Скрещивание чистых линий разных сортов подбор
Селекция — это наука, задача которой состоит в исследовании и разработке методов выведения новых и улучшения уже существующих сортов растений, пород животных, штаммов микроорганизмов.
Селекция — это отрасль сельского хозяйства, занимающаяся выведением новых сортов сельскохозяйственных культур и пород животных.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Список и описание методов селекции растений
Методы селекции растений:
Гибридизация — это процесс скрещивания двух различных по генотипу организмов, размножающихся половым путем. Возникшие в результате данных скрещиваний особи называются гибридами.
Гибридизация подразделяется на:
Инбридинг — близкородственное скрещивание, приводящее к повышению гомозиготности. Основное применение — для получения чистых линий. Является единственным методом, использование которого направлено на сохранение сорта в чистом виде.
Инбридинг происходит при самоопылении перекрестноопыляемых растений. Растения подбирают такие, гибриды которых дают максимальный эффект гетерозиса.
Эффект гетерозиса заключается в свойстве гибридов превосходить по отдельным признакам лучшего из родителей. Данный эффект быстро угасает, часто наблюдается бесплодие.
- ослабление организмов, снижение их устойчивости к воздействиям среды;
- повышение заболеваемости;
- накопление вредных рецессивных аллелей.
Аутбридинг — скрещивание растений, относящихся к разным сортам, видам, родам.
Аутбридинг приводит к повышению гетерозиготности у потомства, соответственно — к повышению гетерозиготности популяции.
Аутбридинг соответствует перекрестному опылению.
- явление гетерозиса;
- повышение наследственной изменчивости;
- разрушение адаптивных комплексов генов;
- повышение уровня мутационных процессов.
Индивидуальный отбор
Применяется для самоопыляемых растений. Итог: получение чистой линии — потомства одной самоопыляющейся особи. Происходит отбор некоторых растений с необходимыми признаками, затем от них получают генетически однородное потомство.
Массовый отбор — выделение группы особей, которые сходны по одному или нескольким признакам, без проверки их генотипа.
Массовый отбор проводится по фенотипу. Применяется для перекрестноопыляемых растений. Все потомки гетерозиготны.
- подсолнечник;
- рожь;
- кукуруза.
Список и описание различных методов селекции животных
Методы селекции животных:
- инбридинг;
- аутбридинг;
- гетерозис.
Инбридинг — скрещивание, происходящее только внутри одной породы между близкими родственниками, применяется для накопления в генотипе определенных аллелей гена, несущих необходимый признак. В качестве исходного материала используют особей, являющихся братьями и сестрами (или родителями и потомством). Данный метод используется для сохранения породы в чистом виде.
- потеря жизнеспособности животных;
- снижается оплодотворяемость;
- увеличение эмбриональной смертности.
- Буденновская порода лошадей;
- чистые линии породистых собак.
Аутбридинг — неродственное скрещивание.
Является наиболее распространенным способом разведения у всех видов животных для всех пород.
- поддерживание полезных признаков;
- усиление следующих поколений.
Рецессивные мутации из гомозиготного состояния переходят в гетерозиготное, негативное влияние на жизнеспособность организма не оказывается.
Гетерозис — явление, при котором гибридные особи значительно превосходят родительские формы. Эффект быстро ослабевает, начиная со второго поколения. В качестве последствия часто наблюдается бесплодие.
- бройлерные цыплята;
- беркширская порода свиней;
- дюрок-джерсейская порода свиней.
Характеристики основных методов селекции
Основные методы селекции:
- отбор;
- гибридизация;
- искусственный мутагенез;
- полиплоидия.
- естественный;
- индивидуальный;
- массовый.
Естественный отбор. Формируется приспособленность к среде обитания. Получают районированные сорта и породы. Этот вид отбора играет в селекции определяющую роль. На любое растение в течение всей его жизни действует комплекс факторов окружающей среды, и растение должно быть устойчиво к болезням и вредителям, температурному и водному режиму.
Индивидуальный отбор. Данный вид отбора представляет собой выборочное сохранение особей с ценными свойствами. Осуществляется по генотипу, проводится оценка конкретного организма.
Массовый отбор. Данный метод селекции представляет собой отбор большого числа особей с необходимым признаком, остальные подвергаются выбраковке. Осуществляется по фенотипу, генетически однородный материал не предусмотрен. Многократный повтор.
- инбридинг;
- аутбридинг;
- отдаленная гибридизация.
Инбридинг — целенаправленное скрещивания близкородственных форм растений, животных и людей с целью накопления аллелей генов, содержащих нужный для человека признак. Синонимы данного процесса:
- инцухт — для растений;
- инбридинг — для животноводства;
- инцест — для людей.
Аутбридинг — простой и надежный метод разведения, который представляет собой скрещивание особей разных линий. Повышается уровень гетерозиготности. Гетерозиготные особи обладают более ценными признаками, чем гомозиготные. Данное скрещивание направлено на получение эффекта гетерозиса.
Отдаленная гибридизация. Представляет собой скрещивание особей, которые принадлежат к разным видам, родам, семействам.
Подразделяют на:
Искусственный мутагенез — новый метод селекции, представляющий собой получение наследственной изменчивости у особей путем воздействия на них сильными факторами.
Методы получения наследственной изменчивости:
- метод радиационной селекции — особи подвергаются воздействию альфа–, гамма– и бета–лучей, рентгеновских и ультрафиолетовых лучей, потоков нейтронов;
- метод химической селекции — особи подвергаются воздействию сильных химических веществ.
Полиплоидия в традиционной селекции — метод, широко используемый в селекции. Полиплоидия — наследственное изменение, которое связано с увеличением числа наборов хромосом в клетках организма, кратное гаплоидному числу хромосом. Дает увеличение размеров плодов и цветов. Полиплоидия гораздо чаще встречается среди растений, чем среди животных.
Причины возникновения полиплоидии:
- излучение;
- изменение температурного режима;
- нарушение расхождения хромосом при митотическом делении клетки.
- аутополиплоидия — внутривидовая, кратное увеличение набора хромосом;
- аллоплоидия — межвидовая, суммирование геномов разных видов, только затем идет их кратное увеличение.
Значение методов селекции в жизни человека
1. Создание для сельского хозяйства высокопродуктивных сортов растений и пород животных.
Одним из важнейших достижений человека является создание надежного источника питания путем одомашнивания диких животных и возделывания растений. Главным фактором одомашнивания служит искусственный отбор организмов.
Культурные формы растений и животных обладают сильно развитыми отдельными признаками, которые зачастую являются бесполезными или вредными для их существования в естественных условиях, но полезными для человека.
Продуктивность всех культурных растений значительно выше, чем у родственных им диких видов, при этом они хуже адаптируются к постоянно меняющимся условиям среды и не имеют средств защиты от поедания. Таким образом, в естественных условиях культурные формы существовать не могут.
Задание 8 № 46256
Установите последовательность этапов селекции кукурузы. Запишите в таблицу соответствующую последовательность цифр.
1) скрещивание чистых линий разных сортов
2) подбор растений исходного сорта со средней урожайностью
3) растения подвергают 5–6 раз инбридингу
4) выведение нескольких чистых линий
5) получение высокопродуктивных гетерозисных гибридов
Последовательность этапов селекции кукурузы:
2) подбор растений исходного сорта со средней урожайностью → 3) растения подвергают 5–6 раз инбридингу → 4) выведение нескольких чистых линий → 1) скрещивание чистых линий разных сортов → 5) получение высокопродуктивных гетерозисных гибридов.
Селекция – наука, занимающаяся выведением новых сортов растений, пород животных и штаммов микроорганизмов. Селекция происходит в два этапа: сначала путем скрещивания и мутагенеза создается наследственное разнообразие, а потом производится искусственный отбор.
Скрещивание (гибридизация)
Отдаленная гибридизация (аутбридинг) – скрещивание организмов разных сортов (пород, линий), подвидов, видов. При этом получаются новые сочетания генов, повышается гетерозиготность, возникает гетерозис (превосходство гибридов над родителями по размеру, жизнеспособности и т.д.).
Близкородственное скрещивание (инбридинг) – приводит к закреплению желательного признака (повышается гомозиготность: скрытые рецессивные гены переходят в гомозиготное состояние и проявляются в фенотипе). Длительное близкородственное скрещивание приводит к получению чистых линий. У самоопыляющихся растений они имеют нормальную жизнеспособность, а у животных и перекрестноопыляющихся растений – пониженную, потому что закрепляются не только желательные, но и вредные признаки.
Мутагенез
Если обработать мешок пшеницы ультрафиолетовыми или рентгеновскими лучами, то в каждом семени произойдут мутации.
Если обработать зиготу колхицином, то в ней произойдет полиплоидия (кратное увеличение количества хромосом), у растений это приводит к повышению урожайности (в селекции животных не используется).
С помощью полиплоидии Г.Д.Карпеченко преодолел бесплодие межвидового гибрида капусты и редьки: после обработки колхицином количество хромосом в клетках гибрида удвоилось, после чего стала возможна конъюгация и кроссинговер (а следовательно мейоз и образование половых клеток).
Искусственный отбор
При искусственном отборе закрепляются признаки, полезные для человека, при этом для самого растения или животного эти признаки могут быть вредными (например, ожирение у свиней).
Еще можно почитать
Задания части 1
Выберите один, наиболее правильный вариант. В селекции животных практически не используют
1) массовый отбор
2) неродственное скрещивание
3) родственное скрещивание
4) индивидуальный отбор
Выберите один, наиболее правильный вариант. Индивидуальный отбор, в отличие от массового, более эффективен, так как он проводится
1) по генотипу
2) под влиянием факторов окружающей среды
3) под влиянием деятельности человека
4) по фенотипу
Выберите один, наиболее правильный вариант. Все многообразие современных пород животных и сортов растений сформировалось под влиянием
1) модификационной изменчивости
2) стабилизирующего отбора
3) искусственного отбора
4) биологического прогресса
Выберите один, наиболее правильный вариант. Межлинейная гибридизация в селекции растений способствует
1) получению чистой линии
2) проявлению эффекта гетерозиса
3) получению межвидовых гибридов
4) усилению мутагенеза
Выберите один, наиболее правильный вариант. Явление гетерозиса наблюдается у гибридов, полученных от
1) генетически отдаленных родительских форм
2) близкородственного скрещивания
3) особей одного сорта, но с разными фенотипами
4) особей одного сорта, но с разными генотипами
Выберите один, наиболее правильный вариант. Материалом для искусственного отбора является
1) генетический код
2) популяция
3) дрейф генов
4) мутация
Выберите один, наиболее правильный вариант. Какой отбор более эффективен при создании нового сорта самоопыляющихся зерновых культур?
1) стабилизирующий
2) массовый
3) индивидуальный
4) движущий
Выберите один, наиболее правильный вариант. Увеличение числа хромосом, кратное гаплоидному набору, получают в селекции растений путем
1) близкородственного скрещивания
2) искусственного отбора
3) искусственного мутагенеза
4) гетерозиса
Гибридное потомство, полученное Г.Д.Карпеченко при скрещивании редьки и капусты, оказалось бесплодным вследствие
1) разного числа половых клеток у редьки и капусты
2) отсутствия конъюгации хромосом у гибридов
3) кроссинговера между негомологичными хромосомами редьки и капусты
4) гомозиготности родительских форм
Для восстановления способности к воспроизведению у гибридов, выведенных методом отдаленной гибридизации,
1) получают полиплоидные организмы
2) их размножают вегетативно
3) получают гетерозисные организмы
4) выводят чистые линии
Бесплодные гибриды у растений образуются в результате
1) внутривидового скрещивания
2) полиплоидизации
3) отдаленной гибридизации
4) анализирующего скрещивания
Снижение эффекта гетерозиса в последующих поколениях обусловлено
1) проявлением доминантных мутаций
2) увеличением числа гетерозиготных особей
3) уменьшением числа гомозиготных особей
4) проявлением рецессивных мутаций
Какой вклад в генетику и селекцию внес Г.Д.Карпеченко?
1) преодолел бесплодие межвидовых гибридов
2) вывел новый сорт пшеницы
3) открыл явление гетерозиса
4) известен, как создатель новых сортов фруктов
Определите число хромосом в соматических клетках капустно-редечного гибрида после преодоления его бесплодия, если в исходных соматических клетках капусты и редьки по 18 хромосом
1) 9
2) 18
3) 27
4) 36
ЕСТЕСТВЕННЫЙ - ИСКУССТВЕННЫЙ
1. Установите соответствие между характеристиками и формами отбора: 1) естественный, 2) искусственный. Запишите цифры 1 и 2 в правильном порядке.
А) отбирающий фактор – условия природы
Б) благоприятные изменения сохраняются и передаются по наследству
В) темпы эволюции быстрые
Г) целенаправленное накопление полезных для человека признаков
Д) результат – многообразие видов
Е) благоприятные изменения отбираются и становятся хозяйственно-ценными
2. Установите соответствие между видами отбора и их особенностями: 1) естественный, 2) искуственный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) темпы эволюции медленные
Б) неблагоприятные изменения бракуются, уничтожаются
В) благоприятные изменения отбираются, становятся хозяйственно-ценными
Г) приводит к возникновению новых популяций, видов
Д) результат – многообразие видов
Е) характер действия творческий – целенаправленно накапливаются признаки, полезные для человека
3. Установите соответствие между характеристикой отбора и его видом: 1) естественный, 2) искусственный. Запишите цифры 1 и 2 в правильном порядке.
А) действует в природе постоянно
Б) сохраняет особей с признаками, интересующими человека
В) обеспечивает формирование приспособленности к условиям жизни в биоценозах
Г) приводит к возникновению новых видов
Д) способствует созданию новых пород животных
Е) действует на пшеницу на поле
ЕСТЕСТВЕННЫЙ - ИСКУССТВЕННЫЙ ОТЛИЧИЯ
Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. В отличие от искусственного отбора, естественный отбор
1) сохраняет и отбирает только признаки, важные для выживания организма
2) приводит к появлению новых форм только через исторически длительные промежутки времени
3) приводит к появлению новых пород животных и сортов растений
4) базируется на модификационной изменчивости
5) не связан с межвидовой и внутривидовой борьбой
6) приводит к появлению новых видо
СЕЛЕКЦИЯ ПОСЛЕДОВАТЕЛЬНОСТЬ
Установите последовательность этапов деятельности селекционера при создании высокопродуктивных штаммов бактерий. Запишите соответствующую последовательность цифр.
1) присвоение номенклатурного названия штамму бактерий
2) воздействие мутагенами на исходную колонию бактерий
3) подбор исходной колонии бактерий
4) получение новой колонии (штамма) и оценка её продуктивности
5) отбор бактерий с новыми признаками
Определите последовательность этапов работы по выведению новых пород животных.
1) подбор родительских форм
2) анализ родословных исходных форм
3) анализ полученного потомства
4) скрещивание исходных форм
5) скрещивание особей разных линий
6) создание нескольких линий
Установите последовательность этапов деятельности селекционера при использовании индивидуального отбора для самоопыляющихся растений. Запишите в таблицу соответствующую последовательность цифр.
1) испытание отобранных гомозиготных потомков на урожайность
2) подбор исходных растений с нужными для человека признаками
3) самоопыление растений и получение потомства
4) оценка гомозиготности растений в полученном потомстве
5) посев семян отобранных растений
Установите последовательность этапов деятельности селекционера при создании новой породы животных. Запишите в таблицу соответствующую последовательность цифр.
1) скрещивание производителей в племенном хозяйстве
2) многократный инбридинг полученных потомков
3) подбор исходных родительских форм с нужными для человека признаками
4) перевод генов хозяйственно ценных признаков в гомозиготное состояние
5) испытание отобранных гомозиготных потомков на продуктивность
СЕЛЕКЦИЯ РАСТЕНИЙ - ЖИВОТНЫХ
1. Установите соответствие между методом селекции и его использованием в селекции: 1) Селекция растений, 2) Селекция животных. Запишите цифры 1 и 2 в правильном порядке.
А) массовый отбор
Б) отбор по экстерьеру
В) получение полиплоидов
Г) искусственный мутагенез
Д) испытание родителей по потомству
2. Установите соответствие между методами селекции и организмами, к которым их как правило применяют: 1) животные, 2) растения. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) испытание производителя по потомству
Б) индивидуальный отбор потомков по экстерьеру
В) межсортовая гибридизация
Г) клонирование переносом ядра из соматической клетки в половую
Д) получение полиплоидных гибридов
Е) вегетативное размножение
3. Установите соответствие между методами и видами селекции: 1) селекция животных, 2) селекция растений. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) отбор по экстерьеру
Б) метод ментора
В) выращивание из культур клеток
Г) увеличение плоидности
Д) массовый отбор
Е) испытание родителей по потомству
СЕЛЕКЦИЯ ЖИВОТНЫХ
Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие понятия используют в селекции животных?
1) анализ потомства по фенотипу
2) искусственный мутагенез
3) движущий отбор
4) полиплоидию
5) инбридинг
Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Признаками гетерозисной формы растения или животного являются
1) гомозиготность по определённому признаку
2) повышенная урожайность гибридов
3) способность давать плодовитое потомство
4) устойчивость к болезням
5) мощное развитие вегетативных органов
6) усиление полученных признаков в последующих поколениях
Установите последовательность действий селекционера для получения гетерозисных организмов. Запишите соответствующую последовательность цифр.
1) получение гомозиготных линий
2) многократное самоопыление родительских растений
3) подбор исходных растений с определёнными признаками
4) получение высокопродуктивных гибридов
5) скрещивание организмов двух разных чистых линий
==========
Установите соответствие между особенностями и методами селекции: 1) аутбридинг, 2) инбридинг. Запишите цифры 1 и 2 в правильном порядке.
А) близкородственное скрещивание
Б) получение чистых линий
В) скрещивание неродственных организмов
Г) улучшает продуктивность гибридов
Д) наблюдается депрессия у гибридов
Е) повышает гетерозиготность гибридов
Установите соответствие между методом селекции и его особенностями: 1) гибридизация, 2) индуцированный мутагенез. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) получение гибридов путем скрещивания отобранных родительских форм
Б) воздействие на организм колхицином, который разрушает веретено деления клетки
В) появление новых признаков происходит в результате мутационной изменчивости
Г) чаще используется в селекции растений и микроорганизмов
Д) иногда наблюдается явление гетерозиса
Е) появление новых признаков происходит в результате комбинативной изменчивости
Чешский исследователь Грегор Мендель (1822–1884) считается основателем генетики, так как он первым, еще до того как оформилась эта наука, сформулировал основные законы наследования. Многие ученые до Менделя, в том числе выдающийся немецкий гибридизатор XVIII в. И. Кельрейтер, отмечали, что при скрещивании растений, принадлежащих к различным разновидностям, в гибридном потомстве наблюдается большая изменчивость. Однако объяснить сложное расщепление и, тем более, свести его к точным формулам никто не сумел из-за отсутствия научного метода гибридологического анализа.
Именно благодаря разработке гибридологического метода Менделю удалось избежать трудностей, запутавших более ранних исследователей. О результатах своей работы Г. Мендель доложил в 1865 г. на заседании Общества естествоиспытателей в г. Брюнна. Сама работа под названием “Опыты над растительными гибридами” была позже напечатана в “Трудах” этого общества, но не получила надлежащей оценки современников и оставалась забытой в течение 35 лет.
Будучи монахом, свои классические опыты по скрещиванию различных сортов гороха Г. Мендель проводил в монастырском саду в г. Брюнна. Он отобрал 22 сорта гороха, которые имели четкие альтернативные различия по семи признакам: семена желтые и зеленые, гладкие и морщинистые, цветки красные и белые, растения высокие и низкие и т.д. Важным условием гибридологического метода было обязательное использование в качестве родителей чистых, т.е. не расщепляющихся по изучаемым признакам форм.
Большую роль в успехе исследований Менделя сыграл удачный выбор объекта. Горох посевной — самоопылитель. Для получения гибридов первого поколения Мендель кастрировал цветки материнского растения (удалял пыльники) и производил искусственное опыление пестиков пыльцой мужского родителя. При получении гибридов второго поколения эта процедура уже была не нужна: он просто оставлял гибриды F1 самоопыляться, что делало эксперимент менее трудоемким. Растения гороха размножались исключительно половым способом, так что ни какие отклонения не могли исказить результаты опыта. И, наконец, у гороха Мендель обнаружил достаточное для анализа количество пар ярко контрастирующих (альтернативных) и легко различимых пар признаков.
Мендель начал анализ с самого простого типа скрещивания — моногибридного, при котором у родительских особей имеются различия по одной паре признаков. Первой закономерностью наследования, обнаруженной Менделем, было то, что все гибриды первого поколения имели одинаковый фенотип и наследовали признак одного из родителей. Этот признак Мендель назвал доминантным. Альтернативный ему признак другого родителя, не проявившийся у гибридов, был назван рецессивным. Открытая закономерность получила названия I закона Менделя, или закона единообразия гибридов I-го поколения. В ходе анализа второго поколения была установлена вторая закономерность: расщепление гибридов на два фенотипических класса (с доминантным признаком и с рецессивным признаком) в определенных числовых отношениях. Путем подсчета количества особей в каждом фенотипическом классе Мендель установил, что расщепление в моногибридном скрещивании соответствует формуле 3 : 1 (на три растения с доминантным признаком, одно — с рецессивным). Эта закономерность получила название II закона Менделя, или закона расщепления. Открытые закономерности проявлялись при анализе всех семи пар признаков, на основании чего автор пришел к выводу об их универсальности. При самоопылении гибридов F2 Мендель получил следующие результаты. Растения с белыми цветами давали потомство только с белыми цветками. Растения с красными цветками вели себя по-разному. Лишь третья часть их давала единообразное потомство с красными цветами. Потомство остальных расщеплялось в отношении красной и белой окраски в соотношении 3 : 1.
Ниже приведена схема наследования окраски цветков гороха, иллюстрирующая I и II законы Менделя.
Схема наследования красной и белой окраски цветков у гороха
При попытке объяснить цитологические основы открытых закономерностей Мендель сформулировал представление о дискретных наследственных задатках, содержащихся в гаметах и определяющих развитие парных альтернативных признаков. Каждая гамета несет по одному наследственному задатку, т.е. является “чистой”. После оплодотворения зигота получает два наследственных задатка (один — от матери, другой — от отца), которые не смешиваются и в дальнейшем при образовании гибридом гамет также попадают в разные гаметы. Эта гипотеза Менделя получила название правила “чистоты гамет”. От комбинации наследственных задатков в зиготе зависит то, каким признаком будет обладать гибрид. Задаток, определяющий развитие доминантного признака, Мендель обозначал заглавной буквой (А), а рецессивный — прописной (а). Сочетание АА и Аа в зиготе определяет развитие у гибрида доминантного признака. Рецессивный признак проявляется только при комбинации аа.
В 1902 г. В. Бетсон предложил обозначить явление парности признаков термином “аллеломорфизм”, а сами признаки, соответственно, “аллеломорфными”. По его же предложению, организмы, содержащие одинаковые наследственные задатки, стали называть гомозиготными, а содержащие разные задатки — гетерозиготными. Позже, термин “аллеломорфизм” был заменен более кратким термином “аллелизм” (Иогансен, 1926), а наследственные задатки (гены), отвечающие за развитие альтернативных признаков были названы “аллельными”.
Гибридологический анализ предусматривает реципрокное скрещивание родительских форм, т.е. использования одной и той же особи сначала в качестве материнского родителя (прямое скрещивание), а затем в качестве отцовского (обратное скрещивание). Если в обоих скрещиваниях получаются одинаковые результаты, соответствующие законам Менделя, то это говорит о том, что анализируемый признак определяется аутосомным геном. В противном случае имеет место сцепление признака с полом, обусловленное локализацией гена в половой хромосоме.
Схема реципрокного моногибридного скрещивания
Буквенные обозначения: Р — родительская особь, F — гибридная особь, ♀ и ♂ — женская или мужская особь (или гамета),
заглавная буква (А) — доминантный наследственный задаток (ген), строчная буква (а) — рецессивный ген.
Среди гибридов второго поколения с желтой окраской семян есть как доминантные гомозиготы, так и гетерозиготы. Для определения конкретного генотипа гибрида Мендель предложил проводить скрещивание гибрида с гомозиготной рецессивной формой. Оно получило название анализирующего. При скрещивании гетерозиготы (Аа) с линией анализатором (аа) наблюдается расщепление и по генотипу, и по фенотипу в соотношении 1 : 1.
Схема анализирующего скрещивания
Если гомозиготной рецессивной формой является один из родителей, то анализирующее скрещивание одновременно становится беккроссом — возвратным скрещиванием гибрида с родительской формой. Потомство от такого скрещивания обозначают Fb.
Закономерности, обнаруженные Менделем при анализе моногибридного скрещивания, проявлялись также и в дигибридном скрещивании, в котором родители различались по двум парам альтернативных признаков (например, желтая и зеленая окраска семян, гладкая и морщинистая форма). Однако количество фенотипических классов в F2 возрастало вдвое, а формула расщепления по фенотипу была 9 : 3 : 3 : 1 (на 9 особей с двумя доминантными признаками, по три особи — с одним доминантным и одним рецессивным признаком и одна особь с двумя рецессивными признаками).
Для облегчения анализа расщепления в F2 английский генетик Р. Пеннет предложил его графическое изображение в виде решетки, которую стали называть по его имени (решеткой Пеннета). Слева по вертикали в ней располагаются женские гаметы гибрида F1, справа — мужские. Во внутренние квадраты решетки вписываются сочетания генов, возникающие при их слиянии, и соответствующий каждому генотипу фенотип. Если гаметы располагать в решетке в той последовательности, какая представлена на схеме, то в решетке можно заметить порядок в расположении генотипов: по одной диагонали располагаются все гомозиготы, по другой — гетерозиготы по двум генам (дигетерозиготы). Все остальные клетки заняты моногетерозиготами (гетерозиготами по одному гену).
Расщепление в F2 можно представить, используя фенотипические радикалы, т.е. указывая не весь генотип, а только гены, которые определяют фенотип. Эта запись выглядит следующим образом:
Черточки в радикалах означают, что вторые аллельные гены могут быть как доминантными, так и рецессивными, фенотип при этом будет одинаковым.
Схема дигибридного скрещивания
(решетка Пеннета)
Общее количество генотипов F2 в решетке Пеннета — 16, но разных — 9, так как некоторые генотипы повторяются. Частота разных генотипов описывается правилом:
В F2 дигибридного скрещивания все гомозиготы встречаются один раз, моногетерозиготы — два раза и дигетерозиготы — четыре раза. В решетке Пеннета представлены 4 гомозиготы, 8 моногетерозигот и 4 дигетерозиготы.
Расщепление по генотипу соответствует следующей формуле:
1ААВВ : 2ААВb : 1ААbb : 2АаВВ : 4АаВb : 2Ааbb : 1ааВВ : 2ааВb : 1ааbb.
Сокращенно - 1 : 2 : 1 : 2 : 4 : 2 : 1 : 2 : 1.
Среди гибридов F2 только два генотипа повторяют генотипы родительских форм: ААВВ и ааbb; в остальных произошла перекомбинация родительских генов. Она привела к появлению двух новых фенотипических классов: желтых морщинистых семян и зеленых гладких.
Проведя анализ результатов дигибридного скрещивания по каждой паре признаков отдельно, Мендель установил третью закономерность: независимый характер наследования разных пар признаков (III закон Менделя). Независимость выражается в том, что расщепление по каждой паре признаков соответствует формуле моногибридного скрещивания 3 : 1. Таким образом, дигибридное скрещивание можно представить как два одновременно идущих моногибридных.
Как было установлено позже, независимый тип наследования обусловлен локализацией генов в разных парах гомологичных хромосом. Цитологическую основу менделевского расщепления составляет поведение хромосом в процессе клеточного деления и последующее слияние гамет во время оплодотворения. В профазе I редукционного деления мейоза гомологичные хромосомы коньюгируют, а затем в анафазе I расходятся к разным полюсам, благодаря чему аллельные гены не могут попасть в одну гамету. Негомологичные хромосомы при расхождении свободно комбинируются друг с другом и отходят к полюсам в разных сочетаниях. Этим обусловлена генетическая неоднородность половых клеток, а после их слияния в процессе оплодотворения — генетическая неоднородность зигот, и как следствие, генотипическое и фенотипическое разнообразие потомства.
Независимое наследование разных пар признаков позволяет легко рассчитывать формулы расщепления в ди- и полигибридных скрещиваниях, так как в их основе лежат простые формулы моногибридного скрещивания. При расчете используется закон вероятности (вероятность встречаемости двух и более явлений одновременно равна произведению их вероятностей). Дигибридное скрещивание можно разложить на два, тригибридное — на три независимых моногибридных скрещивания, в каждом из которых вероятность проявления двух разных признаков в F2 равна 3 : 1. Следовательно, формула расщепления по фенотипу в F2 дигибридного скрещивания будет:
(3 : 1) 2 = 9 : 3 : 3 : 1,
тригибридного (3 : 1) 3 = 27 : 9 : 9 : 9 : 3 : 3 : 3 : 1 и т.д.
Число фенотипов в F2 полигибридного скрещивания равно 2 n , где n — число пар признаков, по которым различаются родительские особи.
Формулы расчета других характеристик гибридов представлены в таблице 1.
Таблица 1. Количественные закономерности расщепленияв гибридном потомстве
при различных типах скрещиваний
Расщепление по фенотипу в F2
Проявление закономерностей наследования, открытых Менделем, возможно только при определенных условиях (не зависящих от экспериментатора). Ими являются:
- Равновероятное образование гибридом всех сортов гамет.
- Всевозможное сочетание гамет в процессе оплодотворения.
- Одинаковая жизнеспособность всех сортов зигот.
Если эти условия не реализуются, то характер расщепления в гибридном потомстве изменяется.
Первое условие может быть нарушено по причине нежизнеспособности того или иного типа гамет, возможной вследствие различных причин, например, негативного действия другого гена, проявляющегося на гаметическом уровне.
Второе условие нарушается в случае селективного оплодотворения, при котором наблюдается предпочтительное слияние определенных сортов гамет. При этом гамета с одним и тем же геном может вести себя в процессе оплодотворения по-разному, в зависимости от того является ли она женской или мужской.
Третье условие обычно нарушается, если доминантный ген имеет в гомозиготном состоянии летальный эффект. В этом случае в F2 моногибридного скрещивания в результате гибели доминантных гомозигот АА вместо расщепления 3 : 1 наблюдается расщепление 2 : 1. Примером таких генов являются: ген платиновой окраски меха у лисиц, ген серой окраски шерсти у овец породы ширази. (Подробнее в следующей лекции.)
Причиной отклонения от менделевских формул расщепления может также стать неполное проявление признака. Степень проявления действия генов в фенотипе обозначается термином экспрессивность. У некоторых генов она является нестабильной и сильно зависит от внешних условий. Примером может служить рецессивный ген черной окраски тела у дрозофилы (мутация ebony), экспрессивность которого зависит от температуры, вследствие чего особи гетерозиготные по этому гену могут иметь темную окраску.
Открытие Менделем законов наследования более чем на три десятилетия опередило развитие генетики. Опубликованный автором труд “Опыт работы с растительными гибридами” не был понят и по достоинству оценен современниками, в том числе Ч. Дарвиным. Основная причина этого заключается в том, что к моменту публикации работы Менделя еще не были открыты хромосомы и не был описан процесс деления клеток, составляющий, как было сказано выше, цитологическую основу менделевских закономерностей. Кроме того, сам Мендель усомнился в универсальности открытых им закономерностей, когда по совету К. Негели стал проверять полученные результаты на другом объекте — ястребинке. Не зная о том, что ястребинка размножается партеногенетически и, следовательно, у нее нельзя получить гибридов, Мендель был совершенно обескуражен итогами опытов, никак не вписывавшимися в рамки его законов. Под влиянием неудачи он забросил свои исследования.
Признание пришло к Менделю в самом начале ХХ в., когда в 1900 г. три исследователя — Г. де Фриз, К. Корренс и Э. Чермак — независимо друг от друга опубликовали результаты своих исследований, воспроизводящих эксперименты Менделя, и подтвердили правильность его выводов. Поскольку к этому времени был полностью описан митоз, почти полностью мейоз (его полное описание завершилось в 1905 г.), а также процесс оплодотворения, ученые смогли связать поведение менделевских наследственных факторов с поведением хромосом в процессе клеточного деления. Переоткрытие законов Менделя и стало отправной точкой для развития генетики.
Первое десятилетие ХХ в. стало периодом триумфального шествия менделизма. Закономерности, открытые Менделем, были подтверждены при изучении различных признаков как на растительных, так и на животных объектах. Возникло представление об универсальности законов Менделя. Вместе с тем стали накапливаться факты, которые не укладывались в рамки этих законов. Но именно гибридологический метод позволил выяснить природу этих отклонений и подтвердить правильность выводов Менделя.
Все пары признаков, которые были использованы Менделем, наследовались по типу полного доминирования. В этом случае рецессивный ген в гетерозиготе не действует, и фенотип гетерозиготы определяется исключительно доминантным геном. Однако большое число признаков у растений и животных наследуются по типу неполного доминирования. В этом случае гибрид F1 полностью не воспроизводит признак того или другого родителя. Выражение признака является промежуточным, с большим или меньшим уклонением в ту или другую сторону.
Примером неполного доминирования может быть промежуточная розовая окраска цветков у гибридов ночной красавицы, полученных при скрещивании растений с доминантной красной и рецессивной белой окраской (см. схему).
Схема неполного доминирования при наследовании окраски цветков у ночной красавицы
Как видно из схемы, в скрещивании действует закон единообразия гибридов первого поколения. Все гибриды имеют одинаковую окраску — розовую — в результате неполного доминирования гена А. Во втором поколении разные генотипы имеют ту же частоту, что и в опыте Менделя, а изменяется только формула расщепления по фенотипу. Она совпадает с формулой расщепления по генотипу — 1 : 2 : 1, так как каждому генотипу соответствует свой признак. Это обстоятельство облегчает проведение анализа, так как отпадает надобность в анализирующем скрещивании.
Существует еще один тип поведения аллельных генов в гетерозиготе. Он называется кодоминированием и описан при изучении наследования групп крови у человека и ряда домашних животных. В этом случае у гибрида, в генотипе которого присутствуют оба аллельных гена, в равной мере проявляются оба альтернативных признака. Кодоминирование наблюдается при наследовании групп крови системы А, В, 0 у человека. У людей с группой АВ (IV группа) в крови присутствуют два разных антигена, синтез которых контролируется двумя аллельными генами.
Похожие материалы по теме "Законы Менделя":
Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы":
ЕГЭ видео | Подготовка к ЕГЭ по биологии |Москва запись закреплена
Необычная задача по генетике
Подобные задачи входят в программу ЕГЭ по биологии (эта была на экзамене в 2016 году) и для моих учеников они не представляются сложности. Однако невнимательность к деталям, к условию задачи может привести к ее неверному решению.
Итак, скрестили два растения чистых линий — белое стелющееся и окрашенное кустистое. Все гибриды первого поколения получились окрашенными стелющимися. С гибридом первого поколения провели анализирующее скрещивание. В результате анализирующего скрещивания получили белые стелющиеся и окрашенные кустистые растения. Определите генотипы всех особей, указанных в задаче. Какой закон наследственности получил проявление?
Так как в первом поколении все особи единообразны и по фенотипу они окрашенные стелющиеся, то:
А — окрашенные, а — белые.
В — стелющиеся, b — кустистые.
Схема скрещивания 1:
ааBB*AAbb
G: aB; Ab
F1: АаВb — окрашенными стелющимися (единообразие).
Cхема скрещивания 2 (анализирующее скрещивание):
АаВb*ааbb
Так как, согласно условию задачи, в результате этого скрещивания появляется две фенотипические группы, есть основание утверждать, что у АаВb появляется только два сорта гамет — Аb и аВ.
Подобный факт обусловлен сцепленным наследованием без кроссинговера. Ген А лежит в одной хромосоме с геном b и эта хромосома попадает в гамету, которую мы указываем так — Аb.
А ген а в одной хромосоме с геном В, и эта хромосома попадает в гамету, которую мы указываем так — аВ.
Как мы понимаем, что кроссинговера не было? По количеству фенотипических групп в потомстве — если их две, значит у дигетерозиготы АаВb было два сорта гамет, которые в результате анализирующего скрещивания обеспечили появление двух фенотипов в потомстве — белых стелющихся и окрашенных кустистых растений.
Почему мы указали у организма АаВb именно эти два сорта гамет — Аb и аВ, а не АВ и аb? Именно гаметы АВ и аb мы часто указываем у АаВb в других задачах на сцепленное наследование с кроссинговером. Причина проста: в этой задаче при написании гамет мы должны учесть появившиеся потомство. Любое потомство рождается при участии гамет. Мы посмотрели на потомство во втором скрещивании и поняли, что гаметы у АаВb именно Аb и аВ, а не АВ и аb.
В скобках рядом с каждым словом фенотипа я укажу аллель, его обозначающую. Обратите внимание, в потомстве после второго скрещивания белые (а) стелющиеся (В) и окрашенные (А) кустистые (b) растения. Это потомство появилось при участии двух гамет — аВ и Аb. Обе гаметы были образованы в мейозе, когда в одну гамету попала одна хромосома с двумя расположенными в ней сцепленными аллелями а и В, а в другую — вторая хромосома. В ней также были сцеплены аллели А и b.
Приведём вторую схему скрещивания полностью.
Cхема скрещивания 2 (анализирующее скрещивание):
АаВb*ааbb
G: Аb; аВ; ab
Безусловно, у организма с генотипом ааbb только один сорт гамет — аb.
F2:
Ааbb — окрашенные кустистые.
ааBb — белые стелющиеся.
В данной задаче проявился закон сцепленного наследования (закон Моргана), без кроссинговера.
Читайте также: