Угол тангажа при посадке
В чем состоит управление вниманием при полете с включенным автопилотом.
Рассмотрим этапы захода на посадку по ILS:
– Погасить скорость от 250 до выпуска механизации
– Выйти на посадочный курс
– Начать выпуск механизации таким образом, чтобы обеспечить FLAPS 2 к началу снижения и посадочную конфигурацию к высоте (alt) 1500 футов
– Переход на визуальный полет
– Отключение автопилота после разрешения посадки
Пилотирование с включенным автопилотом мы уже рассматривали выше. Поэтому остановимся на управлении вниманием для выполнения захода на посадку.
Для того, чтобы не иметь проблем при любом заходе на посадку, сразу после получения разрешения на заход (Approach clearance) нужно проверить 5 элементов. Для захода по ILS такими моментами являются:
– Activate Appr Phase
Запоминать более трех элементов не совсем правильно, поэтому разобьем все элементы на две группы. Первая группа (Activate Appr Phase + Sequence FPL) будет общей для всех типов инструментального захода. Оставшиеся три элемента для каждого типа инструментального захода будут различными. Раз мы уже коснулись других типов заходов, сведем весь контроль после получения разрешения на заход в таблицу, которая будет выглядеть следующим образом:
Некоторые из этих элементов могут быть выполнены значительно раньше (Activate Appr Phase), некоторые выполняются автоматически (Sequence FPL), но проверить их нужно сразу после получения разрешения на заход. Если после этой проверки мы выполняли какие-либо действия, то на FMA необходимо проверить вновь, что Appr по прежнему armed.
Далее, когда автоматика работает корректно, мы должны определить, как управлять вниманием на этом этапе. А для этого давайте решим, какие приоритеты должны быть в этот момент.
Самое главное при заходе на посадку это начать снижение по глиссаде в нужной точке, в нужной конфигурации, на нужной скорости. Чтобы всё это обеспечить необходимо строго следовать рекомендациям FCTM и указаниям СОП по рубежам начала выпуска механизации крыла, выдерживаемым скоростям, взаимодействию с ОВД и учёту метеоусловий (направление и сила ветра, турбулентность и т.п.).
Если говорить об особенностях, о которых не говорится в указанных источниках, то можно только отметить, что для обеспечения установленных условий стабилизации целесообразно на предпосадочном брифинге определить не только высоту стабилизации по QNH (Alt Stab), но и рубежи выпуска механизации и действия при нестабилизированном заходе. А главное, когда и по каким параметрам мы поймём, что заход стабилизировать не удастся. Особое внимание уделяем случаям, когда есть факторы, усложняющие своевременную стабилизацию самолёта. К таким факторам относятся:
– Более крутая глиссада;
– Низкий вход в глиссаду;
– Тренд роста скорости при снижении по глиссаде;
– Очень высокая температура;
Требования по выдерживанию повышенной (более 160 KT) скорости до OM или до 4 NM от торца ВПП.
Кроме того может оказать помощь в ситуции, когда есть факторы усложняющей стабилизацию, готовность выполнить посадку с неполностью выпущенной механизацией. Если мы как дополнительный вариант на предпосадочном брифинге рассмотрели возможность выполнить посадку и Conf 3 (посчитали посадочную дистанцию, определили использование реверса и другие особенности), то в условиях, когда ес ть дефицит времени для выпуска механизации в положение FULL можно принятть решение продолжить заход и выполнить посадку в Conf 3.
Когда самолёт проблем со своевременной стабилизацией уже нет, возникают следующие проблемы: переход на ручное пилотирование и переход на визуальное пилотирование. И то и другое является процедурой перехода, а это всегда самые ответственные моменты.
Поэтому первая рекомендация – не выполнять эти два действия одновременно, если ситуация позволяет это делать.
Выбор какое действие выполнять раньше какое позже зависит от конкретной обстановки и задачи. Чаще приходится сначала отключать автопилот (переходим на ручное управление), а затем переходим на визуальное пилотирование. И с методической точки зрения это проще.
Как отключается автопилот на ВС А320? Что может быть проще! Нажали красную кнопку на РУС и вот тебе ручное управление. И рули самолётом как хочешь. И получаются накладки. Директора сразу побежали, мы за директорами, а автомат тяги тягой начал сильнее шуровать, а значит создавать моменты, которые нужно компенсировать. А тут уже и на визуальное пилотирование нужно переходить. Проблемы словом.
Вторая проблема это переход на визуальное пилотирование. Эта проблема существовала всегда, но в последнее время с повышением надёжности автоматики современных ВС, когда пилот управляет самолётом визуально от 5-ти минут до 1-й минуты за полёт, проблема эта только увеличилась. Поэтому и важность обучения правильному переходу возрасла в разы.
Что самое главное для правильного перехода с инструментального пилотирования на визуальное? Всегда, когда мы хотим чему-то научить пилота, мы должны чётко представлять чему мы собираемся учить. Что есть процесс перехода? Это знание или навык? Ведь от того, что это зависит и принцип обучения.
Естественно, что процедура перехода на визуальное пилотирование это навык, но для того, чтобы убедить обучаемого пилота, что нужно делать именно так ка вы ему говорите он должен обладать знаниями. И первое, что он должен знать это, что означает, когда указатели траектории (FD’s) в центре. Заблуждением будет считать, что в этом случае самолёт находится на заданной траектории. FD’s в центре означает, что самолёт находится на заданной траектории или выходит на неё. Это важно для понимания, как правильно определить момент перехода на визуальное пилотирование. В целях обучения мы должны обеспечить наиболее благоприятные условия перехода ни визуальное пилотирование. Такими условиями является высота 600-700’ над превышением аэродрома и обязательное нахождение самолёта на заданной траектории в стабилизированном состоянии. Как определить высоту мы знаем. А вот как понять, что самолёт на заданной траектории и оттриммирован? Здесь нам поможет наличие указателей положения глиссады и нейтральное положение РУС. То есть если FD’s в центре, указатель курса (УК) и указатель глиссады (УГ) в центре и РУС в нейтральном положении, то можно переходить на визуальное пилотирование. Процедура перехода здесь немного сложнее чем отключения автопилота.
Теперь, когда мы знаем самый главный параметр для ухода на второй круг с очень малой высоты, поговорим о технике выполнения этого манёвра. Вернее об его отличиях от обычного ухода на второй круг.
Если всё же условия позволяют продолжить выполнение посадки, то на 50’ включается в работу режим Flare, что по замыслу конструкторов упрощает приземление самолёта, но, как и любая автоматика (а указанный режим это переход из автоматического управления по тангажу, в DiRECT LAW ) этот режим требует знания особенностей его работы. Автоматика запоминает текущее значение тангажа и с 30’ с темпом, обеспечивающим достижение тангажа -2 за 8 секунд от значения, которое было на 50’ уменьшает тангаж. Это объясняет отчасти, почему ниже 100’ ни в коем случает нельзя отдавать РУС от себя или ставить его нейтрально.
Это первое правило выполнения посадки на этапе выравнивания (flare) на А320:
РУС можно только брать на себя или фиксировать в текущем положении. Это вообще универсальное правило для пилотирования А320 – Не знаешь, что делать замри и ничего не делай.
Теперь непосредственно о процедуре приземления самолета. Приземлением будем считать этап от начала выравнивания до окончания опускания передней стойки (derotation). На важности и сложности этой процедуры не буду останавливаться.
Далее у нас остается две задачи: уменьшить вертикальную скорость до желаемой вертикальной скорости касания и поставить малый газ. С малым газом всё просто. Малый газ ставится тогда, когда пилот уверен, что необходимая скорость в момент приземления обеспечивается. В любом случае РУДы должны стоять в положении малого газа (idle) в момент касания основными стойками шасси полосы. Ещё один немаловажный триггер для установки малого газа это начало уменьшения вертикальной скорости. Если значительное уменьшение вертикальной скорости начинается с работающим автоматом тяги, то автомат тяги увеличит мощность двигателей для выдерживания заданной воздушной скорости, что увеличит воздушный участок и создаст кабрирующий момент. А это ещё и разбалансирует самолёт. Нужно будет компенсировать кабрирующий момент, а сразу же после того как всё же уменьшим тягу до малого газа, нужно будет компенсировать уже пикирующий момент. Всё это не прибавляет комфорта в непосредственной близости от земли. Но если мы попали в ситуацию, когда с началом выравнивания самолёта вертикальная скорость больше чем нам необходима, но не такая большая, что нужно уходить на второй круг, мы можем поставить РУДы в положение малого газа (idle) в момент касания полосы основными стойками шасси. Не позже!
Далее следует этап пробега, выполнение которого мало чем отличается от выполнения на других самолётах. Но, поскольку в наше время приходится учить пилотированию самолёта А320 пилотов, имеющих небольшой опыт пилотирования, стоит вспомнить, что для правильного выдерживания направления взгляд пилота должен быть на осевой линии ВПП максимально далеко от самолёта. Постоянное воздействие на педали в процессе пробега всегда есть следствие того, что взгляд пилота направлен на осевую в непосредственной близости от самолёта. И не стоит выходить на осевую как можно быстрее. Задача выдерживания направления на пробеге состоит в том, чтобы обеспечить такое движение самолёта, чтобы вектор скорости не был направлен за пределы ВПП.
Теперь поговорим об исправлениях ошибок на посадке.
Самые большие сложности на посадке вызывает высокое выравнивание или взмывание.
Обсудим причины, которые могут привести к высокому выравниванию. Основных причин несколько и их желательно знать для того чтобы воспользоваться главным универсальным правилом в исправлении ошибок при пилотировании самолёта: САМЫЙ ПРОСТОЙ СПОСОБ ИСПРАВЛЕНИЯ ОШИБКИ ПИЛОТИРОВАНИЯ - ИЗБЕЖАТЬ ЕЁ.
Избежать ошибки пилотирования позволяет в первую очередь знание причин этой ошибки. Причинами высокого выравнивания самолёта чаще всего являются:
- Повышенная (выше привычной) скорость в момент начала выравнивания. Обычное отклонение руля высоты создаёт больший кабрирующий момент со всеми вытекающими.
- Поздняя установка РУДов на режим малого газа. Если в момент начала выравнивания скорость заданная, то с началом искривления глиссады (а выравнивание и есть искривление траектории) скорость начинает падать (нам это и нужно), а АТ поддерживает заданную скорость. Это приведёт к увеличению кабрируещего момента вследствие того что вектор тяги двигателей находится ниже ЦТ самолёта. Те же последствия (даже немного хуже) будут и в случае плавной установки РУДов на режим МГ в процессе выравнивания.
- Эффект узкой полосы так же может привести к высокому выравниванию. Для того чтобы избежать этой проблемы необходимо разбирать особенности приземления на предпосадочном брифинге и использовать помощь аудио команд радиовысотомера.
- Раннее начало выравнивания из-за страха жесткого приземления на первоначальном этапе обучения или после жесткого приземления.
– уход на второй круг с высоты ниже 50 футов,
– забрать управление кнопкой Take Over PB и, удерживая эту кнопку, выполнить приземление, а также
– отключить автопилот на высоте ниже 200 футов и выполнить посадку в ручном режиме в реальном, не тренажёрном, полете.
Всё это позволит инструктору в реальном полете иметь возможность контролировать не только параметры полёта, но и поведение ученика. В этом случае нас интересуют глаза и руки обучаемого. Это позволит на раннем этапе определить возможное отклонение и установить причину ошибки для анализа и исправления. Техника исправления высокого выравнивания описана в методической литературе и сводится в основном к двум моментам:
– Исключить потерю скорости и увеличение тангажа
– Своевременно выявить невозможность безопасного приземления или выполнить прерванную посадку (Bulked Landing).
Если пилот-инструктор знает причину высокого выравнивания, то объяснить пилоту, что нужно делать, чтобы устранить эту ошибку труда не представит.
Следующая проблема на посадке это позднее выравнивание самолёта. Причинами позднего выравнивания могут быть:
– Стремление избежать перелёт, который стал очевиден ученику на высоте 100 футов (как правило, на ранней стадии обучения) и отдача РУС от себя.
– Особенности зрительного восприятия широкой посадочной полосы после посадки на узкую полосу.
– Сложности в визуальном определении высоты начала выравнивания:
– Темная полоса, особенно ночью
– Слепящий солнечный свет
– Отвлечение внимания от пилотирования (птица, звук etc.)
– Возврат РУС в нейтральное положение (отпускание) в процессе выравнивания. В основном на ранней стадии обучения.
– Высокое выравнивание самолёта в предыдущем полёте может привести к позднему выравниванию.
Исправление позднего выравнивания много сложнее чем высокого выравнивания вследствие дефицита времени. Опять же техника исправления непосредственно позднего выравнивания не относится к теме данной работы поскольку это уже обучение пилотированию инструктора. Но актуальность этой темы в свете того, что ушли в прошлое аэродромные тренировки пилотов перед получением первоначального допуска к инструкторской работе, заставляет остановиться на этой проблеме.
Естественно, что лучше научить стажёра избегать позднего выравнивания и не доводить ситуацию до прерывания посадки.
Так же серьёзной проблемой при выполнении приземления может быть ранняя установка РУДов на малый газ при перелёте. Это обучаемый может сделать неосознанно для предотвращения перелёта. Если перелёт значительный, то и уменьшение режима может быть очень ранней, что приведёт к потере скорости на большой высоте и, как следствие, к жёсткому приземлению. Здесь только один совет: При перелёте нужно быть к этому готовым, особенно при выполнении посадки с установкой обеспечить короткий пробег (короткая ВПП, попутный ветер, требование освободить полосу по определённой РД, etc.)
Если нам известны причины, ошибки, то её устранение это рутинная задача.
Для того чтобы избежать ошибки определения начала выравнивания по внешним факторам нужно обращать внимание на факторы, которые могут к этому привести перед каждым заходом на предпосадочном брифинге с выдачей рекомендаций по исключению ошибки.
Такими рекомендациями могут быть:
– уделять внимание RA Callouts. Имея такую установку, ученик при выполнении посадки будет настроен контролировать свою визуальную оценку высоты начала выравнивания аудио информацией от радиовысотомера.
– Правильно переносить взгляд в момент начала выравнивания.
– Учитывать условия ухудшающие визуальное определение высоты самолёта при приземлении.
Для того чтобы не возникали проблемы позднего выравнивания (невыравнивания) инструктор должен быть готов к тому, что такая проблема может иметь место. То есть на этапе выравнивания инструктор постоянно мониторит поведение стажёра по алгоритму:
Для того чтобы воспользоваться предыдущей рекомендацией инструктор должен иметь навык пилотирования с зажатой кнопкой отключения автопилота.
Если в процессе выравнивания самолёта возникает крен, то чаще всего это неправильная регулировка подлокотника. В этом случае стоит вернуться к правильной регулировке кресла.
Внимание: Регулировка кресла на ВС А320 электрическая. Это более надёжная регулировка, чем механическая, но необходимо помнить, что на критических этапах полета пилотирующему пилоту категорически запрещается выполнять регулировку кресла. Потому что замыкание переключателя регулировки кресла приведёт к его неконтролируемому перемещению. А на этапах взлёта и посадки более чем опасно.
ЗАКЛЮЧЕНИЕ
В настоящей работе автор старался обсудить моменты, которые не описаны или недостаточно описаны в различных методических пособиях и руководствах. Выбор тем для обсуждения носит абсолютно субъективный характер.
Тангаж ( фр. tangage — килевая качка) — угловое движение летательного аппарата или судна относительно главной (горизонтальной) поперечной оси инерции .
Тангаж является поворотом летательного аппарата вокруг его поперечной оси. Если обозначить поперечную ось Х, то cоответствует углу Ейлера – углу нутации β (θ – угол тангажа). Изменение угла тангажа самолета осуществляется посредством передвижения штурвала или РУС в продольном направлении.
Угол тангажа считается положительным если самолет набирает высоту ( кабрирование), отрицательным – если снижается ( пикирование). Угол изменяется посредством рулей высоты или любых иных управляющих поверхностей, заменяющих РВ. Угол тангажа влияет на составляющую подъемной силы, уравновешивающую вес самолета.
Заход на посадку и уход на второй круг — по статистике самые опасные этапы полёта.
Давайте разбираться, как это работает, и пользуясь моментом, посмотрим как устроена электронная система управления современным самолётом.
Но перед тем, как мы начнем, я вынужден обозначить эдакий дисклеймер: я действующий пилот Airbus семейства 320, который является самолетом 4-го поколения (отличительный признак которого — наличие технологии Fly-by-Wire). Соответственно, многие специфические системы и процедуры, описываемые в посте, будут привязаны к данному типу. На других типах (например Boeing 737 Classic/NG/MAX, которые являются самолетами предыдущего, 3-го поколения без технологии Fly-by-Wire) процедуры и логика построения и работы систем может значительно различаться. И да, я не имею отношения к инженерно-авиационной службе и службе ОрВД (организации воздушного движения), поэтому уж простите возможные огрехи в описании матчасти.
Краткий ликбез по 4 поколению самолетов (Fly-by-Wire)
Наверное, многие из вас наслышаны о технологии Fly-by-Wire (ЭДСУ или электродистанционная система управления по-нашему). Если кратко пробежаться по истории развития систем управления самолетом, то это выглядело примерно так:
- прямая механическая связь между штурвалом и аэродинамическими поверхностями (в общем случае это — элеронами, рулем направления, горизонтальным стабилизатором, триммерами и т.д.);
- появление гидроусилитей/бустеров/пружинных загружателей при наличии прямой механической связи;
- электродистанционное управление (Fly-by-Wire/ЭДСУ)
Здесь много интересной информации по теме Fly-by-Wire
В отличии от классической схемы, где прямая механическая связь (пусть даже через отдельные преобразователи) является правилом, в случае Fly-by-Wire данная связь отсутствует (сейчас опустим тонкости типа управления RUDDER’ом или HORIZONTAL STABILIZER’ом напрямую в режиме MECHANICAL BACKUP, это точно тема для отдельной статьи). Т.е. управляющее воздействие на сайдстик (Airbus) или штурвал (Boeing 777) оцифровывается и передается на FLIGHT COMPUTERS. Кстати, в Airbus их – аж целых 7: 2 ELAC’а (Elevator Aileron Computer), 3 SEC’а (Spoilers Elevator Computer), 2 FAC’а (Flight Augmentation Computer). Далее, исходя из закона управления (FLIGHT CONTROL LAW в терминологии Airbus) и множества других параметров полета, компьютеры выдают сигнал на отработку соответствующих гидроприводов, через которые управляющее воздействие передается аэродинамическим поверхностям.
К чему я это все рассказал: посадка на самолетах с Fly-by-Wire по технике выполнения очень похожа на то, что мы делаем на классических самолетах, но она имеет определенные особенности, о которых необходимо знать. Более подробно мы все это затронем ниже.
Интересные факты
Подготовка к посадке на эшелоне
Итак, мы летим на крейсерском эшелоне, при подлете к аэродрому назначения примерно за 200 с небольшим миль по VHF радиостанции можно услышать информацию ATIS (Automatic Terminal Information Service) аэродрома назначения. Принимаем погоду, далее с помощью специального программного обеспечения от Airbus, размещенного на бортовых iPad’ах (они же EFB — Electronic Flight Bag), проверяем погоду на предмет соответствия нашим landing performance, в частности соответствия расчетной посадочной дистанции располагаемой длине полосы с учетом текущих погодных условий и коэффициента сцепления на полосе и имеющихся отказов оборудования. Airbus 320 семейства имеет ограничения как по попутному ветру для взлета/посадки, так и по боковому. При этом боковая составляющая ветра с учетом порывов не должна превышать значения, внесенные в AFM (Aircraft Flight Manual, оно же РЛЭ – Руководство по летной эксплуатации) при сертификации самолета. Кроме этого, могут быть дополнительные ограничения в аэропорту назначения/запасным, которые находятся в NOTAM’ах (NOTice To AirMan) – эдакая пачка бумаги, которая обязательно выдается перед вылетом экипажу.
Кроме этого, погодные условия на аэродроме должны соответствовать минимуму самолета, экипажа и аэродрома. Если говорить простым языком, то минимум это минимально допустимые значения дальности видимости на полосе и высота облачности над ней (профессионалы, молчать!) Кому интересно – на том же SKYbrary есть очень много статей, рассказывающих про минимумы и их применение.
Сама подготовка включает в себя внесение в FMGS (Flight Management Guidance System, на Airbus их 2) через мини-клавиатуру с дисплеем MCDU (Multipurpose Control and Display Unit) схем прибытия (STAR, STandard ARrival) и самого захода (Approach, обычно это одна из инструментальных схем захода – например заход по ILS, Instrument Landing system), погоду в аэропорту назначения (давление QNH, температура, ветер) и минимума для соответствующего типа захода.
MCDU
При этом схема захода берется автоматически из базы FMGS (которая обновляется техническим составом раз в 24 дня на каждом самолете) и обязательно полностью проверяется на соответствие аэронавигационным сборникам. Наша авиакомпания использует сборники фирмы Jeppesen, которые также размещены в электронном виде на бортовых EFB:
iPad, прибитый к самолету
Или более жесткий вариант. Спасибо lx_photos
После того, как один из пилотов внес данную информацию, второй проводит проверку внесенных в FMGS данных (crosscheck – это одно из основных правил в авиации). Далее пилот, проводивший подготовку к посадке, зачитывает брифинг. Основная задача брифинга – рассказать об особенностях захода на посадку и ее выполнения, схемы руления после посадки, уход на второй круг. Особое внимание – при категорированных заходах по CAT II/CAT III (заходах с очень низкими минимумами, требующих выполнения специальных процедур) и действиям в случае отказа бортового оборудования в процессе захода или имеющихся отказах на борту самолета. NOTAM’ы со всеми ограничениями разбираются здесь же. После разбора всех имеющихся вопросов мы готовы к посадке, осталось дождаться подхода к точке начала снижения, которая также рассчитывается автоматически исходя из внесенных в FMGS данных.
Интересные факты
Снижение и заход на посадку
По своей сути весь процесс полета – это процесс управления энергией. Химическая энергия топлива преобразуется через тягу двигателей и подъемную силу в кинетическую энергию движения самолета и его потенциальную энергию по мере набора высоты, что в сумме дает общую энергию. При снижении – мы наблюдаем обратный процесс, когда вся накопленная энергия расходуется через аэродинамику и снижение высоты таким образом, чтобы получить посадочную скорость и заданную высоту к моменту пролета торца полосы. Исходя из вышесказанного и с учетом отдельных ограничений по скорости/высоте пролета отдельных точек на схеме STAR, ветра, FMGS вычисляет TOD (Top Of Descend, точка начала снижения).
Снижение на самолетах семейства Airbus может выполняться в двух режимах: MANAGED и SELECTED. В первом режиме самолет при помощи автопилота (AP, Autopilot) и автомата тяги (A/THR, Autothrust) сам пытается выдержать профиль снижения с учетом всех ограничений выбранной схемы прибытия, пилоты только контролируют то, что делает автоматика. Это не всегда удается, так как кроме профиля и скоростей, посчитанных FMGS, есть параметры, задаваемые диспетчером. Но в любом случае задание высот и перевод самолета на снижение – это ответственность PF. Для этого в самолете есть FCU (Flight Control Unit) – эдакая панель управления автопилотом самолета:
FCU с красивой подсветкой. Второй автопилот и автомат тяги включен
В режиме SELECTED – пилоты сами управляют автопилотом задавая режимы его работы. Типичные параметры – задача вертикальных и поступательных скоростей, так же довольно часто используется векторение (полет по курсу, заданному диспечером).
Грозовые очаги, как их видят пилоты на ND (Navigation display)
Интересные факты
Выполнение посадки
Еще небольшое лирическое отступление касательно систем захода на посадку: они бывают точные (в первую очередь это ILS, GLS — GBAS Landing System) – это заходы с вертикальным наведением и неточные (NDB – Non Directional Beacon, он же заход по приводам, VOR, RNAV и т.д.) – это заходы без такового наведения. Для каждого из типа захода на посадку есть т.н. GUIDANCE MODE — по сути режим работы FMGS, который обеспечивает заход самолета на посадку с учетом выбранного типа захода. При этом GUIDANCE MODE может обеспечивать точное наведение самолета по курсу и глиссаде (режимы LOG GS или FINAL APP) так и наведение только в одной плоскости (режимы LOC FPA или NAV FPA) или полностью ручное наведение самолета по заданному курсу/углу снижения (режим TRK FPA). Если суммировать сказанное, то точные заходы — более просты с точки зрения поддержки бортовой автоматикой, неточные — требуют дополнительного контроля как профиля, так и курса захода на посадку, что так же требует дополнительных усилий при заходе. Точные заходы позволяют осуществлять посадку при более низких минимумах, чем неточные.
В свою очередь, точные заходы делятся по так называемым категориям: CAT I, CAT II, CAT III A/B/C с соответствующим минимумом. На бывшей территории Советского Союза наличие ILS в аэропортах было раньше непозволительной роскошью, что не позволяло осуществлять заходы при более низких минимумах (чем точнее система захода – тем ниже минимум аэропорта). Но сейчас почти все большие аэропорты севернее Томска имеют ILS. Заход по приводам на старой технике это было еще то искусство полета… Для примера: если взять всю маршрутную нашей авиакомпании в России – только 22 аэропорта оборудованы системой ILS для захода по II категории и только 5 – для захода по IIIA.
Переводим самолет на снижение, зачитываем LANDING чеклист, получаем от диспетчера разрешение на выполнение посадки. При этом диспетчер обязательно сообщит текущий ветер, если он выходит за наши ограничения – то уходим на второй круг. Почти любое срабатывание сигнализации об отказах ниже 1000 футов над полосой в отсутствии визуального контакта с полосой – тоже уход на второй круг.
В 99% в нашей авиакомпании посадка выполняется в ручном режиме. Исключения: категорированные заходы при низких минимумах (CAT II/CAT III), где автоматический заход желателен/необходим. Так же все самолеты семейства Airbus 320 умеют выполнять процедуру Autoland с последующим rollout’ом (автоматическая посадка с последующей остановкой на полосе, с выдерживанием направления пробега используя курсовой маяк системы ILS). Для выполнения данной процедуры еще более жесткие ограничения по ветру, состоянию ВПП, работоспособности бортовых и наземных систем. Как это выглядит вживую:
Буквально три слова про уход на второй круг – в реальной жизни это бывает не так часто, но из-за редкости выполнения и скоротечности самого процесса требует повышенного внимания со стороны экипажа и особенно PM'a. Самое главное здесь – выдержать все ограничения по скоростям, высотам и тангажу при уходе с небольших высот – риск tailstrike высок как никогда. В зависимости от причины ухода на второй круг можно выполнить либо повторный заход, либо уйти на запасной аэродром.
Интересные факты
После посадки и до выключения на стоянке
А вот именно здесь, экипаж отдышавшись после выполнения посадки и освобождения полосы, выполнив необходимые процедуры с последующим AFTER LANDING чеклистом, переходит на частоту руления и узнает дальнейший маршрут движения по аэродрому. Обычно это длинная тирада с номерами рулежек, пересечений иногда с частотами для перехода и командами на ожидание в определенных местах. Главное здесь – все записать, повторить всю эту тираду диспетчеру и найти на схеме аэродрома, где находятся все эти рулежки.
Вот здесь на видео с 6 минуты видно, что из себя представляет схема руления в приложении Jeppesen Mobile Flight Deck:
Так же все рулежки, полосы и и.д. в аэропорту имеют специальную разметку, которая позволяет ориентироваться как в дневное, так и в ночное время. Самое главное здесь – контролировать маршрут руления по всем этим знакам и в случае малейших сомнений – переспрашивать диспетчера. Самолет заднего хода не имеет, поэтому если вы заблокируете рулежку или выедете на рабочую полосу без разрешения диспетчера (Runway Incrusion, что само по себе является серьёзным авиационным инцидентом) то вас просто не поймут.
Подъезжаем к гейту, здесь обычно нас встречает либо система типа SafeDock (моя любимая и наверное, самая распространенная), либо специально обученный человек в оранжевой/зеленой жилетке, который при помощи жезлов заводит нас на стоянку.
Процесс заруливания в исполнении системы SafeDock
Скажу сразу, используемые маршалом сигналы являются стандартными во всем мире и описаны в одном из документов ICAO. Таким образом мы (пилоты) можем понять, что от нас хотят с земли.
Скорость захода самолета на посадку в соответствии с требованиями норм летной годности из условия обеспечения высокой безопасности полета должна быть не менее 1,3 скорости сваливания (или минимальной скорости), установленной для посадочной конфигурации самолета. При этом в процессе летных испытаний самолета должна быть показана возможность безопасного выполнения посадки и ухода на второй круг без превышения допустимого угла атаки при минимальной демонстрационной скорости захода на посадку Vз. п.д. тіп, которая назначается из следующих условий:
З. П.ДЛ11П I уз п Ю км/Ч при VЗ. П. ^ 200 км/ч>
Максимальная скорость захода самолета на посадку должна быть не менее Vr3.n. + 25 км/ч независимо от полетной массы самолета.
Во всем диапазоне разрешенных скоростей захода на посадку самолет должен приземляться на основные колеса шасси без первоначального касания поверхности ВПП носовыми колесами или хвостовой частью фюзеляжа(хвостовой опорой);не должны также возникать капотирование или “козленке” самолета.
Эти условия определяют диапазон допустимых углов тангажа самолета в момент приземления. Посадочный угол атаки определяется углами тангажа и наклона траектории полета самолета в момент приземления, зависящими от метода посадки. Изменение угла атаки и угла наклона траектории по сравнению с их значениями на участке планирования самолета по посадочной глиссаде при различных методах посадки могут быть определены расчетом или из статистических материалов, что позволяет связать диапазон допустимых углов тангажа в момент приземления с диапазоном допустимых углов атаки при заходе на посадку, при которых обеспечивается безопасная посадка.
Такой подход позволяет определить диапазон допустимых углов атаки при заходе самолета на посадку. Фактический угол атаки на этом этапе в основном определяется аэродинамической компоновкой крыла самолета в посадочной конфигурации. Основную роль при этом играют максимальные несущие свойства крыла, т. е.максимальное значение коэффициента подъемной силы Сушах и соответствующий ему угол атаки, а также коэффициент подъемной силы при нулевом угле атаки.
Для современных транспортных и пассажирских самолетов применяются три метода посадки:
—посадка с полным выравниванием и выдерживанием, на
котором угол атаки самолета увеличивается до посадочного;
—посадка с полным выравниванием без участка выдерживания;
—посадка с неполным выравниванием (в основном при автоматической посадке).
На всех воздушных этапах режима посадки угол тангажа самолета v по строительной оси фюзеляжа, угол наклона траектории полета в и угол атаки а связаны соотношением:
ь = в + а— noc и в пос —угол тангажа и угол наклона траектории самолета в момент приземления (касания.)
Результаты расчетов и статистической обработки материалов летных испытаний и эксплуатации пассажирских самолетов показывают, что на участке выравнивания угол атаки увеличивается на 1,5 2°, а на участке выдерживания угол атаки должен возрасти до
посадочного а пос. При посадке самолета с неполным выравниванием угол атаки должен быть близок к посадочному и вследствие этого угол атаки самолета на планировании по посадочной глиссаде должен быть меньше посадочного на 2^2,5°.Угол заклинення крыла ф кр для современных пассажирских самолетов близок к’ 3°.
С учетом принятых допущений связь между углом тангажа в момент приземления и углом атаки при заходе на посадку можно определить по формуле(бчЗЗ):
v пос — а з. п. — (1,0 — г 1,5°) —при полном выравнивании без
Vnoc=a з. п. —3°—при неполном выравнивании.
На современных пассажирских и транспортных самолетах для сокращения потребной посадочной полосы целесообразно посадку производить без участка выдерживания. Тогда минимально допустимый угол атаки на планировании по глиссаде при заходе на посадку должен выбираться из условия отсутствия касания ВПП носовым колесом шасси.
Для определения количественных требований к углу атаки при заходе на посадку необходимо установить допустимые значения угла тангажа в момент приземления. Обычно пассажирские и транспортные самолеты компонуются так, что момент касания носовым колесом поверхности ВПП соответствует нулевому углу тангажа vKac н. к—0.
Касание ВПП хвостовой частью фюзеляжа (хвостовой опорой) для различных самолетов происходит при различных значениях угла тангажа в зависимости от обводов хвостовой части фюзеляжа и высоты основных стоек шасси. Поэтому в расчетах следует учитывать угол тангажа, при котором происходит касание ВПП хвостовой частью фюзеляжа. Среднее значение угла тангажа касания
ВПП ХВОСТОВОЙ ОПОрОЙ МОЖНО ПрИНЯТЬ раВНЫМ Укас хв= 11
Для выбора рекомендуемого диапазона значений угла атаки самолета при заходе на посадку, при котором отсутствует первоначальное касание ВПП носовым колесом или хвостовой частью фюзеляжа, используем значения разрешенных в эксплуатации максимальных и минимальных значений угла тангажа:
Чпах^ ^кас хв”1 И Vmn ^ $ каскрн. к. + 1°
(запас по углу тангажа в±1° вводится для обеспечения безопасности приземления самолета) .Таким образом, для обеспечения безопасности самолета на посадке необходимо, чтобы угол тангажа в момент приземления был бы больше 1° и меньше 10°.
Расчеты показывают, что в момент приземления для обеспечения угла тангажа в допустимом диапазоне fnoc—Г-г 10° значения угла атаки самолета на планировании по посадочной глиссаде должны находиться в следующем диапазоне:
2,5° 67-г 0,92. При выходе значения Суо из этого диапазона возникает большая вероятность приземления самолета на носовые колеса или на хвостовую часть фюзеляжа, т. е. в этом случае безопасность посадки самолета снижается.
На рис.6.42 приведены рекомендуемые для пассажирских самолетов значения Су0 в зависимости от Су шах.
Определение диапазона допустимых углов атаки при заходе самолета на посадку по условиям безопасности позволяет также определить соотношения между Сушах И 5°-г 8, 0 ) 4, 55 Сушах
Сутах~0> 22 СС кр (1* 2~ 1,76)
Суо=0, Шкр- (1,26Н-1,85)
акр=7,7Суо+(9,7° — г 14,2°)
Пользуясь этими соотношениями, можно правильно разработать аэродинамическую компоновку крыла самолета в посадочной конфигурации.
Извините, что не в пятницу такой вопросец.
Cидел вчера (в пятницу) на дзержинском карьере, смотрел как заходят на посадку в ДМД зеленые самолетики. (почему-то попадались именно зеленые)
Как мне показалось, снижение идет очень по-разному.
737-й вроде бы чаще наклоняет нос при снижении с эшелона. А семейство А320- склонно сохранять горизонтальное положение типа "парашютируя".
Два раза я был пассажиром Ан-24. ну очень стремно он себя ведет - носом водит вверх и вниз и вправо-влево, как принюхивается к полосе. и носом же "клюет полосу" , так что 24-й аж взбрыкнулся при приземлении два-три раза стукнул об полосу.
предвосхищая вопросы. как я отличал А и Б - зрение пока что у меня на дальность весьма хорошее. и когда лечу пассажиром тангаж тоже чувствую лучше остальных (без стакана).
На ATR - 42 при посадке в фиговую погоду не только стакан и будылка но и господа Бога вспомнишь. В Ан-2 уже при взлёте стакан теряется.
FiberOptic
Зависит мильён от чего этот тангаж, вопрос из разряда почему светит солнце.
А если по существу от самого типа ВС типа не зависит.
на широких ВС не замечал тангаж вниз.
как паксу, всеж приятней парашютировать чем вниз носом как c горки.
"Парашютировать" это вопрос к вертолётчикам, но уверяю вас, вряд ли вам понравится парашютировать на вертолёте.
А если по существу от самого типа ВС типа не зависит
на Ан-12/32 такие же брр-ощущения? меня еще посадили на второй ряд в ан2 и не разрешали стоять около толчка хотя там можно было спрятаться от вибраций и прохладней было.
FiberOptic
Зависит мильён от чего этот тангаж, вопрос из разряда почему светит солнце.
888888888888888888888888888
ну ежели человек неоворуженным глазом определяет тангаж, то это может быть только на заходе на посадку, УНТ там един для всех УНГ, стало быть тангаж может гулять только от УА самолета в посадочной конфигурации, УНГ в сренем от 2гр 40 минут до 3 градусов, если глазомер позволяет определить, кто идет носом вниз, кто парашютирует, то не по профессии трудится ТС.
То Аriec 71
А что там, ну посадачная больше
На глиссаде тангаж приблизительно одинаковый у всех. Но он зависит от выбранного посадочного положения закрылков (полностью или промежуточное). На снижении тангаж зависит от скорости и также от положения механизации. Вы же не видите с какой скоростью они заходят, и может кто-то догоняет высоту, а кто-то наоборот дотягивает до нею снизу. Кроме того один самолет выдерживает заданную скорость без механизации, а кому-то (кто тяжелый) надо немного выпустить. А антоновых сравнивать с А и Б некорректно - разные времена разработки, разная аэродинамика.
To Ariek71 об этапах полёта=скорость которые тут в кучу сгребли(на выр. к выр.) а если МиГарь чего-то не может тут пардон это его особенность или исключение как угодно, это же исключительный самолёт верно?
О чём вопрос ТС понятен о его наблюдениях и широких самолётах, как и мой ответ"типа".
О чём вопрос ТС понятен о его наблюдениях и широких самолётах, как и мой ответ"типа
Два раза я был пассажиром Ан-24. ну очень стремно он себя ведет - носом водит вверх и вниз и вправо-влево, как принюхивается к полосе. и носом же "клюет полосу" , так что 24-й аж взбрыкнулся при приземлении два-три раза стукнул об полосу.
Это не самолет ведет себя стремно, а пайлот. На Ан-24 налетался досыта при старом режиме. Всяко было. И ровнехонько на посадке, и с подруливанием, и с козликами.
А вообще, есть такая особенность. Например, более легкие типы дольше вниз носом заходят, а у более тяжелых, да, визуально есть ощущение парашютирования с большей высоты.
Жил как-то в гостинице в районе аэропорта 2 месяца. Был с собой бинокль Насмотрелся.
Читайте также: