Сколько углекислого газа поглощает растение
Известно, что растения поглощают углекислый газ и выделяют кислород, а человек - наоборот. Известно также, что современные пластиковые окна не пропускают в комнату уличный воздух, что препятствует естественной вентиляции в квартире. Соответственно, необходимо регулярное и обязательное проветривание. Но на улице воздух часто загрязнен выхлопами машин и пылью с терриконов, поэтому мы задались вопросом: "Можно ли при помощи комнатных растений устранить, выделяемый человеком, углекислый газ и сколько таких растений необходимо?"
Что такое фотосинтез? Это образование органических веществ зелеными растениями с использованием энергии солнечного света и воды. В ходе фотосинтеза происходит поглощение из атмосферы углекислого газа и выделение кислорода 6CO 2 + 6H 2 O = C 6 H 12 O 6 + 6O 2
Создав ограниченное пространство, мы будем помещать комнатное растение в пакет (с разной светопропускаемостью) вместимостью ~ 50 л.
1 Этап.
Поместим комнатное растение Аглаонему (Aglaonema roebelinii) в черный (почти непрозрачный) пакет, установив в него дополнительно Метеостанцию NetAtmo. Таким образом, показания содержания углекислого газа внутри пакета мы будем видеть в текущем режиме прямо с монитора компьютера.
Аглаонема - весьма полезное комнатное растение. Она эффективно очищает воздух в помещениях, уменьшает содержание бензола и других вредных веществ, которые попадают в воздух от мебели, пластика и лакокрасочных покрытий.
Итак, за первые 40 минут наблюдений мы замечаем резкой скачок уровня углекислого газа (до 2311 ppm). Выделение СО2 продолжается вплоть до (2754 ppm) того, пока мы не освободим растение из непрозрачного пакета. Ведь свет внутрь не попадает. Реакция фотосинтеза не происходит.
Перемещаем растение из темного пакета в прозрачный для того, чтобы листья получали солнечный цвет и началась реакция фотосинтеза. И действительно, содержание CO2 резко падает с 1060 до 315 ppm.
Нефтяные компании, например BP и Shell, делают ставку на рост цен на углеродные кредиты как источник дохода в будущем по мере того, как их прибыль от ископаемого топлива падает, обращает внимание Рейтер.
В прошлом году BP вложила $5 млн в Finite Carbon, которая связывает владельцев лесных хозяйств с компаниями, стремящимися компенсировать выбросы, вызывающие потепление климата, за счет посадки деревьев. Калифорнийская фирма, по словам ее исполнительного директора Шона Карни (Sean Carney), рассчитывает принести землевладельцам $1 млрд в течение следующих 10 лет. Более того, по мнению Карни, поскольку в прошлом году компании и страны поспешили дать новые обещания в области борьбы с глобальным потеплением, этот прогноз может быть даже слишком консервативным.
Амбиции vs амуниции
Амбиции мейджеров по доходам перевешивают текущие инвестиции, отмечает Рейтер.
Цели в области изменения климата, согласованные в Париже в 2016 году, стимулируют работу компаний на рынке компенсации выбросов углеродов. Хотя рынок еще нельзя признать зрелым, он быстро растет, поскольку компании и страны стремятся добровольно (или не очень) соответствовать требованиям устойчивого развития.
Европейские нефтяные компании заявляют, что инвестирование в проекты с целью увеличения объемов углеродных кредитов — это просто хороший бизнес, предлагающий новые источники доходов в то время, когда цены на нефть рухнули, а энтузиазм к открытиям улетучивается.
Хотя в Европейском Союзе, Калифорнии и Австралии некоторые отрасли охвачены закрепленными в законах схемами торговли выбросами углерода, в большей части мира нет таких поддерживаемых государством рынков. Поэтому пока у большинства эмитентов имеется лишь несколько добровольных рынков компенсации выбросов углерода, запущенных за последние 15 лет.
Ожидается, что по мере увеличения числа обращений за углеродными кредитами их цена будет расти. Бюджеты Shell, например, основаны на цене углерода в $85 или около 70 евро за тонну к 2050 году, что более чем вдвое превышает текущую цену в ЕС — чуть менее 30 евро.
Хотя каждый добровольный рынок имеет свои собственные правила входа, они, как правило, работают путем сертификации кредитов для проектов по сокращению выбросов углерода, которые сохраняют леса и водно-болотные угодья, или помогают заменить дровяные или угольные печи на печи, использующие более чистое топливо.
Торговцы воздухом
По данным Ecosystem Marketplace, основного агрегатора этих данных, в прошлом году весь рынок добровольных компенсаций за выбросы углерода стоил около $300 млн, а компенсационные выплаты составили около 104 млн т эквивалента диоксида углерода (CO2-эквивалента).
Однако этот объем невелик по сравнению с 33 млрд т CO2-эквивалента, выброшенных в 2019 году только энергетическим сектором, из которых 2,1 млрд т приходятся на продукцию, произведенную крупными европейскими энергетическими компаниями (расчеты Международного энергетического агентства и Рейтер).
В ноябрьском отчете целевой группы инвесторов и эмитентов во главе с бывшим управляющим Банка Англии Марком Карни говорится, что добровольный рынок должен вырасти в 15 раз, чтобы достичь цели по предотвращению катастрофического изменения климата. Крупные нефтяные компании играют в этом растущую роль, стремясь утвердиться в новом мировом порядке с нейтральным выбросом углерода.
В августе ван Берген купил фирму Select Carbon, которая помогает фермерам в Австралии изменять назначение использования принадлежащих им земель и сертифицирует зеленые кредиты, выделяемые в рамках управляемой государством схемы или продажи на вторичном рынке.
Инвестиции BP в Finite Carbon были направлены на программное обеспечение, которое позволяет землевладельцам монетизировать посадку новых деревьев или сохранение существующих лесных массивов. Это ПО, использующее машинное обучение, дистанционное зондирование и цифровые платежи, предназначено для землевладельцев с земельными участками размером всего 40 акров, слишком маленькими для участия во многих углеродных рынках.
По оценкам британского банка Barclays, такие природные компенсации могут сократить выбросы на 12 млрд т в год при затратах эмитентов от $120 млрд до $360 млрд. Однако, пишет Рейтер, необходим глобальный стандарт оценки воздействия проектов на выбросы углерода и единый подход к ценообразованию кредитов.
По расчетам, которые, по словам Федуна, проводились еще в начале 2000-х годов, поглощающая способность российских лесов — около 0,5 млрд т CO2 в год. Хотя эта оценка сегодня вызывает большие сомнения, заявил Федун, так как поглощающие способности лесов европейских государств, находящихся в той же климатической зоне, в четыре раза выше.
Темный лес
Очевидно, что для окончательного становления рынка углеродных кредитов осталось утвердить на международном уровне цифры поглощения СО2 разными видами растительности. А вот в этом месте рынок могут подкарауливать проблемы, превращающие задачу в неразрешимую.
Уже из слов Леонида Федуна возникает вопрос: каким образом европейские леса поглощают в четыре раза больше СО2, чем российские? Кто измерял и как? Обратимся к официальным цифрам.
В Канаде были опубликованы результаты фундаментального исследования выбросов СО2 канадских лесов за 1990–2017 гг.
Если до 2002 года выбросы канадскими лесами СО2-эквивалента были то положительными, то отрицательными, то, начиная с 2002 года леса постоянно выбрасывают больше СО2, чем поглощают. В 2017 году чистый выброс составил около 237 млн т CO2-эквивалента.
Леса России вряд ли принципиально отличаются от лесов Канады, и точно так же могут выбрасывать больше СО2, чем поглощать.
Попытки расчета поглощения СО2 лесами и вообще растительным миром обречены на провал. Невозможно рассчитать поглощение СО2 одним деревом (дерево — это то, что выше 5 метров) или кустарником. Две сотни собравшихся бюрократов, конечно, могут директивно назначить цифры поглощения СО2 для всех видов деревьев и кустарников на планете в зависимости от условий произрастания, средней температуры воздуха и состава почвы… или все-таки остерегутся во избежание обвинений в идиотизме? (Кстати, деревьев на земле более трех триллионов.)
Российским нефтяникам не стоит надеяться на получение углеродных сертификатов за сибирские леса. Все кончится прямым налогом на выбросы углерода при производственных процессах. Точнее, закончится первый этап. На втором этапе производители стали, бетона и нефти потребуют расчета и учета выбросов для каждого производственного процесса, используемого при строительстве и эксплуатации ВИЭ, а их десятки тысяч. В смелых мечтах можно представить налог на каждого человека за выдыхание СО2.
Дополним изложенное такими данными. Альбедо (коэффициент отражения солнечного света) широколиственного леса заметно ниже, чем у степи, тундры, лугов. У хвойного леса эта разница составляет уже десятки процентов. Есть оценки, по которым альбедо лесов на Аляске может быть 7,1%, а тундры — 19,9%. Из космоса легко видеть: там, где растут деревья, планета намного темнее, чем в районах степей, саванн и тем более пустынь.
Если отражающая способность ландшафта снижается на один процент, то он получает от солнца примерно на 40 кВтч в год больше энергии. Высадка 20 млн деревьев (инициатива TeamTrees) приведет к увеличению поглощения солнечного излучения поверхностью земли на 40 трлн киловатт-часов. Это вдвое больше всей электроэнергии, потребляемой человечеством за год.
Таким образом, лучший способ борьбы с глобальным потеплением — вырубать леса. По одной из гипотез, оледенения на земле были связаны именно с сокращением лесов, что привело к уменьшению поступление в атмосферу главного парникового газа — водяного пара.
Поскольку стопроцентного усвоения СО2 быть не может, то растения должны пропустить через себя гораздо больше воздуха. В теплице должен гулять ветер, а в лесу настоящий ураган. Чего мы не наблюдаем.
В гипотезе, что углерод, необходимый для образования тканей растений, поглощается листьями растений из углекислого газа в воздухе, и в этих же листьях превращается в глюкозу, отсутствует главное: как углерод доставляется к корням, к клубнеплодам, когда поток воды внутри растения и минеральных веществ вместе с ней движутся от корней к листьям? Механизма переноса углеродных соединений от листьев к корням не существует.
Биологи могут подсчитать объем органики, образующийся в экосистеме. Но подсчитать, какая часть этой органики образовалась из СО2, присутствующего в воздухе в количестве 0,04%, —– невозможно. Инвестировать в биржи торговли квотами за счет посадки деревьев, естественно, можно, но надо понимать, что это не имеющая устойчивого будущего кратковременная спекуляция.
Экологическая обстановка в мире давно уже перестала радовать земные экосистемы. Множество заводов, без которых человечеству просто не обойтись, выбрасывают ежегодно в атмосферу около 10 миллиардов тон углекислого газа. Многие относятся к этому скептически, утверждая, что количество диоксида углерода не меняется в экосистеме Земли.
На деле, проблема не столько в превышении количества CO2, сколько в нарушении обмена веществ в экосистеме Земли. До начала промышленной деятельности человека углекислый газ, при взаимодействии с водой выпадал в осадок в виде карбонатов, потом переходил в почву, откуда служил для многих растений и водорослей удобрениями. Но это процесс, растянутый на десятки и сотни лет. Человечество же использует запасы миллионов лет в сокращенные сроки, перерабатывая твердые формы углерода в виде нефти и угля. При сжигании этих ископаемых в механизмах и на заводах происходит выброс диоксида углерода в воздух.
Единственный выход это воспользоваться другим механизмом и размножить флору. Фотосинтез — это естественный механизм, предусмотренный природой для переработки CO2. Сегодня эта система нужна, как никогда ранее. Производство диоксида углерода растет и соизмеримо выбросам должно расти количество лесов, джунглей, парков и искусственных насаждений. Растение поглощает углекислый газ и выделяет кислород.
Дневное дыхание растений
Дневное дыхание связано с двумя процессами: непосредственно дыханием и фотосинтезом. Процесс дыхания, как и у человека, связан с окислением органических соединений и выделением диоксида углерода, воды и энергии. Вместо человеческих легких выступает вся поверхность растения. Химическая формула, описывающая реакции в процессе дыхания растений:
Любое дерево способно дышать всей поверхностью, даже поверхностью плодов. Но наиболее активно процесс дыхания происходит через устья листа, откуда и попадает по межклеточному пространству большая часть необходимых газов.
Если речь идет о дневном времени суток, то дыхание не столь заметно, как ночью. Поскольку работа растения направлена большей частью на постоянное запасание энергии в виде органических соединений (глюкозы). Попадающий в листья газ, при содействии воды и энергии солнечного света в хлоропластах превращается в глюкозу, которую организм запасает для дальнейшего использования. Собственно дыхание и является этим дальнейшим использованием.
Запасенная глюкоза, с помощью воды и кислорода разлагается на молекулы аденозинтрифосфорной кислоты (АТФ), углекислый газ и водород. АТФ – это твердая энергия. Биологический аккумулятор клеток, который обеспечивает энергетическими запасами все живое на планете. Позднее эти запасы будут использованы в жизнедеятельности каждой молекулы организма.
Кажется, что образуется замкнутый круг: фотосинтез происходит с образованием глюкозы и кислорода, но что толку, если потом в результате дыхания растений выделяется диоксид углерода и АТФ. А энергию растения расходуют лично на себя, ничего не оставляя другим. Но весь вопрос в количестве. Далеко не весь кислород, который образуется во время фотосинтеза, поглощается организмом во время дыхания. Растения производят в разы больше, чем поглощают. Может этим они и отличаются от человека. А все энергетические запасы растений рано или поздно переходят в запасы животных или человека. Так растения отдают все свои накопления ради существования экосистемы Земли.
В среднем 1 гектар лесов ежегодно выделяет 4 тонны кислорода и потребляет 5 тонн углекислого газа. Человек в день выдыхает до 1 килограмма диоксида углерода, в год — 365 кг. Следовательно, 1 гектар леса поглощает углекислоту, которую выдыхают 13 человек.
Ночное дыхание растений
Процесс дыхания растений мало чем отличается от дыхания животных и человека. Есть и ночное дыхание. Это явление было открыто Отто Варбургом в начале XX века. Ночью света нет, а значит нет и энергии для фотосинтеза. Растения перестают вырабатывать O2, но не могут перестать дышать. Кислород поглощается, а углекислый газ все так же продолжает выделяться.
Белки, жиры и углеводы, запасенные в процессе жизнедеятельности днем, благодаря циклу Кресса превращаются в углекислый газ, молекулы АТФ и водород.
АТФ расходуются на дальнейшие нужды, углекислый газ уходит в атмосферу по устьицам, а вот водород окисляется до воды. Растение не может позволить себе сбрасывать водород в атмосферу, поскольку легко может погибнуть от этого, поэтому происходит частичный выброс паров воды. Большая часть организма растения – вода. Она нужна во всех процессах, включая дневное и ночное дыхание. Окисленный водород будет использован вновь в следующих реакциях.
Именно из-за ночного дыхания не рекомендуется ставить цветы в спальнях. Это увеличивает содержание углекислоты в комнате. Что никак не скажется на цветах, но будет чувствительно для человека.
Для дыхания растений существует пороговое значение содержания кислорода. При увеличении содержания О2 в воздухе до 5-8 процентов – интенсивность дыхания у растений скачкообразно растет. Но после это рост практически прекращается. Сейчас кислорода в воздухе около 21 процента. А значит, растениям еще долго не нужно будет о нем беспокоиться.
В природе есть еще одно интересное явление, названное САМ — фотосинтезом. Это явление характерно для пустынных цветов и растений. В вечной погоне за сохранением водных ресурсов, эти растения приспособились к проведению фотосинтеза в ночь.
Водоросли и CO2
Под водорослями понимают все растения, находящиеся под водой и не имеющие корня. Интенсивнее всего, из водорослей, поглощает углекислоту одноклеточные водоросли — фитопланктон. В основном все водоросли дышат растворенным в воде кислородом, за исключением нескольких видов, осуществляющих бескислородный фотосинтез. Те в качестве акцептора электронов при дыхании используют элементную серу.
Получение энергии в группе цианобактерий
Фитопланктон обитает в верхних слоях воды, поскольку ему требуется большое количество солнечной энергии для фотосинтеза. При наличии в воде растворенного углекислого газа фитопланктон осуществляет фотосинтезирующий процесс, побочным продуктом которого является кислород. Большим отличием этих водорослей от наземных растений является количество производимого кислорода. За один цикл фотосинтеза фитопланктон производит кислорода в 3-4 раза больше собственного веса. Неудивительно, что при таких показателях 70 процентов атмосферного кислорода произведено в воде.
Фотосинтез
О фотосинтезе уже шла речь в этой статье. Стоит рассмотреть его более подробно. Как уже говорилось ранее, фотосинтез происходит в хлоропластах. За две фазы происходит процесс образования новой молекулы глюкозы, которая после используется в химических процессах растения.
Во время световой фазы используется энергия солнца. Под ее действием вода отдает электрон и распадается на положительно заряженные частицы водорода (Н) и радикалы гидроксида (ОН). После этого оставшиеся частицы ОН образуют воду и кислород, который сразу же удаляется в атмосферу. В хлоропласте остались электроны и положительно заряженные частицы водорода. Эти частицы накапливаются на различных сторонах мембраны тилакоида (одной из частей хлоропластов), из-за разницы концентраций протоны из большей концентрации стремятся проникнуть через мембрану к протонам с меньшей концентрацией. Когда разность потенциалов между ними достигнет 200 миллиВольт, произойдет разряд и молекула АТФ зарядится, а никотинамидадениндинуклеотидфосфат (сокращенно НАДФ) восстановится до НАДФ*Н. Эти два компонента и будут необходимы в темновой фазе фотосинтеза.
Схематический процесс фотосинтеза
В теневой фазе АТФ является аккумулятором, а НАДФ курьером, который доставляет в другую часть хлоропласта протон Н. К тому же растению нужен будет СО2, который послужит основой для будущей молекулы глюкозы. В итоге химических реакций из молекул СО2 и водорода, с помощью энергии из АТФ получается глюкоза С6Н12О6, которая и является первым питательным веществом во всех пищевых цепочках Земли.
Заключение
Хлоропласты — устройство для сбора солнечной энергии возрастом 3 миллиарда лет. Эта микроскопическая солнечная батарея дает жизнь лесам, полям, планктону морей, а также животным включая нас с вами.
Биосфера, работающая на солнечной энергии, собирает и обрабатывает в 6 раз больше энергии, чем вся человеческая цивилизация. Сейчас мы понимаем, как фотосинтез работает на химическом уровне. Мы способны повторить этот процесс лабораторных условиях, но у нас это получается хуже, чем у растений. Неудивительно, ведь природа занималась этим миллиарды лет, а мы только что начали. Но если бы мы смогли раскрыть тайны фотосинтеза, все источники энергии, от которых мы зависим сегодня — уголь, нефть, природный газ ушли в прошлое. Фотосинтез — идеальная экологическая энергия, она не загрязняет воздух, не даёт выбросов углерода. Искусственный фотосинтез в достаточно больших масштабах позволил бы снизить парниковый эффект, ведущий к опасному изменению климата …
Когда вы дышите, ваше тело поглощает кислород и выделяет углекислый газ. Во время фотосинтеза растения поглощают углекислый газ и выделяют кислород. Эта противоположная схема делает растения и людей естественными партнерами. Но может ли добавление растений во внутренние помещения повысить уровень кислорода? И давайте разберемся с бытующим мнением, что комнатные растения способны оздоравливать воздух, выделяя фитонциды.
Базовая биохимия говорит, что растения в процессе фотосинтеза и дыхания выделяют кислород. Но сколько всего про очищающие свойства комнатных растений напридумано и то и дело встречается в интернете — голова идет кругом. Давайте разберемся с этой комнатной цветочной мифологией!
Частые заблуждения о дыхании комнатных растений:
- Комнатные растения обогащают воздух кислородом
- Комнатные растения поглощают углекислый газ
- Растения выделяют фитонциды, которые убивают вирусы и бактерии в воздухе?
- Комнатные растения очищают воздух от тяжелых металлов и других опасных примесей?
Частые заблуждения о дыхании комнатных растений
Обращали ли вы внимание на совершенно безликие псевдонаучные тезисы? Когда какой-то ахинее нужно придать дополнительный вес, авторы ссылаются на далекий американский штат или поступают по классике жанра, посылая читателя в Массачусетский технологический институт. Например, мы позабавились вот такому утверждению:
"По словам исследователей из Университета штата Канзас, добавление растений в больничные палаты ускоряет выздоровление хирургических пациентов. По сравнению с пациентами в комнатах без растений, пациенты в комнатах с растениями требуют меньше обезболивающих, демонстрируют более низкую частоту сердечных сокращений и артериальное давление, меньше утомляются и раньше выписываются из больницы".
Или вот такой перл:
"Голландский совет по продукции для садоводства заказал исследование, в ходе которого было обнаружено, что добавление растений в офисные помещения снижает усталость, простуду, головные боли, кашель, боль в горле и симптомы гриппа. В другом исследовании, проведенном Сельскохозяйственным университетом Норвегии, заболеваемость в офисах с растениями снизилась более чем на 60 %".
Наверное, школьный курс биологии не многим копипастерам оказался по зубам. Итак, чтобы новички комнатного цветоводства не совершали драматичных ошибок и не повторяли благоглупости, мы публикуем основные факты о свойствах комнатных растений.
Что действительно улучшит воздух в квартире, так это качественный увлажнитель
Комнатные растения обогащают воздух кислородом
Это действительно так: в процессе фотосинтеза растения выделяют кислород как побочный продукт. Однако вряд ли можно рассчитывать, что комнатные растения играют какую-то существенную роль в насыщении кислородом воздуха в вашей квартире.
Во-вторых, говоря о растениях как источниках кислорода, многие забывают, что кроме фотосинтеза у них существует еще и дыхание – процесс, по сути противоположный фотосинтезу, в том числе и в плане побочных продуктов. Из простейшего школьного курса биологии нам известно, что растения производят кислород только в световой фазе фотосинтеза, то есть днем. Ночью процесс прекращается и растения начинают даже немного поглощать кислород в процессе клеточного дыхания – но в количествах гораздо меньших, чем выделяемые за день (до 30%). Баланс, конечно, сходится в положительную сторону, но по всему выходит, что в ночное время растения не только не дают нам кислород, но еще и слегка его отнимают.
Так что не стоит надеяться на комнатные растения как значимый источник кислорода: частое проветривание помещений и эффективнее, и полезнее.
Комнатные растения поглощают углекислый газ
И это тоже правда: углекислый газ (СО2), поглощаемый растениями в процессе фотосинтеза, – источник углерода (С), из которого растения синтезируют вещества, необходимые им для жизни. Однако этот процесс, как и выделение кислорода, идет только на свету. Ночью все становится наоборот: в темноте фотосинтез прекращается, а клеточное дыхание продолжается, так что растения не только поглощают кислород, но еще и выделяют углекислый газ. Тем же самым занимаемся и мы сами, когда дышим, поэтому ночью растения оказываются дополнительным источником СО2.
Впрочем, есть и исключения: растения, которые из-за сложных условий в местах их естественного обитания выработали особый путь фотосинтеза. Он называется САМ – фотосинтез (Crassulaceae acid metabolism – кислотный метаболизм толстянковых). Эти растения способны поглощать СО2 в ночное время. Механизм был открыт у растений семейства Толстянковые, но существует не только у них.
И снова имеет смысл поговорить о количествах. Уже упоминавшийся взрослый человек в спокойном состоянии, выдыхает в час примерно 22 литра углекислого газа, то есть около 500 л в сутки. Для утилизации такого количества СО2 нужно намного больше зеленой массы, чем мы можем разместить в квартире. Так что даже если все подоконники в вашем доме уставлены горшками с комнатными растениями, никакого значимого вклада в уменьшение количества углекислого газа они не внесут – в отличие от того же проветривания.
Конечно, растения не задушат нас ночью – количество выделяемого ими углекислого газа весьма мало, но факт остается фактом, так что превращать свою спальню в оранжерею – все-таки не лучшая идея.
В свете этого очень забавным кажется совет, который регулярно мелькает в Интернете: "Если у вас в квартире установлена газовая плита, заведите в кухне побольше растений для поглощения углекислого газа". Способность растений к фиксации СО2 количественно не сравнима с теми объемами, которые выделяет работающая плита – особенно если вы готовите праздничный ужин, на который пригласили гостей. Зато хорошо известно, что микроклимат кухни с его перепадами температуры и влажности вреден для большинства растений, поэтому пользы от следования этому совету не будет ни людям, ни цветам. Ну а подборка комнатных растений, подходящих для кухонных условий, здесь >>>>
Растения выделяют фитонциды, которые убивают вирусы и бактерии в воздухе?
Фитонциды – модная тема, которая регулярно поднимается в последнее время, особенно в свете пандемии коронавируса. В общественном сознании прочно закрепилась мысль, что некие летучие вещества, вырабатываемые растениями, способны чуть ли не стерилизовать окружающий воздух. Так ли это на самом деле, а главное – применимо ли это к комнатным растениям? Посмотрим, что говорит наука.
Даже если открыть статью о свойствах фитонцидов в Википедии, можно обнаружить, что ни в одном из разделов нет ссылок на достоверные источники информации, а имеющаяся библиография ведет либо на очень старые публикации советских специалистов, либо на словарные определения фитонцидов. Ни одной ссылки на современные исследования там нет. И недаром: поиск по базам свежих научных публикаций выдает некоторое количество очень слабых исследований, посвященных фитонцидам, с низкой достоверностью полученных результатов. Причем ни в одном из них комнатные растения не фигурируют. Есть исследования, посвященные антибактериальным и антивирусным свойствам сока некоторых растений, но это не новость: о том, что растения могут быть лекарственными, человечество знает с древнейших времен. И речь идет не конкретно о фитонцидах, а о других компонентах сока растений.
В самом существовании фитонцидов никто не сомневается, но открытыми остаются вопросы:
- насколько комнатные растения способны их выделять и
- насколько эти фитонциды могут быть эффективными против инфекций, которые опасны для нас, а не для растений. Ведь люди и томаты болеют очень разными болезнями, и возбудители у них тоже разные. А защитные механизмы растения вырабатывали не для нас, а для себя.
Пока нет ни одного серьезного исследования, которое давало бы на эти вопросы обнадеживающие ответы.
Исходя из общих знаний биологии, можно предположить, что комнатные растения если и продуцируют фитонциды, то в исчезающе малых количествах, которые к тому же легко удаляются из помещения при проветривании (о пользе проветривания мы уже договорились). Так что фитонциды наших зеленых домашних питомцев вряд ли могут существенно поспособствовать сохранению нашего здоровья.
Комнатные растения очищают воздух от тяжелых металлов и других опасных примесей?
"Согласно исследованиям NASA, растения удаляют токсины из воздуха - до 87% летучих органических соединений (ЛОС) каждые 24 часа. ЛОС включают такие вещества, как формальдегид (присутствующий в коврах, виниле, сигаретном дыме и продуктовых пакетах), бензол и трихлорэтилен (оба содержатся в искусственных волокнах, чернилах, растворителях и красках). Бензол обычно содержится в высоких концентрациях в учебных заведениях, где имеется много книг и печатных документов.
В современных герметичных зданиях с климат-контролем летучие органические соединения улавливаются внутри. Исследование NASA обнаружило, что растения очищают этот захваченный воздух, втягивая загрязнители в почву, где микроорганизмы корневой зоны превращают ЛОС в пищу для растений".
Утверждения о том, что комнатные растения очищают воздух, основаны на довольно старых (1980-е годы прошлого века) экспериментах NASA. Во время этих экспериментов растения помещали в герметичные камеры и через некоторое время замеряли содержание в этих камерах различных вредных веществ.
Оказалось, что спатифиллум, хризантема, сансевиерия и некоторые другие растения способны поглощать аммиак, формальдегид, бензол и другие канцерогены. Однако научное сообщество, комментируя результаты экспериментов, справедливо указывало на существенный момент: квартира или офис – это не герметичная камера. И действительно, попытки воспроизвести многообещающие результаты в реальных условиях не удались: в настоящих офисах, где проводились новые эксперименты, растения не оказали никакого влияния на количество примесей в воздухе. Это вполне объяснимо даже с точки зрения простого здравого смысла. Количество примесей в воздухе помещения зависит от качества наружного воздуха, постоянно поступающего при вентиляции, и от наличия постоянных загрязняющих агентов. Если, например, в помещении регулярно курят или оно отделано материалами, выделяющими формальдегид, то пара-тройка горшков с сансевиериями вряд ли повлияет на положение дел. Чисто теоретически возможно сделать точный расчет нужного количества растений с учетом всех факторов, но осилить такую работу самостоятельно не представляется возможным.
Кстати, о тяжелых металлах в экспериментах NASA и последующих речь не шла. Откуда же взялась информация о том, что такое якобы возможно?
Однако об очистке воздуха помещений от тяжелых металлов речь опять-таки не идет. Нет никаких достоверных научных данных о том, что комнатные растения имеют значимую способность к фиксации частиц тяжелых металлов из воздуха. В самом деле, в воздухе больших городов, особенно промышленных, можно обнаружить чуть ли не всю таблицу Менделеева, но могут ли растения как-то существенно на это повлиять – вопрос открытый. Говорить об этом как об установленном факте, как это иногда преподносится в Интернете, пока очень преждевременно.
В школе нас учат, что растения используют энергию солнечного света, чтобы из CO2 и воды синтезировать глюкозу. В университете добавляют, что солнечный свет запускает одну фазу (так называемую световую), а синтез глюкозы из CO2 и воды происходит в другой фазе (так называемой темновой). И это действительно разные фазы: один процесс протекает в мембранах, а другой в клеточном матриксе, в водной фазе. Гены хлоропластов в основном кодируют белки световой фазы фотосинтеза, прямого отношения к реакциям с CO2 они не имеют, поэтому дальше мы о них говорить не будем. В хлоропластах цветковых растений лишь один ген (rbcL) кодирует фермент, который участвует в темновой фазе, в фиксации CO2, в цикле Кальвина. Но это самый важный фермент — к органической молекуле (рибулозо-1,5-бисфосфату) и запускает весь цикл Кальвина. Фермент этот (рубиско, RuBisCO) работает крайне медленно, лимитирует работу всей системы фиксации CO2, растения вынуждены нарабатывать его в огромных количествах. Отчего же так?
Электрофорез всех белков листа. На левой дорожке — из листьев ячменя, растения с обычным типом фотосинтеза (С3). На правой дорожке — из листьев кукурузы, растения с особым механизмом концентрирования СО2 (С4). Стрелка указывает на большую субъединицу рубиско. Хорошо видно, как резко падает количество рубиско в случае применения механизма концентрирования СО2
Поэтому задам вопрос. В статье Ирины Делюсиной содержится явный намек на то, что увеличение содержания CO2 в воздухе будет вредно (токсично?) для растений. Прошу объяснить, как и в чем это будет выражаться. Конечно, в результате увеличения содержания CO2 в воздухе может нарастать температура, может меняться климат, и уже это может наносить вред растениям. Как исследователь я как раз изучаю влияние повышения температуры на хлоропласты. Но это разные вопросы, и давайте не будем их смешивать.
Читайте также: