Tlc или qlc ssd что лучше
В современных SSD наиболее распространены четыре типа чипов памяти NAND: QLC, TLC, MLC и SLC.
QLC (Quad-Level Cell) - ячейка памяти, способная хранить 4 бита информации. По состоянию на февраль 2020 года NAND-память типа QLC является самой доступной по стоимости хранения 1 ГБ данных, приближаясь по данному параметру к традиционным жестким дискам. При этом по быстродействию и ресурсу на запись QLC-память лишь немного уступает не только SLC- и MLC-, но и TCL-памяти.
TLC (Triple-Level Cell) – ячейка памяти, способная хранить 3 бита информации. Обладает большей плотностью, но меньшей выносливостью по сравнению с SLC и MLC. TLC также отстает от SLC и MLC по скорости чтения и записи и ресурсу в циклах Program/Erase. До настоящего момента память типа TLC NAND использовалась в основном в flash-накопителях (флешках), однако совершенствование технологий производства сделало возможным использование памяти TLC и в стандартных SSD.
Описанные выше ячейки памяти относятся к планарному, то есть 2D-типу. Их недостатком является необходимость перехода к более тонким техпроцессам для увеличения плотности записи данных в каждом отдельном чипе. Из-за ряда физических ограничений делать это до бесконечности не получится. Поэтому были разработаны 3D-ячейки памяти. Такая ячейка представляет собой цилиндр:
Таким образом, появляется возможность разместить несколько ячеек памяти на одном слое микросхемы. Такие ячейки называются 3D V-NAND, 3D TLC и 3D QLC. Емкость и надежность 3D-памяти сравнимы с емкостью и надежностью памяти TLC.
MLC (Multi-Level Cell) – ячейка памяти, способная хранить несколько бит информации. MLC дешевле SLC, однако обладает меньшей выносливостью и меньшим ресурсом циклов Program/Erase. MLC - хороший выбор для коммерческих и рабочих платформ, т.к. характеризуется хорошим соотношение цена/скорость работы.
eMLC (Enterprise Multi-Level Cell) – ячейка, аналогичная по структуре обычной MLC, но с увеличенным ресурсом по циклам Program/Erase. По надежности eMLC находится между SLC и MLC, а стоит ненамного дороже MLC. Типичное применение eMLC - рабочие станции и серверы среднего класса.
SLC (Single-Level Cells) – ячейка, способная хранить 1 бит информации. Память SLC имеет высокую производительность, низкое энергопотребление, наибольшую скорость записи и количество циклов Program/Erase. Память типа SLC обычно используется в серверах высокого уровня, поскольку стоимость SSD на основе SLC велика.
3D NAND
Количество состояний ячейки в зависимости от типа памяти
Физически все четыре типа ячеек NAND-памяти состоят из одинаковых транзисторов. Единственным отличием является количество хранимого ячейкой памяти заряда. Все четыре типа ячеек работают одинаково: при появлении напряжения ячейка переходит из состояния «выключено» в состояние «включено». SLC использует два отдельных значения напряжения для представления одного бита информации на ячейку и двух логических уровней (0 и 1). MLC использует четыре отдельных значения напряжения для представления четырех логических состояний (00, 01, 10, 11) или двух битов. TLC использует восемь отдельных значений напряжения для представления восьми логических состояний (000, 001, 010, 011, 100, 101, 110, 111) или трех битов информации. QLC использует шестнадцать отдельных значений напряжения для представления шестнадцати логических состояний (от 0000 до 1111).
Поскольку в SLC используется только два значения напряжения, эти значения могут сильно отличаться друг от друга, уменьшая потенциальную возможность некорректно интерпретировать текущее состояние ячейки и позволяя использовать стандартные условия коррекции ошибки NAND. Вероятность ошибок чтения увеличивается при использовании TLC и QLC NAND, поэтому данные типы памяти требуют большего объема ECC (Error Correction Code – код коррекции ошибок) при исчерпании ресурса NAND, поскольку в TLC и QLC приходится корректировать сразу три или четыре бита информации соответственно.
Рынок твердотельных накопителей наполнен широким ассортиментом моделей разных ценовых категорий. Компаний, самостоятельно производящих и чипы памяти, и контроллеры, немного, поэтому десятки брендов продают плюс-минус одинаковое железо под разными вывесками. Из-за этого фирма на упаковке имеет мало значения, а главной характеристикой SSD является тип используемой памяти.
Флеш-память для SSD классифицируется по плотности записываемых данных, количеству уровней сигнала, поддерживаемых одной ячейкой. Чем их больше – тем выше плотность записи, тем дешевле обойдется диск в пересчете на единицу объема. Сегодня выпускаются и продаются SSD с памятью SLC, MLT, TLC, а недавно к ним прибавились еще и модели на QLC.
Виды памяти для SSD
SLC – исторически первый тип флеш-памяти, применяемый в твердотельных накопителях. Аббревиатура расшифровывается как «Single Level Cell» (одноуровневая ячейка), и, как следует из названия, поддерживает один уровень сигнала. Такой блок лишь записывает логический 0 или 1, в зависимости от положения транзистора, и может содержать только 1 бит информации.
MLC – развитие SLC, расшифруется как «Multi Level Cell», то есть, «ячейка со многими уровнями». Транзистор такой флеш-памяти уже может «помнить» не просто 1 или 0, а несколько уровней сигнала, благодаря чему содержит 2 бита информации. Это позволяет поднять плотность записи при том же техпроцессе вдвое, а значит снизить цену на гигабайт емкости до 2 раз.
TLC или «Triple Level Cell» (три уровня) – логичное продолжение MLC. За счет тонкого управления уровнем заряда ячейки, и повышением чувствительности считывания, один элемент флеш-памяти может хранить в себе 3 бита информации.
QLC – самый новый, на данный момент (2019), вид памяти для SSD. Она расшифровывается как «Quad Level Cell» и, соответственно, способна хранить 4 бита данных в ячейке одновременно. Такая флеш-память – самая доступная, бюджетный диск на терабайт с ней можно найти по цене около $100-120.
Принципиальные отличия между SLC, MLC, TLC и QLC памятью SSD
Повышая емкость блока флеш-памяти, разработчики SSD могут снижать стоимость накопителей, но есть проблема. Нельзя просто наращивать число ячеек до 4, 6 или 10. Это существенно снижает ресурс диска, уменьшая количество циклов перезаписи, по истечении которого он уже не сможет ничего записывать (только читать).
С переходом на многоуровневые типы флеш-памяти сам транзистор, хранящий данные, принципиально не меняется. Он как был один, так и есть, просто инженеры научили его запоминать несколько уровней сигнала. При этом повышение их числа приводит к квадратичному росту количества уровней (комбинаций 0 и 1, записываемых в блок).
Для записи одного бита нужно всего 2 состояния (уровня) заряда: 0 и 1. Чтобы записать два бита – их уже должно быть 4: 00, 01, 10 и 11. Для трех бит требуется 8 уровней: 000, 001, 010, 011, 100, 101, 110 и 111. Для 4 бит на ячейку требуется 16 уровней сигнала. А чем больше уровней – тем «нежнее» сам транзистор, тем быстрее он изнашивается, деградирует.
Для SLC, если ячейки теряют чувствительность, можно просто слегка поднять подачу питания. Для других типов сделать это нельзя, так как при повышении накопленного заряда контроллер не сможет прочитать блок, например, приняв комбинацию 001 как 010. Вроде всего один бит сместился, но файл окажется поврежден. А чем больше уровней, тем ниже та самая граница по достижении которой элемент памяти выходит из строя.
Кроме того, что сами транзисторы становятся более чувствительными, частота обращения к ним тоже повышается. В итоге ресурс снижается в разы, а то и десятки или сотни раз. Если SLC в среднем выдерживает около 100 тыс. перезаписей, то MLC – около 10 тыс., TLC – 3-5 тыс., а самые дешевые чипы QLC переживают всего около 1 тыс. циклов. Инженеры прибегают к различным алгоритмам снижения нагрузки, но это лишь слегка улучшает износостойкость.
Третьей проблемой повышения плотности становится снижение скорости. Ведь чем больше уровней заряда может хранить транзистор, тем больше нагрузка на контроллер, который должен улавливать тончайшую разницу между схожими комбинациями бит. Чем больше состояний может поддерживать флеш-память SSD, тем она медленнее.
Дешево, быстро, надежно: сложный выбор
Чем больше бит хранит транзистор, тем память SSD будет дешевле в расчете на гигабайт, но тем ниже окажутся ее скорость и долговечность. Из-за этого накопители с разным типом чипов отличаются ценой, быстродействием и надежностью. SLC – самые быстрые и живучие, но дорогие. Из-за этого такие диски выпускаются, преимущественно, для корпоративного сегмента.
SSD с памятью MLC потихоньку уходит в прошлое. Все из-за того, что с переходом на 3D NAND чипы (содержащие транзисторы в несколько слоев), по мере устранения недостатков, ресурс TLC мало уступает MLC, но зато трехуровневая память обходится дешевле. Смысла платить больше почти нет, поэтому в потребительском сегменте новые модели на MLC выпускают только в верхнем сегменте.
Памятью MLC оснащаются, в основном, высокоскоростные модели вроде Samsung 970 PRO. Такие накопители можно смело использовать и в игровом, и рабочем, и развлекательном ПК или ноутбуке. Правда, чтобы иметь побольше места, придется заметно переплатить.
SSD на TLC 3D NAND занимают основную часть рынка. Большинство актуальных моделей содержат именно такие чипы. Хорошим примером твердотельного накопителя с такой памятью является Samsung 860 EVO, который и быстр, и достаточно надежен, но доступнее чем Pro.
QLC – вещь новая, еще не очень популярная, но уже встречающаяся в продаже. Популярные носители на ее базе – Samsung 860 QVO (не путать с EVO!). Также уже полно дисков от мелких китайских фирм, вроде KingSpec. Именно их и можно поискать по цене около $100 за терабайт. Правда, надежность подобных гаджетов пока не очень изучена, и брать их стоит только под файловое хранилище, установку игр, хранение мультимедиа. Но крайне не рекомендую качать на диски QLC торренты, писать потоковое видео (например, с IP-камеры) и подвергать иным активностям такого рода.
Подводя итоги, можно сказать, что SLC-память для SSD лучше во всем. Но она намного дороже, поэтому выпускается лишь для оборудования промышленного и серверного применения. MLC и TLC – оптимальный вариант по соотношению цены, скорости и надежности. Именно ее стоит брать для универсального компьютера, используемого и для работы, и игр.
Относительно QLC стоит быть осторожным. Да, это доступный вид памяти, который предлагает много гигабайт за немного денег. Но покупать такой диск под установку системы, а тем более, хранение ценных данных нежелательно ввиду малого числа отзывов и статистики.
Компромиссным вариантом является покупка нескольких накопителей разного типа. Взяв под систему и ценные файлы скоростную модель с NVME на 120-256 ГБ, можно быть спокойным и за сохранность файлов, и за быстродействие компьютера. А под хранение файлов, не подразумевающее частых перезаписей, для экономии можно взять тот же Samsung 860 QVO на 500 ГБ, 1 ТБ или больше.
Многие знают, что SSD накопители могут значительно ускорить работоспособность любого компьютера, а также положительно повлиять на отдельно взятые процессы. В данной публикации я расскажу, какие бывают SSD накопители, чем они отличаются, и на какие характеристики стоит обратить внимание при выборе SSD для вашего компьютера.
Содержание
Какие бывают форм-факторы SSD
На данный момент существует три форм-фактора SSD накопителей, также стоит упомянуть, что бывают внешние SSD, которые подключаются по средствам USB к компьютеру, но в рамках этой публикации мы о них говорить не будем. Впрочем, что касается нижеупомянутых характеристик, то они также применимы и к внешним SSD накопителям.
Формат 2,5
Это один из самых распространенных форматоров (2,5 это размер, указанный в дюймах). Изначально такой формат использовался в жестких дисках, которыми комплектовались ноутбуки. Затем, в таком же формате начали выпускать твердотельные SSD, таким образом, старые ноутбуки можно легко модернизировать, а производителям не пришлось разрабатывать что-то принципиально новое. Вследствие этого у жестких дисков и твердотельных SSD одинаковые разъемы питания и разъем подключения к материнской плате SATA. Также здесь стоит отметить, что преимущественно все SSD накопители формата 2,5 имеют алюминиевый корпус, который хорошо справляется с отводом тепла. На мой взгляд, интерфейс SATA уже устарел и не позволяет реализовать скоростные возможности SSD технологий. Также в таких больших габаритах современные накопители абсолютно не нуждаются.
Формат mSATA
По своей сути формат mSATA – это реализация формата 2,5, только без большого типового корпуса. Этот тип SSD накопителей изготовлен на небольшой плате, однако интерфейс передачи данных остался стандарта SATA.
Формат M.2
M.2 это уже современный формат накопителей, он имеет вид небольшой платы с чипами, которая напрямую подключается к материнской плате. Изначально эти накопители устанавливали только в ноутбуки, однако сейчас они широко применяются во всех компьютерах. Преимуществом такого решения является отсутствие различных проводов, а также нет необходимости заключать SSD накопитель в какой-либо специальный корпус. А вот к минусам такого формата можно отнести отсутствие радиатора охлаждения. Однако, при желании или необходимости радиатор всегда можно приобрести отдельно. На сегодняшний день выбор SSD накопителя формата M.2, на мой взгляд, является самым оптимальным решением. При покупке учтите, что эти накопители имеют разную маркировку, к примеру, 2280, 2260, 2230. По сути, это обозначение размеров накопителя, первые два числа никогда не меняются и обозначают ширину накопителя в миллиметрах, а вторые два отображают его длину.
Формат PCI Express
Накопители такого формата подключаются напрямую к материнской плате в слот PCI Express. Однозначным плюсом такого решения является наиболее высокая скорость передачи данных, благодаря использованию интерфейса PCIe x8. Такое решение достаточно дорогое и часто используется в серверных компьютерах, а также стоит учесть, что такого рода накопитель занимает много места в ПК и один слот PCI Express.
Что такое NVMe и в чем разница от SATA
В накопителях с форматом 2,5 и mSATA используется исключительно интерфейс SATA, также в накопителях PCI Express соответственно тоже используется только один интерфейс PCI Express. А вот в накопителях формата M.2 могут использоваться оба вышеупомянутых варианта, и здесь при выборе стоит отдавать предпочтение более быстрому PCIe.
SATA — это уже относительно старый интерфейс, который ограничен скоростью передачи данных до 600 Мбайт/сек. Для обычных жестких дисков такой скорости вполне хватает, а вот для современных чипов памяти это уже серьезное ограничение. Поэтому обратите внимание, что даже накопитель формата M.2, который использует для передачи данных интерфейс SATA, является не самым быстрым вариантом.
NVMe – это уже более современный протокол, который физически используется с разъемом M.2, но по факту для передачи данных использует шину PCIe, что позволяет значительно расширить скоростные характеристики накопителя.
Версии PCIe
Стоит выделить две версии PCIe 3.0 и PCIe 4.0 они в первую очередь отличаются скоростью передачи данных. Версия 4.0 превышает скорость передачи данных в два раза по сравнению с версией PCIe 3.0. И здесь вырисовывается следующая картина: как я и говорил выше, максимально возможная скорость для SATA III составляет всего 600 Мбайт/сек. При этом, один канал PCIe x1 обеспечивает скорость до 1,969 Гбайт/с. Таким образом, SSD накопитель формата M.2 использующий для передачи данных интерфейс PCIe x4 обеспечивает скорость почти 8 Гбайт/с, что более чем в тринадцать раз больше SATA III. А это уже действительно существенная разница.
Параметр IOPS
IOPS крайне важный параметр, который влияет на скорость. Здесь стоит отметить, что мы уже разобрались как интерфейсы влияют на скорость передачи данных. Однако, параметр IOPS отвечает за задержку, которая образуется при попадании и извлечении данных с накопителя. Если вспомнить, как работают HHD накопители, то станет более очевидно, откуда возникает задержка IOPS. В HDD устройствах, для того чтобы записать или прочитать данные, накопитель должен прокрутить диск на определенное место, что занимает промежуток времени. Чем выше этот параметр, тем лучше. К примеру, у HDD накопителей этот параметр измеряется в десятках и в сотнях, в SSD устройствах IOPS измеряется десятками, а в некоторых случаях сотнями тысяч.
Что такое SLC, MLC, TLC, QLC
Разница заключается в том, насколько плотно упаковывается информация в одну ячейку памяти. Таким образом, чем плотнее упаковывается информация, тем больше объем накопителя при относительно одинаковой конечной стоимости. Однако плотность упаковки данных может влиять на скорость накопителя в целом.
SLC – это достаточно дорогой тип памяти, и один из самых быстрых, в памяти этого типа один бит данных размещается на одной отдельно взятой ячейке памяти. Также стоит выделить высокую энергоэффективность данного типа памяти.
MLC – в памяти этого типа в одной ячейке можно разместить уже два бита данных, таким образом, увеличивается плотность упаковки данных и снижается условная стоимость 1 гигабайта памяти. Принято считать, что память этого типа уступает по скоростным характеристикам и ресурсу памяти типу SLC.
TLC – это своего рода ответвление от типов памяти MLC, за исключением того, что в память типа TLC можно упаковать до 3 бит данных в одну ячейку памяти. Современные технологические решения пытаются минимизировать недостатки такого типа памяти и обеспечить более высокую скорость. Плюсом такого решения, очевидно, является цена.
QLC – как уже, наверное, стало понятно, следующий тип памяти. Он позволяет разместить в одной ячейке уже 4 бита данных. Эта самый бюджетный вариант и, следовательно, имеет самые низкие скоростные характеристики.
Также иногда может применяться приставка 3D к таким типам памяти как TLC и QLC. Это связано с технологией производства чипов. Эта технология подразумевает размещение памяти слоями один на другой на одной плате.
Параметр TBW
Думаю, вы знаете, что количество раз записи информации на одну и ту же ячейку, ограничено. Таким образом, чем выше параметр TBW, тем больше информации можно записать на накопитель, а следовательно он дольше прослужит. Этот параметр крайне важен, особенно на серверных компьютерах, где информация очень часто перезаписывается. Производители обычно указывают параметр TBW в терабайтах. Как по мне, для домашнего использования хватит значения примерно 100 терабайт.
Функция S.M.A.R.T.
Это очень полезная функция, которая изначально разрабатывалась для HDD накопителей, но встречается и на SSD моделях. По сути – это программное обеспечение, которое предназначено для анализа состояния чипов памяти и оповещении в случае возникновения ошибок или возможного скорого выхода накопителя из строя. Таким образом, вы можете заранее отреагировать на возможную поломку.
Ниже оставлю несколько ссылок на неплохие варианты накопителей по одному на каждый формат.
Однако, если вам позволяет кошелек, можете обратить внимание и на более дорогие модели.
Вывод
Выбирая твердотельный накопитель SSD для домашнего использования, вы можете столкнуться с такой характеристикой как используемый тип памяти и задаться вопросом о том, что лучше — MLC или TLC (также вам могут встретиться и другие варианты обозначения типа памяти, например, V-NAND или 3D NAND). Также совсем недавно появились привлекательные по цене накопители с QLC памятью.
В этом обзоре для начинающих пользователей подробно о типах флэш-памяти, используемой в SSD, об их преимуществах и недостатках и о том, какой из вариантов может оказаться более предпочтительным при покупке твердотельного накопителя. Также может быть полезно: Настройка SSD для Windows 10, Как перенести Windows 10 с HDD на SSD, Как узнать скорость SSD.
Типы флэш памяти, используемой в SSD для домашнего использования
В SSD используется флэш-память, представляющая собой специальным образом организованные ячейки памяти на базе полупроводников, которые могут отличаться по типу.
В общих чертах флэш память, используемая в SSD может делиться на следующие типы.
- По принципу чтения-записи практически все имеющиеся в продаже потребительские SSD имеют тип NAND.
- По технологии хранения информации память разделяется на SLC (Single-level Cell) и MLC (Multi-level Cell). В первом случае ячейка может хранить один бит информации, во втором — более одного бита. При этом, в SSD для домашнего использования вы не встретите SLC память, только MLC.
В свою очередь, TLC тоже относится к типу MLC, отличие заключается в том, что вместо 2 бит информации может хранить 3 бита информации в ячейке памяти (вместо TLC вы можете встретить обозначение 3-bit MLC или MLC-3). То есть TLC является подвидом MLC памяти.
Что лучше — MLC или TLC
В общем случае, память MLC имеет преимущества над TLC, основные из которых:
- Более высокую скорость работы.
- Более продолжительный срок службы.
- Меньшее энергопотребление.
Недостаток — более высокая цена MLC по сравнению с TLC.
Однако следует иметь в виду, что речь идёт именно об «общем случае», в реальных устройствах, представленных в продаже вы можете увидеть:
- Равную скорость работы (при прочих равных параметрах) для SSD с памятью TLC и MLC, подключаемых по интерфейсу SATA-3. Более того, отдельные накопители на базе памяти TLC с интерфейсом PCI-E NVMe иногда могут быть быстрее сходных по цене накопителей с памятью PCI-E MLC (однако, если говорить о «топовых», самых дорогих и быстрых SSD, в них всё-таки обычно используется память MLC, но тоже не всегда).
- Большие гарантийные сроки службы (TBW) для памяти TLC одного производителя (или одной линейки накопителей) по сравнению с памятью MLC другого производителя (или другой линейки SSD).
- Аналогично с энергопотреблением — например, накопитель SATA-3 с памятью TLC может потреблять в десять раз меньше энергии, чем накопитель PCI-E с памятью MLC. Более того, для одного типа памяти и одного интерфейса подключения разница в электропотреблении также очень сильно отличается в зависимости от конкретного накопителя.
И это не все параметры: скорость, срок службы и энергопотребление будут также отличаться от «поколения» накопителя (более новые, как правило, более совершенны: в настоящее время SSD продолжают развиваться и совершенствоваться), его общего объема и количества свободного места при использовании и даже температурного режима при использовании (для быстрых NVMe накопителей).
В итоге, строгий и точный вердикт о том, что MLC лучше TLC вынести нельзя — например, приобретя более емкий и новый SSD с TLC и лучшим набором характеристик, вы можете выиграть по всем параметрам по сравнению с приобретением накопителя с MLC по аналогичной цене, т.е. следует учитывать все параметры, а начинать анализ с доступного бюджета на покупку (например, если говорить при бюджете до 10000 рублей, обычно накопители с TLC памятью будут предпочтительнее MLC как для SATA, так и для PCI-E устройств).
Накопители SSD с памятью QLC
С конца прошлого года в продаже появились твердотельные накопители с памятью QLC (quad-level cell, т.е. 4 бита в одной ячейке памяти), и, вероятно, в 2019 году таких дисков будет всё больше, а их стоимость обещает быть привлекательной.
Конечные продукты характеризуются следующими плюсами и минусами по сравнению с MLC/TLC:
- Меньшая стоимость за гигабайт
- Большая подверженность памяти износу и, теоретически, большая вероятность ошибок при записи данных
- Меньшая скорость записи данных
Говорить о конкретных цифрах пока сложно, но, некоторые примеры из уже доступных в продаже можно изучить: например, если взять примерно аналогичные накопители M.2 SSD объемом 512 Гб от Intel на базе памяти QLC 3D NAND и TLC 3D NAND, изучить заявленные производителем характеристики, увидим:
- 6-7 тыс. рублей против 10-11 тыс. рублей. А за стоимость 512 Гб TLC вы можете приобрести 1024 Гб QLC.
- Заявленный объем записываемых данных (TBW) — 100 Тб против 288 Тб.
- Скорость записи/чтения — 1000/1500 против 1625/3230 Мб/c.
С одной стороны, минусы могут перевесить плюсы от стоимости. С другой, можно учесть такие моменты: для SATA дисков (если у вас доступен лишь такой интерфейс) разницы в скорости вы не заметите и по сравнению с HDD прирост скорости будет очень значительным, а параметр TBW для QLC SSD на 1024 Гб (который в моем примере стоит столько же как TLC SSD на 512 Гб) уже 200 Тб (более объемные твердотельные накопители «живут» дольше, что связано с тем, как ведется запись на них).
Память V-NAND, 3D NAND, 3D TLC и т.п.
В описаниях SSD накопителей (особенно если речь о Samsung и Intel) в магазинах и обзорах вы можете встретить обозначения V-NAND, 3D-NAND и аналогичные для типов памяти.
Такое обозначение говорит о том, что ячейки флеш-памяти размещены на чипах в несколько слоев (в простых чипах ячейки размещены в одном слое, подробнее — на Википедии), при этом это та же память TLC или MLC, только не везде это обозначается явно: например, для SSD от Samsung вы увидите только то, что используется V-NAND память, однако информация о том, что в линейке EVO применена V-NAND TLC, а в линейке PRO — V-NAND MLC не всегда указывается. Также уже сейчас появились накопители QLC 3D NAND.
Лучше ли 3D NAND чем «плоская» (planar) память? Она дешевле в производстве и тесты говорят о том, что на сегодняшний день для памяти TLC вариант с многослойным размещением обычно более эффективен и надежен (более того, Samsung заявляет о том, что в устройствах их производства память V-NAND TLC обладает лучшими характеристиками производительности и срока службы, чем planar MLC). Однако, для памяти MLC, в том числе в рамках устройств одного производителя это может быть не так. Т.е. опять же, всё зависит от конкретного устройства, вашего бюджета и других параметров, которые следует изучить перед покупкой SSD.
Я бы рад рекомендовать Samsung 970 Pro хотя бы на 1 Тб как неплохой вариант для домашнего компьютера или ноутбука, но обычно приобретаются более дешевые диски, для которых приходится внимательно изучать весь набор характеристик и сопоставлять их с тем, что именно требуется от накопителя.
Отсюда и отсутствие четкого ответа, а какой тип памяти лучше. Конечно, ёмкий SSD с MLC 3D NAND по набору характеристик будет выигрывать, но лишь до тех пор, пока эти характеристики рассматриваются в отрыве от цены накопителя. Если же учитывать и этот параметр, то не исключаю, что для некоторых пользователей будут предпочтительнее QLC диски, ну а «золотая середина» — память TLC. И, какой бы SSD вы не выбрали, рекомендую серьезно относиться к резервному копированию важных данных.
А вдруг и это будет интересно:
24.05.2020 в 14:14
25.05.2020 в 10:30
Так или иначе, если данные действительно важны и не подлежат восстановлению (нет резервных копий в облаке, на внешних дисках и т.п.), я бы не полагался на хранение только на SSD, рискованно. Пусть риск и не велик, но когда сталкиваешься с подобным уже об этом не думаешь.
31.07.2020 в 06:36
БЫ ставим после глагола.
31.07.2020 в 10:08
При этом я не исключаю, что где-то в других статьях я мог эту же частицу не оптимальным способом использовать, сам иногда натыкаюсь, когда перечитываю статьи. Абсолютно не уверен в своей грамотности. Стараюсь, чтобы все было гладко и правильно, но прекрасно осознаю, что не везде мне это удается.
21.08.2020 в 10:25
Здравствуйте.
Помогите, пожалуйста, разобраться.
В ноуте HP EliteBook 820 G2 есть разъем M2
под SSD формфакторов 2242 и 2260.
Удалось найти такую информацию:
(информация с сайта)
1. Правильно ли я понимаю, что в этот разъем
можно установить и SSD M2 SATA объемом
до 120 ГБ, и SSD M2 PCIe объемом до 256 ГБ?
2. Что произойдет, если я установлю SSD
M2 SATA 128 ГБ? Определится только 120 ГБ,
или вообще не определится?
3. Почему SSD формфактора 2260 невозможно
найти? Этот формфактор более предпочтителен,
чем 2242 (надежность? тепловыделение?) при
одинаковом объеме?
21.08.2020 в 15:14
22.08.2020 в 10:23
Спасибо
А насчет SATA и PCIe я верно понял, что можно установить и тот и другой?
Десять лет назад выбор компьютерного накопителя ограничивался одним условием — количеством гигабайт. Теперь же пользователь задает сразу несколько параметров: какой объем, какую модель и какой тип памяти выбрать? Дополнительную путаницу внесли твердотельные накопители — характеристик тьма тьмущая, и каждый тянет одеяло на себя. Как избежать ошибок при выборе SSD — кратко, но с расстановкой.
Каждый, кто занимался сборкой компьютера, знает, что выбор комплектующих занимает больше времени и нервов, чем покупка, подключение и настройка всей системы. К этому относится и подбор накопителей — начинающие сборщики часто игнорируют их, что потом выливается в проблемы с производительностью. Виной тому экономия или неосведомленность. Исправим это.
На кого будем работать?
Первый шаг и первая ошибка — необходимо определиться, для чего нужен твердотельный накопитель. Если раньше выбор был ограничен лишь объемом винчестера, то с появлением памяти NAND критерии выбора изменились. Теперь нужно сразу решить, под какие задачи приобретается устройство. В домашнем или офисном компьютере спектр работы не слишком широк:
- под систему
- под игры
- под файлопомойку
- под работу
Рецепт успеха прост — «система» и «работа» чувствительны к качеству диска или накопителя. Операционная система может записать/прочитать несколько гигабайт больших и мелких файлов за один подход, и для этого необходима высокая скорость во всех режимах. Объем накопителя в этом случае играет второстепенную роль — подбирается по необходимости, без излишка. То же самое в рабочих задачах — например, загрузки Adobe Photoshop с обычного HDD можно и вовсе не дождаться, а время запуска программы с SATA SSD снижается до 20-30 секунд. В то же время с твердотельным накопителем с высокой скоростью чтения и записи мелких файлов фоторедактор готов к работе менее, чем через 10 секунд. Конечно, процессор и ОЗУ играют в этом не последнюю роль.
Режимы «игры» и «файлопомойка» зеркальны предыдущим — здесь подойдет объемный диск со средней производительностью. Практически любой игре достаточно скорости обычного SATA SSD, а некоторые все еще спокойно чувствуют себя на устаревших винчестерах. Домашнее файлохранилище и подавно. Если хочется заменить HDD на SSD, то лучше заморочиться с максимальным объемом, а скорость работы и отклика будут бонусом.
Совет: не путаем работу с играми, а объем — с показателями производительности. Системе — скорость, а развлечениям — терабайты.
По Сеньке и шапка (объем)
Из первого пункта следует второй — сколько гигабайтов будет нормой для выбранной задачи? Или терабайтов? Конечно, памяти много не бывает, но за объемом накопителя следует такая досадная характеристика, как стоимость устройства. Тем более, если это твердотельный накопитель, да еще и NVMe. Поэтому смотрим на пальцы и загибаем:
- Система. Максимальная версия Windows 10 занимает до 20 ГБ после установки и настройки.
- Драйверы и библиотеки — до 10 ГБ.
- Рабочий софт. Набор джентльмена в виде офиса, фоторедактора, просмотрщика фотографий, браузера и различных утилит может потребовать от 10 до 20 ГБ.
- Место для обновлений системы. Для верности добавим еще 10 ГБ на обновления системы и софта.
- Файлы и мультимедиа. Фотографии и видео со смартфона, загруженные файлы из сети и браузерный кэш после просмотра YouTube — еще 10 ГБ. А лучше 20 ГБ — современные смартфоны снимают видео в высоком качестве, поэтому один небольшой ролик может отобрать у накопителя до нескольких гигабайт.
Итого, для актуальной системы и небольшого набора программ будет достаточно 60-80 ГБ — без игр, фильмов и таких тяжеловесов, как Visual Studio, которая после всех обновлений и загрузки библиотек может потребовать до 210 ГБ.
Совет: под современные системные и рабочие задачи домашнего пользователя можно использовать твердотельные накопители объемом 120-250 ГБ. Обращаем внимание на скоростные показатели и максимальный ресурс.
Быстрей и еще быстрее
Рынок компьютерного железа живет не только законами физики, но и уловками маркетологов. Поэтому в описании к устройству можно встретить максимальные характеристики устройства, а на деле получить кирпичик со скоростью пишущей машинки. Смотрим на скриншоты.
Тестирование различных накопителей в CrystalDiskMark указывает на то, что скорость чтения и записи может различаться в зависимости от задачи. В данном случае программа показывает секвентальные значения и значения для работы с мелкими блоками размером 4 КБ. Соответственно, при последовательной записи файлов большого размера все три устройства имеют неплохие результаты. Топовый SSD с NVMe ожидаемо вырывается вперед, а обычный SATA SSD и древний винчестер отстают по максимальным показателям в несколько раз.
Если запросить у накопителей несколько тысяч мелких файлов, все три устройства покажут более низкие результаты. Так, скорость чтения составит 50 мегабайт в секунду для NVMe, 34 МБ/с для SATA SSD и невозможные 0,72 МБ/с для древнего винчестера.
В результате при установке Cyberpunk 2077 вместо заявленных производителем 3600 МБ/с, пользователь видит жалкие 100-150 МБ/с. При этом обычный SSD не сильно отличается от M2-накопителя и будет так же отлично работать в игровых и повседневных задачах.
Совет: изучаем независимые тестирования и выбираем тот накопитель, который быстрее всех работает с мелкими файлами. На максимальную скорость смотрим для справки.
M2 быстрее SATA (нет)
Пользователи заблуждаются, думая, что накопители с разъемом типа М2 должны быть обязательно быстрее SATA. На самом деле, это не так. Названия отражают лишь способ подключения, а не скоростные показатели. В SATA используются классические провода, а в М2 сигнал идет по дорожкам материнской платы. Наглядно:
Другое дело, если говорить о максимальных характеристиках самого устройства. В случае, если скоростные показатели твердотельного накопителя не превышают лимиты SATA, то подключение этой же модели через М2 дополнительной производительности не даст. Но если SSD поддерживает NVMe, то при подключении через M2 он волен использовать весь потенциал интерфейса PCIe. А это уже не сотни, а тысячи МБ/с.
Что такое NVMe? Это способ работы диска, в котором контроллер раздает тысячи команд параллельно, а не последовательно, как в обычных SSD без NVMe. Это влияет на скорость как секвентальных операций, так и случайного чтения.
Совет: не стоит гнаться за накопителем в формате М2, если это противоречит аспектам сборки. Подходит по характеристикам и внешнему виду вариант с SATA — смело забираем. Другое дело удобство: SSD с разъемом М2 не требует дополнительной прокладки проводов и мирно существует в недрах материнской платы.
PCIe vs PCIe
С появлением скоростного стандарта PCI Express 4.0 производители переехали на производство соответствующих устройств. В теории производительность дисковой подсистемы на новой версии шины может достигать двукратной разницы. Однако на практике ситуация, как всегда, отличается.
Если сравнить один и тот же накопитель Gen4 сначала в системе с PCIe 3.0, а затем с PCIe 4.0, то получатся практически одинаковые цифры. Вот отрывок из тестирования Samsung 980 Pro 1TB — на обоих поколениях шины накопитель чувствует себя идентично.
При этом изначальный накопитель PCIe 3.0 в лице Samsung 970 EVO Plus 1 TB показывает схожие в пределах погрешности скоростные показатели. Все еще не верите? Тогда смотрите видео:
Вывод: PCIe Gen4 не всегда оказывается быстрее и лучше своих предшественников. Конечно, в профильных задачах новинка покажет себя эффективнее, но общий уровень производительности звезд с неба не хватает.
Качество или количество?
Насмотревшись рекордных показателей у накопителей NVMe, пользователи кидаются в крайности и приобретают высокоскоростные устройства под все задачи. Но хотя материнская плата располагает несколькими разъемами М2 и даже поддерживает их одновременную работу, в деталях кроется хитрость.
За работу интерфейса PCIe отвечают линии. Чем больше активных линий на один разъем, тем выше пропускная способность. При установке видеокарты, накопителя и других устройств PCIe система делит количество линий поровну или в заданном производителем порядке. Поэтому при использовании всех разъемов М2 одновременно, скорость может быть ниже, чем если бы в системе был установлен один скоростной NVMe.
Помимо самих разъемов PCIe, на линиях могут находиться интерфейсы USB и SATA. В таком случае приходится выбирать — много М2 или много SATA. Подробно о распределении линий PCIe мы уже говорили ранее.
SLC, MLC, TLC, QLC, PLC — ох!
Если пользователь проникся разницей интерфейсов и даже разобрался в скоростных характеристиках накопителей, то здесь он споткнется пять раз — именно столько типов памяти можно встретить на рынке твердотельных накопителей.
Single LC — одноуровневая или однобитная ячейка памяти. Расчет простой — на одну ячейку в микросхеме приходится один бит информации. Он может существовать — «1», или не существовать — «0». Такие микросхемы считаются самыми надежными и быстрыми. Их производство заменили на более продвинутые и дешевые технологии. Правда, технологию SLC еще используют в современных накопителях с SLC-кэшем.
Multi LC — то же самое, только ячейки содержат два бита и четыре возможных состояния: 00, 01, 10, 11. Соответственно, плотность компоновки таких микросхем выше, а значит, и результирующий объем устройства будет выше. Производительность MLC ниже, чем SLC, также эти микросхемы менее устойчивы к перезаписи.
Triple LC — три бита, восемь состояний. Самая ходовая память для современных твердотельных накопителей. Позволяет масштабировать объемы до нескольких терабайт, но обладает средней производительностью. Производительность и долговечность таких микросхем сильно зависят от качества контроллера и размера SLC-кэша.
Quad LC — четыре бита и 16 возможных состояний. Больше гигабайт под капотом — ниже производительность и устойчивость к износу. Сейчас QLC можно найти в накопителях с большим объемом и приемлемой стоимостью — это единственное преимущество нового типа ячеек.
Penta LC — пять битов и 32 электрических состояния ячейки. Технология находится в разработке и обещает увеличить плотность компоновки ячеек до 25% по сравнению с QLC. Но есть и минус — совсем низкая производительность и минимальный ресурс работы. Предполагается, что накопители с таким типом памяти смогут заменить диски CD-R, DVD-R, BD-R, основная задача которых — это хранение информации, а не перезапись.
Ячейка — это своего рода батарейка. Если она заряжена, то отдает «1» бит. Если разряжена, то «0». Чтобы обратиться к информации на одном из уровней микросхемы, компьютер считывает заряд и понимает: попал по адресу или ошибся дверью. Соответственно, чем больше бит и состояний может предоставить одна ячейка, тем больше информации в ней содержится, и тем сложнее системе разобраться, что где находится. Отсюда невысокая производительность и низкая надежность многоуровневых микросхем.
Совет: не теряемся в типах памяти — чем меньше уровней, тем быстрее, надежнее и дороже. Чем больше состояний, тем медленнее и дешевле накопитель. Смотрим в золотую середину — TLC/SLC гибриды.
Мифы о выносливости TLC
В начале разработки TLC сообщество отрицательно высказывалось по поводу технологии. Тем не менее, современные микросхемы получаются довольно неплохими. И уж тем более, несмотря на миф о низкой выносливости, достаточно надежные, чтобы работать в качестве системного накопителя в домашнем компьютере. Например, у автора устройство начального уровня емкостью 120 ГБ спокойно функционирует с 2016 года под управлением Windows. Диск пережил полное заполнение играми, подключенный SWAP-раздел и многочисленные полные форматирования и перезаписи.
Да, это пресловутые микросхемы TLC, причем размер SLC-кэша в этом устройстве равен 3 ГБ — не самый лучший вариант исполнения, который почти не ощущается в работе системным накопителем.
Шесть лет ежедневной работы под системой и играми — еще 15 ТБ запаса прочности и приемлемые скорости во всех режимах. Вопрос о надежности и качестве TLC можно считать закрытым.
Совет: выбираем накопитель не только по типу микросхем и объему, смотрим также на производителя и модель контроллера — то, что задает качество работы устройства и отвечает за его долговечность. Как правило, это контроллеры Samsung, Phison и Marvell.
QLC? Дайте флешку!
Чтобы верно считать биты с поверхности, контроллер может несколько раз опросить ячейку с помощью подачи напряжения. В случае с многоуровневой технологией это происходит дольше, чем если бы контроллер опрашивал однобитную ячейку, которая сдает информацию уже с первой попытки. Это снижает эффективную скорость и надежность — теперь количество перезаписей на одну ячейку снижается со 100 000 до 1000.
Конечно, современные системы следят за этим и не позволяют одной и той же банке перезаписываться слишком часто. Этот процесс называется выравниванием — контроллер распределяет информацию плавно по всей поверхности, а не затирает один и тот же угол микросхемы до дыр. Более того, чтобы повысить надежность четырехбитной ячейки, производители подкидывают в начало накопителя SLC-кэш — некоторый объем надежной и быстрой памяти, которая работает на износ и оставляет QLC-ячейкам работу с редко используемыми данными. Поэтому начальная скорость накопителя соответствует старшим решениям с MLC/TLC и располагает хотя бы минимальным запасом прочности.
После исчерпания объема SLC-кэша накопители снижают скоростные показатели. И если последовательное чтение из QLC-ячеек еще держится на приемлемом уровне, то прямая запись в массив оказывается даже ниже, чем у современных HDD.
Фактически такой накопитель быстро превращается в быструю флешку USB 3.0. Хотите работать с тысячами библиотек среды Visual Studio с флешки? И мы не хотим.
Совет: QLC не подходит под ОС и ресурсоемкие задачи. Из-за низкой скорости доступа ко всему массиву снижается скорость чтения и записи мелких блоков, необходимые для работы программ. Другое дело — домашнее файлохранилище. Можно со спокойной совестью оставить на QLC фильмотеку и семейные фотографии.
Бездумная экономия и переплата
Резюмируя вышесказанное выведем «на коленке» формулу, которая поможет определиться с выбором накопителя под различные задачи.
Читайте также: