Способ организации данных в файле называется
Файловая система позволяет программам обходиться набором достаточно простых операций для выполнения действий над некоторым абстрактным объектом, представляющим файл . При этом программистам не нужно иметь дело с деталями действительного расположения данных на диске, буферизацией данных и другими низкоуровневыми проблемами передачи данных с запоминающего устройства. Все эти функции файловая система берет на себя. Файловая система распределяет дисковую память , поддерживает именование файлов, отображает имена файлов в соответствующие адреса во внешней памяти, обеспечивает доступ к данным, поддерживает разделение, защиту и восстановление данных.
Таким образом, файловая система играет роль промежуточного слоя, экранизирующего все сложности физической организации долговременного хранилища данных и создающего для программ более простую логическую модель этого хранилища, а затем предоставляет им набор удобных в использовании команд для манипулирования файлами.
Классическая схема организации программного обеспечения файловой системы представлена на рис. 7.6.
Рис. 7.6. Организация программного обеспечения файловой системы
На нижнем уровне драйверы устройств непосредственно связаны с периферийными устройствами или их котроллерами либо каналами. Драйвер устройства отвечает за начальные операции ввода-вывода устройства и за обработку завершения запроса ввода-вывода. При файловых операциях контролируемыми устройствами являются дисководы и стримеры (накопители на МЛ). Драйверы устройств рассматриваются как часть операционной системы.
Следующий уровень называется базовой файловой системой, или уровнем физического ввода-вывода. Это первичный интерфейс с окружением (периферией) компьютерной системы. Он оперирует блоками данных, которыми обменивается с дисками, магнитной лентой и другими устройствами. Поэтому он связан с размещением и буферизацией блоков в оперативной памяти. На этом уровне не выполняется работа с содержимым блоков данных или структурой файлов. Базовая файловая система обычно рассматривается как часть операционной системы (в MS- DOS эти функции выполняет BIOS , не относящийся к ОС).
Диспетчер базового ввода-вывода отвечает за начало и завершение файлового ввода-вывода. На этом уровне поддерживаются управляющие структуры, связанные с устройством ввода-вывода, планированием и статусом файлов. Диспетчер осуществляет выбор устройства, на котором будет выполняться операция файлового ввода-вывода, планирование обращения к устройству (дискам, лентам), назначение буферов ввода-вывода и распределение внешней памяти. Диспетчер базового ввода-вывода является частью ОС.
Логический ввод- вывод предоставляет приложениям и пользователям доступ к записям. Он обеспечивает возможности общего назначения по вводу-выводу записей и поддерживает информацию о файлах. Наиболее близкий к пользователю уровень ФС часто называется методом доступа. Он обеспечивает стандартный интерфейс между приложениями и файловыми системами и устройствами, содержащими данные. Различные методы доступа отражают различные структуры файлов и различные пути доступа и обработки данных.
7.13. Организация файлов и доступ к ним
Типы, именование и атрибуты файлов
Файловые системы поддерживают несколько функционально различных типов файлов, в число которых входят обычные файлы, содержащие информацию произвольного характера (текст, графика , звук и др.), файлы-каталоги, специальные файлы, именованные конвейеры, отображаемые в память файлы и др.
Обычные файлы, или просто файлы, или регулярные файлы, содержат информацию, которую в них заносит пользователь или которая образуется в результате работы системных и пользовательских программ. Большинство ОС не контролируют содержимое и структуру регулярных файлов , которые в основном являются ASCII-файлами либо двоичными файлами. ASCII-фалы состоят из текстовых строк. Они могут отображаться на экране и выводиться на печать без какого-либо преобразования, и могут редактироваться практически любым текстовым редактором. Двоичные файлы имеют определенную внутреннюю структуру, которая известна программе, использующей данный файл . При выводе двоичного файла на принтер получается случайный набор символов.
Каталоги – это системные файлы, обеспечивающие поддержку структуры файловой системы. Они содержат системную справочную информацию о наборе файлов, сгруппированных пользователем по какому-либо неформальному признаку (договоры, рефераты, курсовые проекты и т.п.). Во многих ОС в каталог могут входить другие файлы, в том числе другие каталоги, за счет чего образуется древовидная структура, удобная для поиска требуемого файла. Каталоги устанавливают соответствие между именами файлов и их характеристиками, используемыми файловой системой для управления файлами. В число таких характеристик входят тип файла , права доступа к файлу, его распоряжение на диске, размер, дата и время создания и др.
Специальные файлы – это фиктивные файлы, ассоциированные с устройствами ввода-вывода, которые используются для унификации механизма доступа к последовательным устройствам ввода-вывода, таким как терминалы, принтеры и др. (например, MS- DOS рассматривает монитор и клавиатуру как файлы со стандартным именем con – консоль , а принтер – как файл prn ). Блочные специальные файлы используются для моделирования дисков.
Именованные конвейеры (каналы) представляют собой циклические буферы, позволяющие выходной файл одной программы соединить со входным файлом другой программы.
Наконец, отображаемые файлы – это обычные файлы, отображенные на адресное пространство процесса по указанному виртуальному адресу.
Файлы относятся к абстрактному механизму. Они предоставляют способ сохранять информацию на запоминающем устройстве и считывать ее позднее снова. При этом от пользователя должны скрываться такие детали, как способ и место хранения информации, а также детали работы устройства.
Во многих операционных системах имя файла состоит из двух частей, разделенных точкой. Часть имени после точки называется расширением файла и обычно означает его тип. Так, в MS- DOS имя файла может содержать от 1 до 8 символов, а расширение от 0 (отсутствует) до 3.
В некоторых ОС, например, Windows , расширение указывает на программу, создавшую файл . Другие ОС, например, UNIX , не принуждают пользователя строго придерживаться расширений. Некоторые типичные расширения файлов приведены ниже.
В иерархически организованных файловых системах обычно используются три типа имен файлов: простые, составные и относительные.
Простое (короткое) символьное имя идентифицирует файл в пределах одного каталога. Несколько файлов могут иметь одно и то же простое имя , если они принадлежат разным каталогам.
Составное (полное) символьное имя представляет собой цепочку, содержащую имя диска и имена всех каталогов, через которые проходит путь от корневого каталога до данного файла.
Относительное имя файла определяется через текущий каталог , т.е. каталог, в котором в данный момент времени работает пользователь . Таким образом, относительных имен у файла может быть достаточно много, и все они являются частью полного имени.
Понятие файла включает не только хранимые им данные и имя, но и информацию, описывающую свойства файла. Эта информация составляет атрибуты файла. Список атрибутов может быть различным в различных ОС. Пример возможных атрибутов приведен ниже.
Пользователь может получить доступ к атрибутам, используя средства, предоставляемые для этой цели файловой системой. Обычно разрешается читать значение любых атрибутов, а изменять – только некоторые.
Значения атрибутов файлов могут содержаться в каталогах, как это сделано, например, в MS- DOS (рис. 7.7). Другим вариантом является размещение атрибутов в специальных таблицах, в этом случае в каталогах содержатся ссылки на эти таблицы.
Логическая организация файла
В общем случае данные, содержащиеся в файле, имеют некоторую логическую структуру. Эта структура (организация) файла является базой при разработке программы, предназначенной для обработки этих данных. Поддержание структуры данных может быть целиком возложено на приложение либо в той или иной степени эту работу может взять на себя файловая система .
В первом случае, когда все действия, связанные со структуризацией и интерпретацией содержимого файла, целиком относятся к ведению приложения, файл представляется файловой системе неструктурированной последовательностью данных. Приложение формирует запросы к файловой системе на ввод- вывод , используя общие для всех приложений системные средства, например, указывая смещение от начала файла и количество байт , которые необходимо считать или записать. Поступивший к приложению поток байт интерпретируется в соответствии с заложенной в программе логикой. Следует подчеркнуть, что интерпретация данных никак не связана с действительным способом их хранения в файловой системе.
Модель файла, в соответствии с которой содержимое файла представляется неструктурированной последовательностью байт , стала популярной вместе с ОС UNIX , и теперь широко используется в современных ОС. Неструктурированная модель файла позволяет легко организовать разделение файла между несколькими приложениями, поскольку разные приложения могут по -своему структурировать и интерпретировать данные, содержащиеся в файле.
Другая модель файла – структурированный файл . В этом случае поддержание структуры файла поручается файловой системе. Файловая система видит файл как упорядоченную последовательность логических записей. ФС предоставляет приложению доступ к записи, а вся дальнейшая обработка данных, содержащихся в этой записи, выполняется приложением!
Известно пять фундаментальных способов организации файлов [10]:
- смешанный файл,
- последовательный файл ,
- индексно- последовательный файл ,
- индексируемый файл,
- файл прямого доступа.
При выборе способа организации файла нужно учитывать несколько критериев:
- быстрота доступа,
- легкость обновления,
- экономность хранения,
- простота обслуживания,
- надежность.
Смешанный файл . Это наименее сложная форма организации файла. Данные накапливаются в порядке поступления. Запись состоит из одного пакета данных. Записи могут иметь различные или одинаковые поля, расположенные в различном порядке (рис. 7.8). Каждое поле описывает само себя, включая как имя, так и значение . Длина каждого поля должна быть указана явно либо посредством применения разделителя.
Поскольку смешанный файл не имеет никакой структуры, доступ к записи осуществляется полным перебором всех записей файла. Смешанные файлы применяются в том случае, когда данные накапливаются и сохраняются перед обработкой, или если данные неудобны для организации. Файлы этого типа рационально используют дисковое пространство , хорошо подходят для полного набора. Обновление записей достаточно сложно, так же как и вставка записи.
Последовательный файл . Для записей используется фиксированный формат. Все записи имеют одинаковую длину (но иногда и не одинаковую) и состоят из одинакового количества полей фиксированной длины, организованных в определенном порядке (рис. 7.9). Поскольку длина и позиция каждого поля известны, сохранению подлежат только значения полей. Атрибутами файловой структуры является имя и длина каждого поля.
Одно определенное поле (или несколько полей) называется ключевым. Оно однозначно идентифицирует запись , так как это поле различно для каждой записи. Более того, записи сохраняются в "ключевой" последовательности: в алфавитном порядке для текстового ключа и в числовом – для числового. Последовательные файлы часто используются пакетными приложениями и обычно являются оптимальным вариантом, если эти приложения выполняют обработку всех записей. Удобно и то, что такой файл можно хранить как на ленте, так и на магнитном диске.
Для диалоговых приложений последовательный файл малоэффективен, поскольку для нахождения нужной записи требуется последовательный перебор записи файла. Правда, если в оперативную память загрузить весь файл , возможен более эффективный метод поиска. Дополнения к файлу или изменения в записях создают проблемы.
Обычно последовательный файл сохраняется с последовательной организацией записей внутри блока, т.е. физическая организация файла в точности соответствует логической. Новые записи размещаются в отдельном смешанном файле, называемом журнальным файлом, или файлом транзакции. Периодически в пакетном режиме выполняется слияние основного и журнального файлов в новый файл с корректной последовательностью ключей.
Альтернативной организацией может быть физическая организация в виде списка с использованием указателей. В каждом физическом блоке сохраняется одна или несколько записей, и каждый блок содержит указатель на следующий блок. Для вставки новых записей достаточно изменить указатели, и нет необходимости в том, чтобы новые записи занимали определенную физическую позицию. Это удобство достигается за счет определенных накладных расходов и дополнительной работы. Если в последовательном файле записи имеют одну и ту же длину, то можно вычислить адрес требуемой записи по ее номеру, номеру текущей записи и длине записи. Если записи имеют переменную длину, такой подход невозможен.
Индексно- последовательный файл . Одним из методов преодоления недостатков последовательного файла является индексно-последовательная организация файла. В этом случае файл состоит из трех частей (файлов): главный файл , содержащий записи с последовательно идущими ключами, индексный файл , содержащий индексное поле , и указатель в главный с ключами, файл переполнения (рис. 7.10).
Для поиска нужной записи по ее ключу сначала выполняется поиск в индексном файле. После того как в нем найдено наибольшее значение ключа, которое не превышает искомое, продолжается поиск в главном файле. Например, пусть последовательный файл (главный) содержит 1 млн записей. Для поиска определенного ключевого значения необходимо в среднем 0,5 млн операций доступа к записям. Если создать индексный файл , содержащий 1000 элементов, то потребуется в среднем 500 операций доступа к индексному файлу, после чего еще нужно в среднем 500 операций доступа к главному файлу. В результате средняя длина поиска уменьшилась с 0,5 млн до 1000. Еще лучшего результата можно достичь, используя многоуровневую индексацию. При этом нижний уровень индексного файла рассматривается как последовательный файл , для которого создается индексный файл верхнего уровня.
Дополнения к файлу обрабатываются следующим образом. В каждой записи главного файла содержится дополнительное поле , невидимое для приложения и являющееся указателем на файл переполнения. Если в файле производится вставка новой записи, она добавляется в файл переполнения. Запись в главном файле, непосредственно предшествующая новой записи в логической последовательности, обновляется и указывает на новую запись в файле переполнения. Время от времени выполняется слияние индексно- последовательного файла с файлом переполнения.
Индексированный файл . Индексно- последовательный файл сохраняет одно ограничение последовательного файла : эффективная работа с файлом ограничена работой с ключевым полем. Если необходимо производить поиск записи по какой-либо иной характеристике, отличной от ключевого поля, то оказываются непригодными обе организации последовательного файла , в то время как в некоторых приложениях эта гибкость крайне желательна.
Для достижения гибкости необходимо применение большого количества индексов, по одному для каждого типа поля, которое может быть объектом поиска. В обобщенном индексированном файле доступ к записям осуществляется только по их индексам. В результате в размещении записей нет никаких ограничений до тех пор, пока указатель по крайней мере в одном индексе ссылается на эту запись . Кроме того, в таком файле легко реализуются записи переменной длины.
Используется два типа индексов. Полный индекс содержит по одному элементу для каждого типа записей главного файла. Сам по себе индекс организовывается в виде последовательного файла для облегчения поиска. Частный индекс содержит элементы для записей, в которых имеется интересующее пользователя поле . При добавлении новой записи в главный файл необходимо обновлять все индексные файлы.
Индексированные файлы применяются теми приложениями, в которых время доступа к информации является критической характеристикой и редко требуется обработка всех записей в файле.
Файл прямого доступа. Такой файл использует возможность прямого доступа к блоку с известным адресом при хранении файлов на диске. В каждой записи в этом случае также имеется ключевое поле .
Файловая система . На каждом носителе информации (гибком, жестком или лазерном диске) может храниться большое количество файлов. Порядок хранения файлов на диске определяется используемой файловой системой.
Каждый диск разбивается на две области: обла сть хранения файлов и каталог. Каталог содержит имя файла и указание на начало его размещения на диске. Если провести аналогию диска с книгой, то область хранения файлов соответствует ее содержанию, а каталог - оглавлению. Причем книга состоит из страниц, а диск - из секторов.
Для дисков с небольшим количеством файлов (до нескольких десятков) может использоваться одноуровневая файловая система , когда каталог (оглавление диска) представляет собой линейную последовательность имен файлов (табл. 1.2). Такой каталог можно сравнить с оглавлением детской книжки, которое содержит только названия отдельных рассказов.
Если на диске хранятся сотни и тысячи файлов, то для удобства поиска используется многоуровневая иерархическая файловая система , которая имеет древовидную структуру. Такую иерархическую систему можно сравнить, например, с оглавлением данного учебника, которое представляет собой иерархическую систему разделов, глав, параграфов и пунктов.
Начальный, корневой каталог содержит вложенные каталоги 1-го уровня, в свою очередь, каждый из последних может содержать вложенные каталоги 2-го уровня и так далее. Необходимо отметить, что в каталогах всех уровней могут храниться и файлы.
Например, в корневом каталоге могут находиться два вложенных каталога 1-го уровня (Каталог_1, Каталог_2) и один файл (Файл_1). В свою очередь, в каталоге 1-го уровня (Каталог_1) находятся два вложенных каталога второго уровня (Каталог_1.1 и Каталог_1.2) и один файл (Файл_1.1) - рис. 1.3.
Файловая система - это система хранения файлов и организации каталогов.
Рассмотрим иерархическую файловую систему на конкретном примере. Каждый диск имеет логическое имя (А:, В: - гибкие диски, С:, D:, Е: и так далее - жесткие и лазерные диски).
Пусть в корневом каталоге диска С: имеются два каталога 1-го уровня (GAMES, TEXT), а в каталоге GAMES один каталог 2-го уровня (CHESS). При этом в каталоге TEXT имеется файл proba.txt, а в каталоге CHESS - файл chess.exe (рис. 1.4).
Рис. 1.4. Пример иерархической файловой системы |
Путь к файлу . Как найти имеющиеся файлы (chess.exe, proba.txt) в данной иерархической файловой системе? Для этого необходимо указать путь к файлу. В путь к файлу входят записываемые через разделитель "\" логическое имя диска и последовательность имен вложенных друг в друга каталогов, в последнем из которых содержится нужный файл. Пути к вышеперечисленным файлам можно записать следующим образом:
Путь к файлу вместе с именем файла называют иногда полным именем файла.
Пример полного имени файла:
Представление файловой системы с помощью графического интерфейса . Иерархическая файловая система MS-DOS, содержащая каталоги и файлы, представлена в операционной системе Windows с помощью графического интерфейса в форме иерархической системы папок и документов. Папка в Windows является аналогом каталога MS-DOS
Однако иерархическая структура этих систем несколько различается. В иерархической файловой системе MS-DOS вершиной иерархии объектов является корневой каталог диска, который можно сравнить со стволом дерева, на котором растут ветки (подкаталоги), а на ветках располагаются листья (файлы).
В Windows на вершине иерархии папок находится папка Рабочий стол. Следующий уровень представлен папками Мой компьютер, Корзина и Сетевое окружение (если компьютер подключен к локальной сети) - рис. 1.5.
Рис. 1.5. Иерархическая структура папок |
Если мы хотим ознакомиться с ресурсами компьютера, необходимо открыть папку Мой компьютер.
1. В окне Мой компьютер находятся значки имеющихся в компьютере дисков. Активизация (щелчок) значка любого диска выводит в левой части окна информацию о его емкости, занятой и свободной частях.
Рядовому пользователю компьютерных электронных устройств редко, но приходится сталкиваться с таким понятием, как «выбор файловой системы». Чаще всего это происходит при необходимости форматирования внешних накопителей (флешек, microSD), установке операционных систем, восстановлении данных на проблемных носителях, в том числе жестких дисках. Пользователям Windows предлагается выбрать тип файловой системы, FAT32 или NTFS, и способ форматирования (быстрое/глубокое). Дополнительно можно установить размер кластера. При использовании ОС Linux и macOS названия файловых систем могут отличаться.
Возникает логичный вопрос: что такое файловая система и в чем ее предназначение? В данной статье дадим ответы на основные вопросы касательно наиболее распространенных ФС.
Что такое файловая система
Обычно вся информация записывается, хранится и обрабатывается на различных цифровых носителях в виде файлов. Далее, в зависимости от типа файла, кодируется в виде знакомых расширений – *exe, *doc, *pdf и т.д., происходит их открытие и обработка в соответствующем программном обеспечении. Мало кто задумывается, каким образом происходит хранение и обработка цифрового массива в целом на соответствующем носителе.
Операционная система воспринимает физический диск хранения информации как набор кластеров размером 512 байт и больше. Драйверы файловой системы организуют кластеры в файлы и каталоги, которые также являются файлами, содержащими список других файлов в этом каталоге. Эти же драйверы отслеживают, какие из кластеров в настоящее время используются, какие свободны, какие помечены как неисправные.
Запись файлов большого объема приводит к необходимости фрагментации, когда файлы не сохраняются как целые единицы, а делятся на фрагменты. Каждый фрагмент записывается в отдельные кластеры, состоящие из ячеек (размер ячейки составляет один байт). Информация о всех фрагментах, как части одного файла, хранится в файловой системе.
Файловая система связывает носитель информации (хранилище) с прикладным программным обеспечением, организуя доступ к конкретным файлам при помощи функционала взаимодействия программ A PI. Программа, при обращении к файлу, располагает данными только о его имени, размере и атрибутах. Всю остальную информацию, касающуюся типа носителя, на котором записан файл, и структуры хранения данных, она получает от драйвера файловой системы.
На физическом уровне драйверы ФС оптимизируют запись и считывание отдельных частей файлов для ускоренной обработки запросов, фрагментации и «склеивания» хранящейся в ячейках информации. Данный алгоритм получил распространение в большинстве популярных файловых систем на концептуальном уровне в виде иерархической структуры представления метаданных (B-trees). Технология снижает количество самых длительных дисковых операций – позиционирования головок при чтении произвольных блоков. Это позволяет не только ускорить обработку запросов, но и продлить срок службы HDD. В случае с твердотельными накопителями, где принцип записи, хранения и считывания информации отличается от применяемого в жестких дисках, ситуация с выбором оптимальной файловой системы имеет свои нюансы.
Основные функции файловых систем
Файловая система отвечает за оптимальное логическое распределение информационных данных на конкретном физическом носителе. Драйвер ФС организует взаимодействие между хранилищем, операционной системой и прикладным программным обеспечением. Правильный выбор файловой системы для конкретных пользовательских задач влияет на скорость обработки данных, принципы распределения и другие функциональные возможности, необходимые для стабильной работы любых компьютерных систем. Иными словами, это совокупность условий и правил, определяющих способ организации файлов на носителях информации.
Основными функциями файловой системы являются:
- размещение и упорядочивание на носителе данных в виде файлов;
- определение максимально поддерживаемого объема данных на носителе информации;
- создание, чтение и удаление файлов;
- назначение и изменение атрибутов файлов (размер, время создания и изменения, владелец и создатель файла, доступен только для чтения, скрытый файл, временный файл, архивный, исполняемый, максимальная длина имени файла и т.п.);
- определение структуры файла;
- поиск файлов;
- организация каталогов для логической организации файлов;
- защита файлов при системном сбое;
- защита файлов от несанкционированного доступа и изменения их содержимого.
Задачи файловой системы
Функционал файловой системы нацелен на решение следующих задач:
- присвоение имен файлам;
- программный интерфейс работы с файлами для приложений;
- отображение логической модели файловой системы на физическую организацию хранилища данных;
- поддержка устойчивости файловой системы к сбоям питания, ошибкам аппаратных и программных средств;
- содержание параметров файла, необходимых для правильного взаимодействия с другими объектами системы (ядро, приложения и пр.).
В многопользовательских системах реализуется задача защиты файлов от несанкционированного доступа, обеспечение совместной работы. При открытии файла одним из пользователей для других этот же файл временно будет доступен в режиме «только чтение».
Вся информация о файлах хранится в особых областях раздела (томах). Структура справочников зависит от типа файловой системы. Справочник файлов позволяет ассоциировать числовые идентификаторы уникальных файлов и дополнительную информацию о них с непосредственным содержимым файла, хранящимся в другой области раздела.
Операционные системы и типы файловых систем
Существует три основных вида операционных систем, используемых для управления любыми информационными устройствами: Windows компании Microsoft, macOS разработки Apple и операционные системы с открытым исходным кодом на базе Linux. Все они, для взаимодействия с физическими носителями, используют различные типы файловых систем, многие из которых дружат только со «своей» операционкой. В большинстве случаев они являются предустановленными, рядовые пользователи редко создают новые дисковые разделы и еще реже задумываются об их настройках.
В случае с Windows все выглядит достаточно просто: NTFS на всех дисковых разделах и FAT32 (или NTFS) на флешках. Если установлен NAS (сервер для хранения данных на файловом уровне), и в нем используется какая-то другая файловая система, то практически никто не обращает на это внимания. К нему просто подключаются по сети и качают файлы.
На мобильных гаджетах с ОС Android чаще всего установлена ФС версии ext4 во внутренней памяти и FAT32 на карточках microSD. Владельцы продукции Apple зачастую вообще не имеют представления, какая файловая система используется на их устройствах – HFS+, HFSX, APFS, WTFS или другая. Для них существуют лишь красивые значки папок и файлов в графическом интерфейсе.
Более богатый выбор у линуксоидов. Но здесь настройка и использование определенного типа файловой системы требует хотя бы минимальных навыков программирования. Тем более, мало кто задумывается, можно ли использовать в определенной ОС «неродную» файловую систему. И зачем вообще это нужно.
Рассмотрим более подробно виды файловых систем в зависимости от их предпочтительного использования с определенной операционной системой.
Файловые системы Windows
Исходный код файловой системы, получившей название FAT, был разработан по личной договоренности владельца Microsoft Билла Гейтса с первым наемным сотрудником компании Марком Макдональдом в 1977 году. Основной задачей FAT была работа с данными в операционной системе Microsoft 8080/Z80 на базе платформы MDOS/MIDAS. Файловая система FAT претерпела несколько модификаций – FAT12, FAT16 и, наконец, FAT32, которая используется сейчас в большинстве внешних накопителей. Основным отличием каждой версии является преодоление ограниченного объема доступной для хранения информации. В дальнейшем были разработаны еще две более совершенные системы обработки и хранения данных – NTFS и ReFS.
FAT (таблица распределения файлов)
Числа в FAT12, FAT16 и FAT32 обозначают количество бит, используемых для перечисления блока файловой системы. FAT32 является фактическим стандартом и устанавливается на большинстве видов сменных носителей по умолчанию. Одной из особенностей этой версии ФС является возможность применения не только на современных моделях компьютеров, но и в устаревших устройствах и консолях, снабженных разъемом USB.
Пространство FAT32 логически разделено на три сопредельные области:
- зарезервированный сектор для служебных структур;
- табличная форма указателей;
- непосредственная зона записи содержимого файлов.
К недостатком стандарта FAT32 относится ограничение размера файлов на диске до 4 Гб и всего раздела в пределах 8 Тб. По этой причине данная файловая система чаще всего используется в USB-накопителях и других внешних носителях информации. Для установки последней версии ОС Microsoft Windows 10 на внутреннем носителе потребуется более продвинутая файловая система.
С целью устранения ограничений, присущих FAT32, корпорация Microsoft разработала обновленную версию файловой системы exFAT (расширенная таблица размещения файлов). Новая ФС очень схожа со своим предшественником, но позволяет пользователям хранить файлы намного большего размера, чем четыре гигабайта. В exFAT значительно снижено число перезаписей секторов, ответственных за непосредственное хранение информации. Функция очень важна для твердотельных накопителей ввиду необратимого изнашивания ячеек после определенного количества операций записи. Продукт exFAT совместим с операционными системами Mac, Android и Windows. Для Linux понадобится вспомогательное программное обеспечение.
NTFS (файловая система новой технологии)
Стандарт NTFS разработан с целью устранения недостатков, присущих более ранним версиям ФС. Впервые он был реализован в Windows NT в 1995 году, и в настоящее время является основной файловой системой для Windows. Система NTFS расширила допустимый предел размера файлов до шестнадцати гигабайт, поддерживает разделы диска до 16 Эб (эксабайт, 10 18 байт ). Использование системы шифрования Encryption File System (метод «прозрачного шифрования») осуществляет разграничение доступа к данным для различных пользователей, предотвращает несанкционированный доступ к содержимому файла. Файловая система позволяет использовать расширенные имена файлов, включая поддержку многоязычности в стандарте юникода UTF, в том числе в формате кириллицы. Встроенное приложение проверки жесткого диска или внешнего накопителя на ошибки файловой системы chkdsk повышает надежность работы харда, но отрицательно влияет на производительность.
ReFS (Resilient File System)
Последняя разработка Microsoft, доступная для серверов Windows 8 и 10. Архитектура файловой системы в основном организована в виде B + -tree. Файловая система ReFS обладает высокой отказоустойчивостью благодаря реализации новых функций:
- Copy-on-Write (CoW) – никакие метаданные не изменяются без копирования;
- данные записываются на новое дисковое пространство, а не поверх существующих файлов;
- при модификации метаданных новая копия хранится в свободном дисковом пространстве, затем система создает ссылку из старых метаданных на новую версию.
Все это позволяет повысить надежность хранения файлов, обеспечивает быстрое и легкое восстановление данных.
Файловые системы macOS
Для операционной системы macOS компания Apple использует собственные разработки файловых систем:
- HFS+, которая является усовершенствованной версией HFS, ранее применяемой на компьютерах Macintosh, и ее более соверешенный аналог APFS. Стандарт HFS+ используется во всех устройствах под управлением продуктов Apple, включая компьютеры Mac, iPod, а также Apple X Server.
- Кластерная файловая система Apple Xsan, созданная из файловых систем StorNext и CentraVision, используется в расширенных серверных продуктах. Эта файловая система хранит файлы и папки, информацию Finder о просмотре каталогов, положениях окна и т.д.
Файловые системы Linux
В отличие от ОС Windows и macOS, ограничивающих выбор файловой системы предустановленными вариантами, Linux предоставляет возможность использования нескольких ФС, каждая из которых оптимизирована для решения определенных задач. Файловые системы в Linux используются не только для работы с файлами на диске, но и для хранения данных в оперативной памяти или доступа к конфигурации ядра во время работы системы. Все они включены в ядро и могут использоваться в качестве корневой файловой системы.
Основные файловые системы, используемые в дистрибутивах Linux:
Ext2, Ext3, Ext4 или Extended Filesystem – стандартная файловая система, первоначально разработанная еще для Minix. Содержит максимальное количество функций и является наиболее стабильной в связи с редкими изменениями кодовой базы. Начиная с ext3 в системе используется функция журналирования. Сегодня версия ext4 присутствует во всех дистрибутивах Linux.
JFS или Journaled File System разработана в IBM в качестве альтернативы для файловых систем ext. Сейчас она используется там, где необходима высокая стабильность и минимальное потребление ресурсов (в первую очередь в многопроцессорных компьютерах). В журнале хранятся только метаданные, что позволяет восстанавливать старые версии файлов после сбоев.
ReiserFS также разработана в качестве альтернативы ext3, поддерживает только Linux. Динамический размер блока позволяет упаковывать несколько небольших файлов в один блок, что предотвращает фрагментацию и улучшает работу с небольшими файлами. Недостатком является риск потери данных при отключении энергии.
XFS рассчитана на файлы большого размера, поддерживает диски до 2 терабайт. Преимуществом системы является высокая скорость работы с большими файлами, отложенное выделение места, увеличение разделов на лету, незначительный размер служебной информации. К недостаткам относится невозможность уменьшения размера, сложность восстановления данных и риск потери файлов при аварийном отключении питания.
Btrfs или B-Tree File System легко администрируется, обладает высокой отказоустойчивостью и производительностью. Используется как файловая система по умолчанию в OpenSUSE и SUSE Linux.
Другие ФС, такие как NTFS, FAT, HFS, могут использоваться в Linux, но корневая файловая система на них не устанавливается, поскольку они для этого не предназначены.
Дополнительные файловые системы
В операционных системах семейства Unix BSD (созданы на базе Linux) и Sun Solaris чаще всего используются различные версии ФС UFS (Unix File System), известной также под названием FFS (Fast File System). В современных компьютерных технологиях данные файловые системы могут быть заменены на альтернативные: ZFS для Solaris, JFS и ее производные для Unix.
Кластерные файловые системы включают поддержку распределенных хранилищ, расширяемость и модульность. К ним относятся:
- ZFS – «Zettabyte File System» разработана для распределенных хранилищ Sun Solaris OS;
- Apple Xsan – эволюция компании Apple в CentraVision и более поздних разработках StorNext;
- VMFS (Файловая система виртуальных машин) разработана компанией VMware для VMware ESX Server;
- GFS – Red Hat Linux именуется как «глобальная файловая система» для Linux;
- JFS1 – оригинальный (устаревший) дизайн файловой системы IBM JFS, используемой в старых системах хранения AIX.
Практический пример использования файловых систем
Владельцы мобильных гаджетов для хранения большого объема информации используют дополнительные твердотельные накопители microSD (HC), по умолчанию отформатированные в стандарте FAT32. Это является основным препятствием для установки на них приложений и переноса данных из внутренней памяти. Чтобы решить эту проблему, необходимо создать на карточке раздел с ext3 или ext4. На него можно перенести все файловые атрибуты (включая владельца и права доступа), чтобы любое приложение могло работать так, словно запустилось из внутренней памяти.
Операционная система Windows не умеет делать на флешках больше одного раздела. С этой задачей легко справится Linux, который можно запустить, например, в виртуальной среде. Второй вариант - использование специальной утилиты для работы с логической разметкой, такой как MiniTool Partition Wizard Free . Обнаружив на карточке дополнительный первичный раздел с ext3/ext4, приложение Андроид Link2SD и аналогичные ему предложат куда больше вариантов.
Флешки и карты памяти быстро умирают как раз из-за того, что любое изменение в FAT32 вызывает перезапись одних и тех же секторов. Гораздо лучше использовать на флеш-картах NTFS с ее устойчивой к сбоям таблицей $MFT. Небольшие файлы могут храниться прямо в главной файловой таблице, а расширения и копии записываются в разные области флеш-памяти. Благодаря индексации на NTFS поиск выполняется быстрее. Аналогичных примеров оптимизации работы с различными накопителями за счет правильного использования возможностей файловых систем существует множество.
Надеюсь, краткий обзор основных ФС поможет решить практические задачи в части правильного выбора и настройки ваших компьютерных устройств в повседневной практике.
Я не открою Америку, если скажу, что способ организации файлов в современных ФС мягко говоря не совсем удобен для конечного пользователя. И действительно: иерархическая модель представления данных на основе файлов и каталогов, не менявшаяся уже несколько десятков лет, просто не способна соответствовать современным потребностям в хранении большого количества разнородного контента. И если с музыкальной информацией все более-менее хорошо, благодаря таким медиа-библиотекам, как iTunes или Amarok, то с файлами остальных форматов ситуация до сих пор остается очень печальной.
Суть проблемы
Я уверен, на компьютере каждого человека, читающего этот топик, наверняка есть хоть один из следующих каталогов: soft, разобрать, временно, всякая всячина, trash, интересное. Обычно в папке софт находится несколько тысяч архивов и экзешников с говорящими названиями «setup.exe» или «589346.zip»; папка «Мои документы» засрана кучей файлов, многие из которых вообще к документам не относятся, а файлы из каталога «Разобрать» так и остаются не разобранными…
При этом, когда у нас возникает потребность отыскать «тот самый дистрибутив visual studio, который я скачивал пару месяцев назад», то гораздо проще за несколько секунд найти ссылку на установщик в гугле, чем долго и тщетно пытаться искать его на своем компьютере. Стандартные утилиты поиска так же не спасают, т.к. для бинарных файлов они могут ориентироваться только на название файла, да жалкую горстку дополнительных атрибутов.
Хочу заметить, что данная проблема в юзабилити файловых систем вовсе не является надуманной: достаточно вглянуть на этот топик, вызвавший достаточно бурное обсуждение.
Также можно ознакомиться с соответствующей главой из книги «Алан Купер об интерфейсе. Основы проектирования взаимодействия».
Варианты решения
Хорошо, но если такую простую и удобную идею до сих пор не внедрили производители операционных систем, то куда же смотрят разработчики сторонних приложений?!
Я полагал, что существует как минимум несколько альтернатив, позволяющих создавать базу данных, на основе тегирования файлов, ведь это так просто для реализации!
К моему разочарованию я обнаружил, что подсуетились лишь программисты под Mac OS: 7 File Tagging Applications for OS X (разумеется, почти все они платные).
Ни для windows, и, тем более, ни для Linux ничего подобного я не нашел. Хотя, возможно, я просто плохо искал — в таком случае очень прошу указать в комментариях ссылки на такой софт.
- Добавление/редактирование тегов к файлам и папкам прямо из контекстного меню файлового менеджера (Nautilus)
- Интерфейс для поиска и просмотра файлов по указанным тегам
- Отслеживание изменений в именах и расположении (что, в общем, одно и то же) файлов
Существующие средства
Решив прощупать почву для первого этапа, т.е. добавление своих элементов в контекстное меню программы Nautilus, я наткнулся на один open-source проект, который частично реализует мою идею — это "tags-tabs extension".
Честно говоря, слово «проект» слабо подходит для одного полуработающего .py исходника на 7 кб, и не имеющего никакой документации.
tags-tabs — это расширение для Nautilus, использующее библиотеку «python-nautilus». Оно добавляет в контекстное меню свой пункт, что позволяет назначать файлам теги и выполнять базовый поиск.
В теории, чтобы все заработало, необходимо поместить этот файл в директории
/.nautilus/extensions/python и дать ему права на исполнение. На практике, в моей Ubuntu 8.10 этот скрипт вызывает крэш приложения, при вызове меню. Говорят, что в ранних версиях убунты все работает нормально.
Также нельзя не упомянуть замечательный проект dhtfs.
DHTFS также проповедует идеологию ФС, основанной на тегах, написан на python и имеет даже краткую пользовательскую документацию! Но есть один минус — это cli-приложение.
Читайте также: