства разработки , функционирующие под популярной и мощной операционной системой ( Windows , Linux). В дополнение к этим средствам предлагается эмулятор целевой платформы, на котором можно отладить решение, не используя целевую платформу непосредственно.
В настоящее время набирают популярность решения, обеспечивающие независимость разрабатываемых прикладных решений не только от аппаратной составляющей платформы, но и от операционной системы. Самые популярные решения подобного рода - Java и Net .
Основная идея этих платформ состоит в создании "виртуальной машины" - специального программного комплекса, функционирующего на конкретной аппаратной платформе и на конкретной операционной системе. Прикладную программу обрабатывает виртуальная машина , которая преобразует "виртуальные команды" в команды конкретной программно-аппаратной платформы. В итоге получается, что программа для виртуальной машины функционирует на множестве связок "аппаратная часть - операционная система " без переделки. Единственное условие - наличие виртуальной машины для конкретного программно-аппаратного решения. Самая распространенная аппаратно-независимая платформа - Java .
Существует определенный класс программных продуктов - конструкторов, использование которых ограничено какой-либо предметной областью. Эти продукты реализуют не только базовую функциональность, но и гибкие средства создания решений в определенной области деятельности. Такие программные продукты зачастую называются прикладными платформами.
Под прикладной платформой понимаются среда исполнения и набор технологических решений, используемых в качестве основы для построения определенного круга приложений. Фактически приложения базируются на нескольких платформах, образующих многослойную среду. При этом важно, что платформа предоставляет разработчику определенную модель, как правило, изолирующую его от понятий и подробностей более низкоуровневых технологий и платформ.
Ключевым качеством прикладной платформы является достаточность ее средств для решения задач, стоящих перед бизнес-приложениями. Это обеспечивает хорошую согласованность всех технологий и инструментов, которыми пользуется разработчик. Другой важный момент - стандартизация. Наличие единой прикладной платформы для большого количества прикладных решений способствует формированию общего "культурного слоя", включающего и людей (программистов, аналитиков, пользователей), и методологию (типовые структуры данных, алгоритмы, пользовательские интерфейсы). Опираясь на этот "культурный слой", разработчик тратит минимум усилий на поиск необходимого решения практически в любой ситуации, начиная от включения в проект нового специалиста и кончая реализацией какой-либо подсистемы бизнес-приложения по типовой методологии.
Типичный представитель специальных прикладных платформ - система "1С: Предприятие". Сама по себе система является гибким, настраиваемым под нужды конкретного предприятия конструктором, предоставляющим разработчику решений "более прикладные" методы и средства по сравнению с традиционными языками программирования, т. е. такая платформа представляет собой набор различных механизмов, используемых для автоматизации экономической деятельности и не зависящих от конкретного законодательства и методологии учета.
Существуют комплексные прикладные системы масштаба корпораций, которые являются основой для надежного ведения крупного бизнеса, так называемые ERP-системы ( Enterprise Resource Planning Systems). Эти системы также являются прикладной платформой, гибко настраиваемой в своей предметной области .
2.5. Критерии выбора платформы
Выбор платформы представляет собой чрезвычайно сложную задачу, которая состоит из двух частей:
Существует несколько причин, в силу которых достаточно сложно оценить возможности платформы с выбранным набором компонентов, которые включаются в систему:
- подобная оценка прогнозирует будущее: предполагаемую комбинацию устройств, будущее использование программного обеспечения, будущих пользователей;
- конфигурация аппаратных и программных средств связана с определением множества разнородных по своей сути компонентов системы, в результате чего сложность быстро увеличивается;
- скорость технологических усовершенствований аппаратных средств, функциональной организации системы, операционных систем очень высокая и постоянно растет. Ко времени, когда какой-либо компонент широко используется и хорошо изучен, он часто рассматривается как устаревший.
- доступная потребителю информация об аппаратном обеспечении, операционных системах, программном обеспечении носит общий характер. Структура аппаратных средств, на базе которых работают программные системы, стала настолько сложной, что эксперты в одной области редко являются таковыми в другой.
Выбор той или иной платформы и конфигурации определяется рядом критериев. К ним относятся:
- Отношение стоимость-производительность.
- Надежность и отказоустойчивость.
- Масштабируемость.
- Совместимость и мобильность программного обеспечения.
Отношение стоимость-производительность. Появление любого нового направления в вычислительной технике определяется требованиями компьютерного рынка. Поэтому у разработчиков компьютеров нет одной единственной цели. Мейнфрейм или суперкомпьютер стоят дорого, т. к. для достижения поставленных целей при проектировании высокопроизводительных конструкций приходится игнорировать стоимостные характеристики. Другим крайним примером может служить низкостоимостная конструкция, где производительность принесена в жертву для достижения низкой стоимости. К этому направлению относятся персональные компьютеры. Между этими двумя крайними направлениями находятся конструкции, основанные на отношении стоимость - производительность , в которых разработчики находят баланс между стоимостными параметрами и производительностью. Типичными примерами такого рода компьютеров являются мини-компьютеры и рабочие станции.
Надежность и отказоустойчивость. Важнейшей характеристикой аппаратной платформы является надежность . Повышение надежности основано на принципе предотвращения неисправностей путем снижения интенсивности отказов и сбоев за счет применения электронных схем и компонентов с высокой и сверхвысокой степенью интеграции, снижения уровня помех, облегченных режимов работы схем, обеспечение тепловых режимов их работы, а также за счет совершенствования методов сборки аппаратной части персонального компьютера.
Введение отказоустойчивости требует избыточного аппаратного и программного обеспечения. Структура многопроцессорных и многомашинных систем приспособлена к автоматической реконфигурации и обеспечивает возможность продолжения работы системы после возникновения неисправностей. Понятие надежности включает не только аппаратные средства , но и программное обеспечение . Главной целью повышения надежности систем является целостность хранимых в них данных.
Масштабируемость должна обеспечиваться архитектурой и конструкцией компьютера, а также соответствующими средствами программного обеспечения.
Добавление каждого нового процессора в действительно масштабируемой системе должно давать прогнозируемое увеличение производительности и пропускной способности при приемлемых затратах. В действительности реальное увеличение производительности трудно оценить заранее, поскольку оно в значительной степени зависит от динамики поведения прикладных задач.
Возможность масштабирования системы определяется не только архитектурой аппаратных средств, но и зависит от заложенных свойств программного обеспечения. Простой переход, например, на более мощный процессор может привести к перегрузке других компонентов системы. Это означает, что действительно масштабируемая система должна быть сбалансирована по всем параметрам.
Совместимость и мобильность программного обеспечения. В настоящее время одним из наиболее важных факторов, определяющих современные тенденции в развитии информационных технологий, является ориентация компаний-поставщиков компьютерного оборудования на рынок прикладных программных средств. Это объясняется прежде всего тем, что для конечного пользователя в конце концов важно программное обеспечение , позволяющее решить его задачи, а не выбор той или иной аппаратной платформы. Переход от однородных сетей программно-совместимых компьютеров к построению неоднородных сетей, включающих компьютеры разных фирм-производителей, в корне изменил и точку зрения на саму сеть : из сравнительно простого средства обмена информацией она превратилась в средство интеграции отдельных ресурсов - мощную распределенную вычислительную систему, каждый элемент которой лучше всего соответствует требованиям конкретной прикладной задачи.
Этот переход выдвинул ряд новых требований:
Во-первых, такая вычислительная среда должна позволять гибко менять количество и состав аппаратных средств и программного обеспечения в соответствии с меняющимися требованиями решаемых задач.
Во-вторых, она должна обеспечивать возможность запуска одних и тех же программных систем на различных аппаратных платформах, т. е. обеспечивать мобильность программного обеспечения.
В-третьих, эта среда должна гарантировать возможность применения одних и тех же человеко-машинных интерфейсов на всех компьютерах, входящих в неоднородную сеть .
Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Bussines Machines Corporation) - ведущей компании по производству больших ЭВМ, и в 1979 году фирма IBM решила попробовать свои силы на рынке персональных компьютеров.
Однако руководство фирмы недооценило будущую важность этого рынка и рассматривало создание компьютера всего лишь как мелкий эксперимент - что-то вроде одной из десятков проводившихся в фирме работ по созданию нового оборудования. Чтобы не тратить на этот эксперимент слишком много денег, руководство фирмы предоставило подразделению, ответственному за данный проект, невиданную в фирме свободу. В частности, ему было разрешено не конструировать персональный компьютер "с нуля", а использовать блоки, изготовленные другими фирмами. И это подразделение сполна использовало предоставленный шанс.
Прежде всего, в качестве основного микропроцессора компьютера был выбран новейший тогда 16-разрядный микропроцессор Intel-8088. Его использование позволило значительно увеличить потенциальные возможности компьютера, так как новый микропроцессор позволял работать с 1 Мбайтом памяти, а все имевшиеся тогда компьютеры были ограничены 64 Кбайтами. В компьютере были использованы и другие комплектующие различных фирм, а его программное обеспечение было поручено разработать небольшой фирме Microsoft.
ОСНОВНЫЕ БЛОКИ IBM
PC Обычно персональные компьютеры IBM PC состоят из трех частей (блоков) :
клавиатуры, позволяющей вводить символы в компьютер;
монитора (или дисплея) - для изображения текстовой и графической информации.
Компьютеры выпускаются и в портативном варианте - в "наколенном" (лэптор) или "блокнотом" (ноутбук) исполнении. Здесь системный блок, монитор и клавиатура заключены в один корпус: системный блок спрятан под клавиатурой, а монитор сделан как крышка к клавиатуре.
Хотя из этих частей компьютера системный блок выглядит наименее эффектно, именно он является в компьютере "главным". В нем располагаются все основные узлы компьютера:
электронные схемы, управляющие работой компьютера (микропроцессор, оперативная память, контроллеры устройства и т.д.) ;
блок питания, преобразующий электропитание сети в постоянный ток низкого напряжения, подаваемый на электронные схемы компьютера;
накопители (или дисководы) для гибких магнитных дисков, используемые для чтения и записи на гибкие магнитные диски (дискеты) ;
накопитель на жестом магнитном диске, предназначенный для чтения и записи на несъемный жесткий магнитный диск (винчестер) .
Распространение персональных компьютеров к концу 1970-х годов привело к некоторому снижению спроса на большие ЭВМ и мини ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Bussines Machines Corporation) — ведущей компании по производству больших ЭВМ, и в 1979 году фирма IBM решила попробовать свои силы на рынке персональных компьютеров.
Прежде всего, в качестве основного микропроцессора компьютера был выбран новейший тогда 16-разрядный микропроцессор Intel-8088. Его использование позволило значительно увеличить потенциальные возможности компьютера, так как новый микропроцессор позволял работать с 1 Мб памяти, а все имевшиеся тогда компьютеры были ограничены 64 Кб. В компьютере были использованы и другие комплектующие различных фирм, а его программное обеспечение было поручено разработать небольшой фирме Microsoft.
Основные блоки IBM
PC Обычно персональные компьютеры IBM PC состоят из трех частей (блоков):
клавиатуры, позволяющей вводить символы в компьютер;
монитора (или дисплея) — для изображения текстовой и графической информации.
электронные схемы, управляющие работой компьютера (микропроцессор, оперативная память, контроллеры устройства и т. д.);
блок питания, преобразующий электропитание сети в постоянный ток низкого напряжения, подаваемый на электронные схемы компьютера;
накопители (или дисководы) для гибких магнитных дисков, используемые для чтения и записи на гибкие магнитные диски (дискеты);
накопитель на жестом магнитном диске, предназначенный для чтения и записи на несъемный жесткий магнитный диск (винчестер).
Дополнительные устройства
К системному блоку компьютера IBM PC можно подключать различные устройства ввода-вывода информации, расширяя тем самым его функциональные возможности. Многие устройства подсоединяются через специальные гнезда (разъемы), находящиеся обычно на задней стенке системного блока компьютера. Кроме монитора и клавиатуры, такими устройствами являются:
принтер — для вывода на печать текстовой и графической информации;
мышь — устройство, облегчающее ввод информации в компьютер;
джойстик — манипулятор в виде укрепленной на шарнире ручки с кнопкой, употребляется в основном для компьютерных игр;
а также другие устройства.
Некоторые устройства могут вставляться внутрь системного блока компьютера, например:
модем — для обмена информацией с другими компьютерами через телефонную сеть;
факс-модем — сочетает возможность модема и телефакса;
стример — для хранения данных на магнитной ленте.
Некоторые устройства, например, многие разновидности сканеров (приборов для ввода рисунков и текстов в компьютер), используют смешанный способ подключения: в системный блок компьютера вставляется только электронная плата (контроллер), управляющая работой устройства, а само устройство подсоединяется к этой плате кабелем.
Логическое устройство компьютера.
Микропроцессор
Сопроцессор
В тех случаях, когда на компьютере приходится выполнять много математических вычислений (например, в инженерных расчетах), к основному микропроцессору добавляют математический сопроцессор. Он помогает основному микропроцессору выполнять математические операции над вещественными числами. Новейшие микропроцессоры фирмы Intel (80486 и Pentium) сами умеют выполнять операции над вещественными числами, так что для них сопроцессоры не требуются.
Оперативная память
Контроллеры и шина
Чтобы компьютер мог работать, необходимо, чтобы в его оперативной памяти находились программа и данные. А попадают они туда из различных устройств компьютера клавиатуры, дисководов для магнитных дисков и т. д. Обычно эти устройства называют внешними, хотя некоторые из них могут находиться не снаружи компьютера, а встраиваться внутрь системного блока, как это описывалось выше. Результаты выполнения программ выводятся на внешние устройства монитор, диски, принтер и т. д.
Таким образом, для работы компьютера необходим обмен информацией между оперативной памятью и внешними устройствами. Такой обмен называется вводом – выводом. Но этот обмен не происходит непосредственно: между любым внешним устройством и оперативной памятью в компьютере имеются целых два промежуточных звена:
Для каждого внешнего устройства в компьютере имеется электронная схема, которая им управляет. Эта схема называется контроллером, или адаптером. Некоторые контроллеры (например, контроллер дисков) могут управлять сразу несколькими устройствами.
Все контроллеры и адаптеры взаимодействуют с микропроцессором и оперативной памятью через системную магистраль передачи данных, которую в просторечии обычно называют шиной.
Для упрощения подключения устройств электронные схемы IBM PC состоят из нескольких модулей электронных плат. На основной плате компьютера — системной, или материнской, плате — обычно располагаются основной микропроцессор, сопроцессор, оперативная память и шина. Схемы, управляющие внешними устройствами компьютера (контроллеры или адаптеры), находятся на отдельных платах, вставляющихся в унифицированные разъемы (слоты) на материнской плате. Через эти разъемы контроллеры устройств подключаются непосредственно к системной магистрали передачи данных в компьютере шине.
Таким образом, наличие свободных разъемов шины обеспечивает возможность добавления к компьютеру новых устройств. Чтобы заменить одно устройство другим (например, устаревший адаптер монитора на новый), надо просто вынуть соответствующую плату из разъема и вставить вместо нее другую. Несколько сложнее осуществляется замена самой материнской платы.
Блок-схема
На блок-схеме контроллер клавиатуры обычно находится на системной плате, поскольку это упрощает изготовление компьютера. Иногда на системной плате размещаются и контроллеры других устройств.
Контроллеры портов ввода – вывода.
Одним из контроллеров, которые присутствуют почти в каждом компьютере, является контроллер портов ввода-вывода. Эти порты бывают следующих типов:
параллельные (обозначаемые LPT1-LPT4), к ним обыкновенно подключаются принтеры;
асинхронные последовательные (обозначаемые СОМ1-СОМ3). Через них обычно подсоединяются мышь, модем и т. д.
игровой порт — для подключения джойстика.
Некоторые устройства могут подключаться и к параллельным, и к последовательным портам. Параллельные порты выполняют ввод и вывод с большей скоростью, чем последовательные (за счет использования большего числа проводов в кабеле).
Микропроцессор
Характеристики микропроцессоров
Микропроцессоры отличаются друг от друга двумя характеристиками: типом (моделью) и тактовой частотой. Наиболее распространены модели Intel — 8088, 80286, 80386SX, 80386, 80486 и Pentium, они приведены в порядке возрастания производительности и цены. Одинаковые модели микропроцессоров могут иметь разную тактовую частоту — чем выше тактовая частота, тем выше производительность и цена микропроцессора.
Тактовая частота
Тактовая частота указывает, сколько элементарных операций (тактов) микропроцессор выполняет в одну секунду. Тактовая частота измеряется в мегагерцах (МГц). Следует заметить, что разные модели микропроцессоров выполняют одни и те же операции (например, сложение или умножение) за разное число тактов. Чем выше модель микропроцессора, тем, как правило, меньше тактов требуется для выполнения одних и тех же операций. Поэтому, например, микропроцессор Intel-80386 работает раза в два быстрее Intel-80286 с такой же тактовой частотой.
Модели микропроцессоров
Исходный вариант компьютера IBM PC и модель IBM PC ХТ использовали микропроцессор Intel-8088. В начале 1980-х годов эти микропроцессоры выпускались с тактовой частотой 4,77 МГц, затем были созданы модели с тактовой частотой 12 МГц (т. е. новые модели работают в 1,7 – 2,1 раза быстрее). Модели с увеличенной производительностью (тактовой частотой) иногда называются Turbo-ХТ. Сейчас микропроцессоры типа Intel-8088 производятся в небольших количества: и для использования не в компьютерах, а в различных специализированных устройствах.
Модель IBM PC АТ использует более мощный микропроцессор Intel-80286, ее производительность приблизительно в 4 – 5 раз больше, чем у IBM PC ХТ. Исходные варианты IBM PC АТ работали на микропроцессорах с тактовой частотой 6 МГц, затем были созданы модели этого микропроцессора с тактовой частотой от 12 до 25 МГц, т. е. работающие в 2 – 3 раза быстрее.
Микропроцессор Intel-80286 имеет несколько больше возможностей по сравнению с Intel-8088, но эти дополнительные возможности используются с Intel-8088, но эти дополнительные возможности используются очень редко, так что большинство программ, работающих на АТ, будет работать и на ХТ. Сейчас микропроцессоры типа Intel-80286 также считаются устаревшими и для применения в компьютерах не производятся.
Выбор типа микропроцессора
Быстродействие основного микропроцессора во многом определяет скорость работы всего компьютера и, тем самым, диапазон применения компьютера:
компьютеры на основе микропроцессоров Intel-8088 (или Intel-8086) работают очень медленно, они уже полностью устарели и почти полностью вышли из употребления;
компьютеры на основе микропроцессора Intel-80286 обеспечивают необходимое быстродействие для набора текстов, ввода исходных данных для бухгалтерских и аналогичных задач, многих компьютерных игр и т. д. Однако новые компьютеры такого класса уже не выпускаются (поскольку считаются морально устаревшими), а покупать их вряд ли целесообразно даже по бросовым ценам, так как для работы с большинством современных программ с графическим интерфейсом (например, с программами, выполняемыми в среде Windows) они практически не пригодны;
компьютеры на основе микропроцессоров Intel-80386SX и DX, Intel-80486SX обеспечивают приемлемую вычислительную мощность для большинства рабочих мест под управлением как DOS, так и Windows: для программирования, работы с не очень большими базами данных, макетирования (верстки) несложных изданий и т. д. Однако для комфортной работы в среде Windows лучше приобрести более мощный компьютер;
микропроцессоры Intel-80486DX и DX2 применяются для тех задач, где требуется высокое быстродействие компьютера: для файл-серверов больших локальных сетей, для профессиональных издательских, графических или анимационных программ, для решения серьезных вычислительных задач и т. д. А для пользователей, постоянно работающих с компьютером, может быть целесообразно приобретение компьютера на основе Intel-80486DX или DX2 даже и в том случае, если они используют самые обычные программы типа Word for Windows 6.0, Excel 5.0 и т. д., поскольку эти микропроцессоры сейчас стоят не намного дороже Intel-80386 и 80486SX, а обеспечивают заметно большую производительность;
микропроцессоры Pentium и рассчитанные на его использование системные платы пока что стоят весьма дорого, поэтому их целесообразно применять для таких приложений, как воспроизведение видеоизображений в реальном времени, большие задачи трехмерного проектирования и моделирования, создания мощных файл-серверов и многопроцессорных систем.
Микропроцессоры Intel-80286 и Intel-80386 не содержат специальных команд для работы с числами с плавающей точкой. При проведении расчетов с такими числами каждая операция над ними моделируется с помощью нескольких десятков операций микропроцессора. Это сильно снижает эффективность применения компьютера для научных вычислений, при использовании машинной графики и для других применений с интенсивным использованием чисел с плавающей точкой. Поэтому в этих случаях следует использовать компьютеры IBM PC с установленным математическим сопроцессором Intel-8087, Intel-80287 или Intel-80387. Наличие сопроцессора может увеличить скорость выполнения операций с плавающей точкой в 5 – 15 раз. Микропроцессоры Intel-80486DX и DX2 и Pentium сами поддерживают операции с плавающей точкой, поэтому при их использовании математический сопроцессор не требуется.
Оперативная память
для хранения части операционной системы DOS, которая обеспечивает тестирование компьютера, начальную загрузку операционной системы, а также выполнение основных низкоуровневых услуг ввода – вывода;
для передачи изображения на экран;
для хранения различных расширений операционной системы, которые поставляются вместе с дополнительными устройствами компьютера.
Как правило, когда говорят об объеме оперативной памяти компьютера, то имеют в виду именно первую ее часть, которая может использоваться прикладными программами и операционной системой. Мы тоже будем в дальнейшем поступать таким образом.
Кэш-память
Мониторы
Монитор (дисплей) компьютера IBM PC предназначен для вывода на экран текстовой и графической информации. Мониторы бывают цветными и монохромными. Они могут работать в одном из двух режимов: текстовом и графическом.
Текстовый режим
В текстовом режиме экран монитора условно разбивается на отдельные участки знакоместа, чаще всего на 25 строк по 80 символов (знакомест). В каждое знакоместо может быть выведен один из 256 заранее заданных символов. В число этих символов входят большие и малые латинские буквы, цифры, символы, а также псевдографические символы, используемые для вывода на экран таблиц и диаграмм, построения рамок вокруг участков экрана и т. д.
Графический режим
Графический режим монитора предназначен для вывода на экран графиков, рисунков и т. д. Разумеется, в этом режиме можно также выводить и текстовую информацию в виде различных надписей, причем эти надписи могут иметь произвольный шрифт, размер букв и т. д.
В графическом режиме экран монитора состоит из точек, каждая из которых может быть темной или светлой на монохромных мониторах или одного из нескольких цветов на цветном. Количество точек по горизонтали и вертикали называется разрешающей способностью монитора в данном режиме. Следует заметить, что разрешающая способность не зависит от размера экрана монитора, подобно тому, как и большой, и маленький телевизоры имеют на экране 625 строк развертки изображения.
Часто используемые мониторы
Наиболее широкое распространение в компьютере IBM PC получили мониторы типов MDA, CGA, Hercules, EGA и VGA.
В настоящее время мониторы MDA и CGA используются уже очень редко, так как они не обладают надлежащей разрешающей способностью, что приводит к быстрому утомлению глаз. Кроме того, не имеют возможности программной загрузки шрифтов символов, поэтому для изображения букв кириллицы в текстовом режиме приходится заменять электронные схемы, хранящие шрифты (знакогенераторы). Иногда, впрочем, можно не заменять знакогенератор, а записать в него с помощью специальных приборов нужные шрифты символов.
Большинство компьютеров, выпущенных в конце 1980-х годов, оснащались мониторами типа VGA. Они обеспечивают достаточное количество изображения в текстовом и графическом режиме экрана при работе с DOS-программами. Несколько хуже мониторы EGA, они считаются еще более устаревшими. Но для современных программ, использующих графический интерфейс взаимодействия с пользователем, разрешение VGA (640*480 точек) уже явно недостаточно. Поэтому практически все современные компьютеры оснащаются мониторами типа Super-VGA, обеспечивающими разрешающую способность 1024*768 и 800*600.
Клавиатура
Клавиатура IBM PC предназначена для ввода в компьютер информации от пользователя. Расположение латинских букв на клавиатуре IBM PC, как правило, такое же, как на английской пишущей машинке, а букв кириллицы — как на русской пишущей машинке.
Ввод прописных и строчных букв
Специальные клавиши клавиатуры
Кроме алфавитно-цифровых клавиш и клавиш со знаками пунктуации, на клавиатуре имеется большое число специальных клавиш.
Функциональные клавиши F1 – F12 (на некоторых клавиатурах F1 – F10) предназначены для различных специальных действий. Их действие определяется выполняемой программой.
Заключение
Поэтому рассмотренная выше тема дает наглядное представление о том, какое ведущее место в жизни общества занимают в настоящее время персональные компьютеры, сфера применения которых безгранична.
Проектирование любого устройства ведется по какой-либо схеме, принципу или архитектуре. Так же и с ПК IBM, где присутствует собственная архитектура производства устройств, которую принято называть «открытой». Именно компания IBM принесла данную структуру в производство компьютеров.
IBM — это одна из самых известных и старых компаний среди производителей электронных устройств. Она всегда стояла в первых рядах , продвигающих технологический прогресс. Начало ее деятельности датируется 1896 годом, когда было запатентовано первое устройство для работы с перфокартами — табулятор. Запатентовал его некий Герман Холлерит, который дал начало развитию этой организации, но вначале она называлась ТМС. С те х пор прошло очень много времени , и на сегодняшний день IBM — с амая известная компания, чьи компоненты используют около 95% всех компьютеров в м ире.
Именно эта компания ввела в производство компьютеров философию открытой архитектуры ПК, которую так и прозвали — «архитектура IBM».
Что такое архитектура ПК от IBM
конструкция устройства должна предусматривать возможность расширения возможностей системы;
изменени я внутри системы не должны требовать лицензионных соглашений или затрат;
пользователь самостоятельно может изменять базовые возможности компьютерной системы.
Архитектура ПК от IBM: основы
присутствует центральный процессор Intel и/или совместимые с ним процессоры других производителей;
присутствует BIOS;
регламентируется процедура стартового запуска системы;
есть механизм собственного конфигурирования системы;
присутствует реестр системы, где хранятся сведения о конфигурации устройства;
блочная организация памяти в устройстве, к которой организован прямой доступ;
наличие нормативов, которые описывают конструкцию компьютера, режимы работы, протоколы по обмену данными и др.
Альтернатива открытой архитектуре от IBM
Не сложно предположить, что раз есть открытая архитектура ПК от IBM, то , скорее всего , есть и закрытая архитектура. Это правда . Закрытую архитектуру производства компьютеров представляет компания Apple. Вообще , соперничество между Apple и IBM началось еще несколько десятков лет назад и продолжается до сих пор, но это тема другой статьи.
Отличительн ая особенност ь такой архитектуры — компания-производитель контролирует все компоненты и программное обеспечение компьютера. То есть пользователь не может совершить апгрейд устройства, а может только заменить его на новое с улучшенными характеристиками. Пользователь также не может сменить операционную систему компьютер а н а ту, которая ему по душе, а только на ту, что предлагает производитель компьютера.
С одной стороны, закрытая архитектура кажется сильно «ограниченной» и сковывающей индивидуальность пользователей, но с другой стороны , при такой реализации компания-производитель полностью несет ответственность за свое устройств о — это, в первую очередь, сказывается на безопасности и производительности устройств.
Заключение
Открытая архитектура для ПК от IBM несет в себе некую свободу для пользователей, которые самостоятельно могут собирать устройства своими руками, ч его не скажешь о закрытой архитектуре, где об этом уже позаботились производители.
Мы будем очень благодарны
если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.
Читайте также: