Система управления базами данных это информационная структура хранящаяся во внешней памяти
ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.
ИНФОРМАЦИЯ – ЭТО НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.
ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ) ИЛИ КОМПЬЮТЕР (англ. computer- -вычислитель)-УСТРОЙСТВО ДЛЯ АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ ИНФОРМАЦИИ. Принципиальное отличие использования ЭВМ от всех других способов обработки информации заключается в способности выполнения определенных операций без непосредственного участия человека, но по заранее составленной им программе. Информация в современном мире приравнивается по своему значению для развития общества или страны к важнейшим ресурсам наряду с сырьем и энергией. Еще в 1971 году президент Академии наук США Ф.Хандлер говорил: "Наша экономика основана не на естественных ресурсах, а на умах и применении научного знания".
В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: "Мы переходим от экономики, основанной на тяжелой промышленности, к экономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги.."
2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.
Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны.
В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.
Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.
В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к снижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).
История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная американская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.
СОВРЕМЕННЫЕ КОМПЬТЕРЫ- ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.
90-ые годы ХХ-го века ознаменовались бурным развитием компьютерных сетей, охватывающих весь мир. Именно к началу 90-ых количество подключенных к ним компьютеров достигло такого большого значения, что объем ресурсов доступных пользователям сетей привел к переходу ЭВМ в новое качество. Компьютеры стали инструментом для принципиально нового способа общения людей через сети, обеспечивающего практически неограниченный доступ к информации, находящейся на огромном множестве компьюторов во всем мире - "глобальной информационной среде обитания".
6.ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ И ЕЕ ОБЪЕМ.
ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР, В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нет- ноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска одно- на этом участке записан ноль, другое- единица. Если определенный участок поверхности оптического диска отражает лазерный луч- на нем записан ноль, не отражает- единица.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digit- двоичная единица). 1 бит- минимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.
Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символов- либо 0, либо 1.
Если же есть 2 бита, то из них можно составить один из четырех вариантов кодов: 00 , 01 , 10 , 11 .
Если есть 3 бита- один из восьми: 000 , 001 , 010 , 100 , 110 , 101 , 011 , 111 .
1 бит- 2 варианта,
2 бита- 4 варианта,
3 бита- 8 вариантов;
Продолжая дальше, получим:
4 бита- 16 вариантов,
5 бит- 32 варианта,
6 бит- 64 варианта,
7 бит- 128 вариантов,
8 бит- 256 вариантов,
9 бит- 512 вариантов,
10 бит- 1024 варианта,
N бит - 2 в степени N вариантов.
В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.
ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В КОМПЬЮТЕРЕ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.
СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится "аски", означает "Американский Стандартный Код для Обмена Информацией"- англ. American Standart Code for Information Interchange).
ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.
A - 01000001, B - 01000010, C - 01000011, D - 01000100, и т.д.
Таким образом, если человек создает текстовый файл и записывает его на диск, то на самом деле каждый введенный человеком символ хранится в памяти компьютера в виде набора из восьми нулей и единиц. При выводе этого текста на экран или на бумагу специальные схемы - знакогенераторы видеоадаптера (устройства, управляющего работой дисплея) или принтера образуют в соответствии с этими кодами изображения соответствующих символов.
Набор ASCII был разработан в США Американским Национальным Институтом Стандартов (ANSI), но может быть использован и в других странах, поскольку вторая половина из 256 стандартных символов, т.е. 128 символов, могут быть с помощью специальных программ заменены на другие, в частности на символы национального алфавита, в нашем случае - буквы кириллицы. Поэтому, например, передавать по электронной почте за границу тексты, содержащие русские буквы, бессмысленно. В англоязычных странах на экране дисплея вместо русской буквы Ь будет высвечиваться символ английского фунта стерлинга, вместо буквы р - греческая буква альфа, вместо буквы л - одна вторая и т.д.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО СИМВОЛА ASCII НАЗЫВАЕТСЯ 1 БАЙТ.
Очевидно что, поскольку под один стандартный ASCII-символ отводится 8 бит,
Остальные единицы объема информации являются производными от байта:
1 КИЛОБАЙТ = 1024 БАЙТА И СООТВЕТСТВУЕТ ПРИМЕРНО ПОЛОВИНЕ СТРАНИЦЫ ТЕКСТА,
1 МЕГАБАЙТ = 1024 КИЛОБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 500 СТРАНИЦАМ ТЕКСТА,
1 ГИГАБАЙТ = 1024 МЕГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ,
1 ТЕРАБАЙТ = 1024 ГИГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2000 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ.
Обратите внимание, что в информатике смысл приставок кило- , мега- и других в общепринятом смысле выполняется не точно, а приближенно, поскольку соответствует увеличению не в 1000, а в 1024 раза.
СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО ЛИНИЯМ СВЯЗИ ИЗМЕРЯЕТСЯ В БОДАХ.
1 БОД = 1 БИТ/СЕК.
В частности, если говорят, что пропускная способность какого-то устройства составляет 28 Килобод, то это значит, что с его помощью можно передать по линии связи около 28 тысяч нулей и единиц за одну секунду.
7. СЖАТИЕ ИНФОРМАЦИИ НА ДИСКЕ
ИНФОРМАЦИЮ НА ДИСКЕ МОЖНО ОБРАБОТАТЬ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ ПРОГРАММ ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА ЗАНИМАЛА МЕНЬШИЙ ОБЪЕМ.
Существуют различные методы сжатия информации. Некоторые из них ориентированы на сжатие текстовых файлов, другие - графических, и т.д. Однако во всех них используется общая идея, заключающаяся в замене повторяющихся последовательностей бит более короткими кодами. Например, в романе Л.Н.Толстого "Война и мир" несколько миллионов слов, но большинство из них повторяется не один раз, а некоторые- до нескольких тысяч раз. Если все слова пронумеровать, текст можно хранить в виде последовательности чисел - по одному на слово, причем если повторяются слова, то повторяются и числа. Поэтому, такой текст (особенно очень большой, поскольку в нем чаще будут повторяться одни и те же слова) будет занимать меньше места.
Сжатие информации используют, если объем носителя информации недостаточен для хранения требуемого объема информации или информацию надо послать по электронной почте
Программы, используемые при сжатии отдельных файлов называются архиваторами. Эти программы часто позволяют достичь степени сжатия информации в несколько раз.
Более точно, к числу функций СУБД принято относить следующие:
1. Непосредственное управление данными во внешней памяти
Эта функция включает обеспечение необходимых структур внешней памяти как для хранения данных, непосредственно входящих в БД, так и для служебных целей, например, для ускорения доступа к данным в некоторых случаях (обычно для этого используются индексы). В некоторых реализациях СУБД активно используются возможности существующих файловых систем, в других работа производится вплоть до уровня устройств внешней памяти . Но подчеркнем, что в развитых СУБД пользователи в любом случае не обязаны знать, использует ли СУБД файловую систему, и если использует, то как организованы файлы. В частности, СУБД поддерживает собственную систему именования объектов БД .
2. Управление буферами оперативной памяти
СУБД обычно работают с БД значительного размера; по крайней мере, этот размер обычно существенно больше доступного объема оперативной памяти. Понятно, что если при обращении к любому элементу данных будет производиться обмен с внешней памятью, то вся система будет работать со скоростью устройства внешней памяти . Практически единственным способом реального увеличения этой скорости является буферизация данных в оперативной памяти. При этом, даже если операционная система производит общесистемную буферизацию (как в случае ОС UNIX ), этого недостаточно для целей СУБД , которая располагает гораздо большей информацией о полезности буферизации той или иной части БД . Поэтому в развитых СУБД поддерживается собственный набор буферов оперативной памяти с собственной дисциплиной замены буферов.
Заметим, что существует отдельное направление СУБД , которое ориентировано на постоянное присутствие в оперативной памяти всей БД . Это направление основывается на предположении, что в будущем объем оперативной памяти компьютеров будет настолько велик, что позволит не беспокоиться о буферизации. Пока эти работы находятся в стадии исследований.
3. Управление транзакциями
Транзакция - это последовательность операций над БД, рассматриваемых СУБД как единое целое.
Либо транзакция успешно выполняется, и СУБД фиксирует изменения БД , произведенные этой транзакцией, во внешней памяти, либо ни одно из этих изменений никак не отражается на состоянии БД .
Понятие транзакции необходимо для поддержания логической целостности БД . Приведем пример информационной системы с файлами СОТРУДНИКИ и ОТДЕЛЫ, единственным способом не нарушить целостность БД при выполнении операции приема на работу нового сотрудника является объединение элементарных операций над файлами СОТРУДНИКИ и ОТДЕЛЫ в одну транзакцию. Таким образом, поддержание механизма транзакций является обязательным условием даже однопользовательских СУБД (если, конечно, такая система заслуживает названия СУБД ). Но понятие транзакции гораздо более важно в многопользовательских СУБД .
То свойство, что каждая транзакция начинается при целостном состоянии БД и оставляет это состояние целостным после своего завершения, делает очень удобным использование понятия транзакции как единицы активности пользователя по отношению к БД . При соответствующем управлении параллельно выполняющимися транзакциями со стороны СУБД каждый из пользователей может в принципе ощущать себя единственным пользователем СУБД (на самом деле, это несколько идеализированное представление , поскольку в некоторых случаях пользователи многопользовательских СУБД могут ощутить присутствие своих коллег).
4. Журнализация
Одним из основных требований к СУБД является надежность хранения данных во внешней памяти. Под надежностью хранения понимается то, что СУБД должна быть в состоянии восстановить последнее согласованное состояние БД после любого аппаратного или программного сбоя. Обычно рассматриваются два возможных вида аппаратных сбоев: так называемые мягкие сбои, которые можно трактовать как внезапную остановку работы компьютера (например, аварийное выключение питания), и жесткие сбои, характеризуемые потерей информации на носителях внешней памяти. Примерами программных сбоев могут быть: аварийное завершение работы СУБД ( по причине ошибки в программе или в результате некоторого аппаратного сбоя) или аварийное завершение пользовательской программы, в результате чего некоторая транзакция остается незавершенной. Первую ситуацию можно рассматривать как особый вид мягкого аппаратного сбоя; при возникновении последней требуется ликвидировать последствия только одной транзакции.
Понятно, что в любом случае для восстановления БД нужно располагать некоторой дополнительной информацией. Другими словами, поддержание надежности хранения данных в БД требует избыточности хранения данных, причем та часть данных, которая используется для восстановления, должна храниться особо надежно. Наиболее распространенным методом поддержания такой избыточной информации является ведение журнала изменений БД .
Журнал - это особая часть БД, недоступная пользователям СУБД и поддерживаемая с особой тщательностью (иногда поддерживаются две копии журнала, располагаемые на разных физических дисках), в которую поступают записи обо всех изменениях основной части БД. В разных СУБД изменения БД журнализуются на разных уровнях: иногда запись в журнале соответствует некоторой логической операции изменения БД (например, операции удаления строки из таблицы реляционной БД ), иногда - минимальной внутренней операции модификации страницы внешней памяти; в некоторых системах одновременно используются оба подхода.
Во всех случаях придерживаются стратегии "упреждающей" записи в журнал (так называемого протокола Write Ahead Log - WAL). Грубо говоря, эта стратегия заключается в том, что запись об изменении любого объекта БД должна попасть во внешнюю память журнала раньше, чем измененный объект попадет во внешнюю память основной части БД . Известно, что если в СУБД корректно соблюдается протокол WAL, то с помощью журнала можно решить все проблемы восстановления БД после любого сбоя.
Самая простая ситуация восстановления - индивидуальный откат транзакции. Строго говоря, для этого не требуется общесистемный журнал изменений БД . Достаточно для каждой транзакции поддерживать локальный журнал операций модификации БД , выполненных в этой транзакции, и производить откат транзакции, путем выполнения обратных операций, следуя от конца локального журнала. В некоторых СУБД так и делают, но в большинстве систем локальные журналы не поддерживают, а индивидуальный откат транзакции выполняют по общесистемному журналу, для чего все записи от одной транзакции связывают обратным списком (от конца к началу).
5. Поддержка языков БД
Для работы с базами данных используются специальные языки, в целом называемые языками баз данных. В ранних СУБД поддерживалось несколько специализированных по своим функциям языков. Чаще всего выделялись два языка
- язык определения схемы БД (SDL - Schema Definition Language) и
- язык манипулирования данными ( DML - Data Manipulation Language ).
SDL служил главным образом для определения логической структуры БД , т.е. той структуры БД , какой она представляется пользователям. DML содержал набор операторов манипулирования данными, т.е. операторов, позволяющих заносить данные в БД , удалять, модифицировать или выбирать существующие данные.
В современных СУБД обычно поддерживается единый интегрированный язык, содержащий все необходимые средства для работы с БД , начиная от ее создания, и обеспечивающий базовый пользовательский интерфейс с базами данных. Стандартным языком наиболее распространенных в настоящее время реляционных СУБД является язык запросов SQL (Structured Query Language ).
Язык SQL содержит специальные средства определения ограничений целостности БД . Опять же, ограничения целостности хранятся в специальных таблицах-каталогах, и обеспечение контроля целостности БД производится на языковом уровне, т.е. при компиляции операторов модификации БД компилятор SQL на основании имеющихся в БД ограничений целостности генерирует соответствующий программный код.
Специальные операторы языка SQL позволяют определять так называемые представления БД , фактически являющиеся хранимыми в БД запросами (результатом любого запроса к реляционной БД является таблица ) с именованными столбцами. Для пользователя представление является такой же таблицей, как любая базовая таблица , хранимая в БД , но с помощью представлений можно ограничить или наоборот расширить видимость БД для конкретного пользователя. Поддержание представлений производится также на языковом уровне.
Наконец, авторизация доступа к объектам БД производится также на основе специального набора операторов SQL . Идея состоит в том, что для выполнения операторов SQL разного вида пользователь должен обладать различными полномочиями. Пользователь , создавший таблицу БД , обладает полным набором полномочий для работы с этой таблицей. В число этих полномочий входит полномочие на передачу всех или части полномочий другим пользователям, включая полномочие на передачу полномочий. Полномочия пользователей описываются в специальных таблицах-каталогах, контроль полномочий поддерживается на языковом уровне.
Функциональные возможности СУБД
По степени универсальности различают два класса СУБД :
- системы общего назначения - реализованные как программный продукт, способный функционировать на ЭВМ в определённой операционной системе и поставляемый пользователям как коммерческое изделие;
- специализированные системы - создаваемые в случаях невозможности или не целесообразности использования СУБД общего назначения.
СУБД общего назначения - это сложные программные комплексы, предназначенные для выполнения всей совокупности функций, связанных с созданием и эксплуатацией БД информационной системы.
Рынок программного обеспечения ПК располагает большим числом разнообразных по своим функциональным возможностям коммерческих систем СУБД общего назначения.
СУБД - лидеры на рынке программ:
- dBASE IV, компании Borland International;
- Microsoft Access 2007;
- Microsoft FoxPro 2.6 for DOS;
- Microsoft FoxPro for Windows, Microsoft Corp:
- Paradox for DOS 4.5:
- Paradox for Windows, версия 4.5 Borland.
Производительность СУБД оценивается:
- временем выполнения запросов;
- скоростью поиска информации;
- временем выполнения операций импортирования данных из других форматов;
- скоростью выполнения таких операций как обновления, вставка, удаление данных;
- максимальным числом параллельных обращений к данным в многопользовательском режиме;
- временем генерации отчёта.
На производительность СУБД оказывают влияния 2 фактора:
- правильное проектирование
- построения БД.
СУБД , которые следят за соблюдением целостности данных, несут дополнительную нагрузку, которую не испытывают другие программы;
Целостность данных подразумевает наличие средств, позволяющих удостовериться, что информация в БД всегда остаётся корректной и полной.
Операции , обеспечивающие безопасность :
- шифрование прикладных программ;
- шифрование данных;
- защита паролем;
- ограничение уровня доступа
Хороший уровень безопасности в СУБД dBase IV, Access
Для сохранения информации используется двойной подход. Некоторые операции сохранения происходят в обход операционной системы
Целостность должна обеспечиваться независимо от того, каким образом данные заносятся в память , не конкретных действий пользователей, пробоев сети и т.п.
Он предусматривает назначение паролей для индивидуальных пользователей или групп пользователей и присвоение различных прав доступа отдельно таблицам, запросам, отчётам на уровне пользователя или группы.
Краткие итоги
Рассмотрены вопросы классификации БД и СУБД .
По технологии обработки данных БД делятся на централизованные БД и распределённые БД . Централизованные БД могут быть с сетевым доступом. Архитектуры систем централизованных БД с сетевым доступом подразделяются на файл-сервер и клиент- сервер . Распределённая БД разделяется по способу доступа к данным БД с локальным и удаленным доступом.
СУБД - классифицируются по языкам общения и по выполняемым функциям.
Для системы управления базой данных сложились три языка: язык описания данных (ЯОД), язык манипулирования данными (ЯМД), язык запросов .
Основные функции СУБД : непосредственное управление данными во внешней памяти, управление буферами оперативной памяти, управление транзакциями , журнализация , поддержка языков БД .
По степени универсальности различают два класса СУБД : системы общего назначения , специализированные системы.
Представление об организации баз данных и системах управления базами данных. Структура данных и система запросов на примерах баз данных различного назначения. Использование системы управления базами данных для выполнения учебных заданий из различных предметных областей.
1 Основные понятия о базах данных
2 СУБД Microsoft Access
Информационная система (ИС) – это система, построенная на базе компьютерной техники, предназначенная для хранения, поиска, обработки и передачи значительных объемов информации, имеющая определенную практическую сферу применения.
База данных – это ИС, которая хранится в электронном виде.
База данных (БД) – организованная совокупность данных, предназначенная для длительного хранения во внешней памяти ЭВМ, постоянного обновления и использования.
БД служат для хранения и поиска большого объёма информации. Примеры баз данных: записная книжка, словари, справочники, энциклопедии и т.д.
Классификация баз данных:
1. По характеру хранимой информации:
— Фактографические – содержат краткие сведения об описываемых объектах, представленных в строго определённом формате (картотеки, н-р: БД книжного фонда библиотеки, БД кадрового состава учреждения),
— Документальные – содержат документы (информацию) самого разного типа: текстового, графического, звукового, мультимедийного (архивы, н-р: справочники, словари, БД законодательных актов в области уголовного права и др.)
2. По способу хранения данных:
— Централизованные (хранятся на одном компьютере),
— Распределенные (используются в локальных и глобальных компьютерных сетях).
3. По структуре организации данных:
Термин «реляционный» (от лат. relatio – отношение ) указывает на то, что такая модель хранения данных построена на взаимоотношении составляющих её частей. Реляционная база данных, по сути, представляет собой двумерную таблицу . Каждая строка такой таблицы называется записью. Столбцы таблицы называются полями: каждое поле характеризуется своим именем и типом данных. Поле БД – это столбец таблицы, содержащий значения определенного свойства.
Свойства реляционной модели данных:
- каждый элемент таблицы – один элемент данных;
- все поля таблицы являются однородными, т.е. имеют один тип;
- одинаковые записи в таблице отсутствуют;
- порядок записей в таблице может быть произвольным и может характеризоваться количеством полей, типом данных.
Иерархической называется БД, в которой информация упорядочена следующим образом: один элемент считается главным, остальные – подчинёнными. В иерархической базе данных записи упорядочиваются в определенную последовательность, как ступеньки лестницы, и поиск данных может осуществляться последовательным «спуском» со ступени на ступень. Данная модель характеризуется такими параметрами, как уровни, узлы, связи. Принцип работы модели таков, что несколько узлов более низкого уровня соединяются при помощи связи с одним узлом более высокого уровня.
Узел – информационная модель элемента, находящегося на данном уровне иерархии.
Свойства иерархической модели данных:
- несколько узлов низшего уровня связано только с одним узлом высшего уровня;
- иерархическое дерево имеет только одну вершину (корень), не подчинено никакой другой вершине;
- каждый узел имеет своё имя (идентификатор);
- существует только один путь от корневой записи к более частной записи данных.
Иерархической базой данных является Каталог папок Windows, с которым можно работать, запустив Проводник. Верхний уровень занимает папка Рабочий стол. На втором уровне находятся папки Мой компьютер, Мои документы, Сетевое окружение и Корзина, которые представляют собой потомков папки Рабочий стол, будучи между собой близнецами. В свою очередь, папка Мой компьютер – предок по отношению к папкам третьего уровня, папкам дисков (Диск 3,5(А:), С:, D:, E:, F:) и системным папкам (Принтеры, Панель управления и др.).
Сетевой называется БД, в которой к вертикальным иерархическим связям добавляются горизонтальные связи. Любой объект может быть главным и подчинённым.
Сетевой базой данных фактически является Всемирная паутина глобальной компьютерной сети Интернет. Гиперссылки связывают между собой сотни миллионов документов в единую распределенную сетевую базу данных.
Программное обеспечение, предназначенное для работы с базами данных, называется система управления базами данных (СУБД). СУБД используются для упорядоченного хранения и обработки больших объемов информации.
Основные действия, которые пользователь может выполнять с помощью СУБД:
- создание структуры БД;
- заполнение БД информацией;
- изменение (редактирование) структуры и содержания БД;
- поиск информации в БД;
- проверка целостности БД.
Современные СУБД дают возможность включать в них не только текстовую и графическую информацию, но и звуковые фрагменты и даже видеоклипы.
Простота использования СУБД позволяет создавать новые базы данных, не прибегая к программированию, а пользуясь только встроенными функциями. СУБД обеспечивают правильность, полноту и непротиворечивость данных, а также удобный доступ к ним.
Популярные СУБД - FoxPro, Access for Windows, Paradox.
Таким образом, необходимо различать собственно базы данных (БД) – упорядоченные наборы данных, и системы управления базами данных (СУБД) – программы, управляющие хранением и обработкой данных. Например, приложение Access, входящее в офисный пакет программ Microsoft Office, является СУБД, позволяющей пользователю создавать и обрабатывать табличные базы данных.
Принципы построения систем управления баз данных следуют из требований, которым должна удовлетворять организация баз данных:
- Производительность и готовность. Запросы от пользователя базой данных удовлетворяются с такой скоростью, которая требуется для использования данных. Пользователь быстро получает данные всякий раз, когда они ему необходимы.
- Минимальные затраты. Низкая стоимость хранения и использования данных, минимизация затрат на внесение изменений.
- Простота и легкость использования. Пользователи могут легко узнать и понять, какие данные имеются в их распоряжении. Доступ к данным должен быть простым, исключающим возможные ошибки со стороны пользователя.
- Простота внесения изменений. База данных может увеличиваться и изменяться без нарушения имеющихся способов использования данных.
- Возможностьпоиска. Пользователь базы данных может обращаться с самыми различными запросами по поводу хранимых в ней данных. Для реализации этого служит так называемый язык запросов.
- Целостность . Современные базы данных могут содержать данные, используемые многими пользователями. Очень важно, чтобы в процессе работы элементы данных и связи между ними не нарушались. Кроме того, аппаратные ошибки и различного рода случайные сбои не должны приводить к необратимым потерям данных. Значит, система управления данными должна содержать механизм восстановления данных.
- Безопасность и секретность. Под безопасностью данных понимают защиту данных от случайного или преднамеренного доступа к ним лиц, не имеющих на это права, от неавторизированной модификации (изменения) данных или их разрушения. Секретность определяется как право отдельных лиц или организаций решать, когда, как какое количество информации может быть передано другим лицам или организациям.
Далее на примере одной из самых распространенных систем управления базами данных – Microsoft Access входит в состав популярного пакета Microsoft Office – мы познакомимся с основными типами данных, способами создания баз данных и с приемами работы с базами данных.
ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.
ИНФОРМАЦИЯ – ЭТО НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.
ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ) ИЛИ КОМПЬЮТЕР (англ. computer- -вычислитель)-УСТРОЙСТВО ДЛЯ АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ ИНФОРМАЦИИ. Принципиальное отличие использования ЭВМ от всех других способов обработки информации заключается в способности выполнения определенных операций без непосредственного участия человека, но по заранее составленной им программе. Информация в современном мире приравнивается по своему значению для развития общества или страны к важнейшим ресурсам наряду с сырьем и энергией. Еще в 1971 году президент Академии наук США Ф.Хандлер говорил: "Наша экономика основана не на естественных ресурсах, а на умах и применении научного знания".
В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: "Мы переходим от экономики, основанной на тяжелой промышленности, к экономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги.."
2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.
Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны.
В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.
Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.
В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к снижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).
История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная американская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.
СОВРЕМЕННЫЕ КОМПЬТЕРЫ- ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.
90-ые годы ХХ-го века ознаменовались бурным развитием компьютерных сетей, охватывающих весь мир. Именно к началу 90-ых количество подключенных к ним компьютеров достигло такого большого значения, что объем ресурсов доступных пользователям сетей привел к переходу ЭВМ в новое качество. Компьютеры стали инструментом для принципиально нового способа общения людей через сети, обеспечивающего практически неограниченный доступ к информации, находящейся на огромном множестве компьюторов во всем мире - "глобальной информационной среде обитания".
6.ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ И ЕЕ ОБЪЕМ.
ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР, В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нет- ноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска одно- на этом участке записан ноль, другое- единица. Если определенный участок поверхности оптического диска отражает лазерный луч- на нем записан ноль, не отражает- единица.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digit- двоичная единица). 1 бит- минимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.
Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символов- либо 0, либо 1.
Если же есть 2 бита, то из них можно составить один из четырех вариантов кодов: 00 , 01 , 10 , 11 .
Если есть 3 бита- один из восьми: 000 , 001 , 010 , 100 , 110 , 101 , 011 , 111 .
1 бит- 2 варианта,
2 бита- 4 варианта,
3 бита- 8 вариантов;
Продолжая дальше, получим:
4 бита- 16 вариантов,
5 бит- 32 варианта,
6 бит- 64 варианта,
7 бит- 128 вариантов,
8 бит- 256 вариантов,
9 бит- 512 вариантов,
10 бит- 1024 варианта,
N бит - 2 в степени N вариантов.
В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.
ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В КОМПЬЮТЕРЕ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.
СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится "аски", означает "Американский Стандартный Код для Обмена Информацией"- англ. American Standart Code for Information Interchange).
ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.
A - 01000001, B - 01000010, C - 01000011, D - 01000100, и т.д.
Таким образом, если человек создает текстовый файл и записывает его на диск, то на самом деле каждый введенный человеком символ хранится в памяти компьютера в виде набора из восьми нулей и единиц. При выводе этого текста на экран или на бумагу специальные схемы - знакогенераторы видеоадаптера (устройства, управляющего работой дисплея) или принтера образуют в соответствии с этими кодами изображения соответствующих символов.
Набор ASCII был разработан в США Американским Национальным Институтом Стандартов (ANSI), но может быть использован и в других странах, поскольку вторая половина из 256 стандартных символов, т.е. 128 символов, могут быть с помощью специальных программ заменены на другие, в частности на символы национального алфавита, в нашем случае - буквы кириллицы. Поэтому, например, передавать по электронной почте за границу тексты, содержащие русские буквы, бессмысленно. В англоязычных странах на экране дисплея вместо русской буквы Ь будет высвечиваться символ английского фунта стерлинга, вместо буквы р - греческая буква альфа, вместо буквы л - одна вторая и т.д.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО СИМВОЛА ASCII НАЗЫВАЕТСЯ 1 БАЙТ.
Очевидно что, поскольку под один стандартный ASCII-символ отводится 8 бит,
Остальные единицы объема информации являются производными от байта:
1 КИЛОБАЙТ = 1024 БАЙТА И СООТВЕТСТВУЕТ ПРИМЕРНО ПОЛОВИНЕ СТРАНИЦЫ ТЕКСТА,
1 МЕГАБАЙТ = 1024 КИЛОБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 500 СТРАНИЦАМ ТЕКСТА,
1 ГИГАБАЙТ = 1024 МЕГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ,
1 ТЕРАБАЙТ = 1024 ГИГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2000 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ.
Обратите внимание, что в информатике смысл приставок кило- , мега- и других в общепринятом смысле выполняется не точно, а приближенно, поскольку соответствует увеличению не в 1000, а в 1024 раза.
СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО ЛИНИЯМ СВЯЗИ ИЗМЕРЯЕТСЯ В БОДАХ.
1 БОД = 1 БИТ/СЕК.
В частности, если говорят, что пропускная способность какого-то устройства составляет 28 Килобод, то это значит, что с его помощью можно передать по линии связи около 28 тысяч нулей и единиц за одну секунду.
7. СЖАТИЕ ИНФОРМАЦИИ НА ДИСКЕ
ИНФОРМАЦИЮ НА ДИСКЕ МОЖНО ОБРАБОТАТЬ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ ПРОГРАММ ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА ЗАНИМАЛА МЕНЬШИЙ ОБЪЕМ.
Существуют различные методы сжатия информации. Некоторые из них ориентированы на сжатие текстовых файлов, другие - графических, и т.д. Однако во всех них используется общая идея, заключающаяся в замене повторяющихся последовательностей бит более короткими кодами. Например, в романе Л.Н.Толстого "Война и мир" несколько миллионов слов, но большинство из них повторяется не один раз, а некоторые- до нескольких тысяч раз. Если все слова пронумеровать, текст можно хранить в виде последовательности чисел - по одному на слово, причем если повторяются слова, то повторяются и числа. Поэтому, такой текст (особенно очень большой, поскольку в нем чаще будут повторяться одни и те же слова) будет занимать меньше места.
Сжатие информации используют, если объем носителя информации недостаточен для хранения требуемого объема информации или информацию надо послать по электронной почте
Программы, используемые при сжатии отдельных файлов называются архиваторами. Эти программы часто позволяют достичь степени сжатия информации в несколько раз.
Читайте также: