Система связи компьютеров или вычислительного оборудования
Обработка информации при помощи ЭВМ развивается по двум направлениям:
с использованием вычислительных комплексов ;
с использованием вычислительных сетей .
Вычислительные комплексы служат для повышения производительности и надежности обработки информации. Они объединяют несколько ЭВМ, территориально расположенных в одном месте, и делятся на два типа:
многомашинные комплексы (несколько самостоятельных ЭВМ, в том числе и резервных, объединенных общим управлением);
многопроцессорные комплексы (несколько процессоров, работающих с одной общей памятью с различными возможными типами доступа к ней ).
Использование вычислительных комплексов позволяет разделить поставленную задачу на несколько подзадач (если это позволяет сама задача) и решать их параллельно.
Вычислительная или компьютерная сеть (КС) – это совокупность ПО и компьютеров, соединенных с помощью каналов связи и специального сетевого оборудования (см. далее) в единую систему для распределённой обработки данных.
Компьютерные сети могут классифицироваться по разным критериям. Например, по территориальному признаку , т.е. по масштабу охвата территории, сети делят на локальные (LAN – Local Area NetWork), региональные (MAN – Metropolia Area NetWork) и глобальные (WAN – Wide Area NetWork):
- локальные сети, как правило, размещаются в одном здании или на территории одного предприятия (примером локальной сети является локальная сеть в учебном классе);
- региональные сети объединяют несколько предприятий или город (примером сетей такого типа является сеть кабельного телевидения);
- глобальные сети охватывают значительную территорию, часто целую страну или континент, и представляют собой объединение сетей меньшего размера (примером глобальной сети является сеть Интернет).
Информация в сети передаётся по каналам связи, которые могут быть:
кабельными каналами (телефонный кабель, витая пара, коаксиальный кабель, оптоволоконный кабель);
Для подключения к сети используется специальное оборудование - устройства сопряжения, предназначенные для согласования сигналов внутреннего интерфейса ЭВМ с сигналами сети:
модемы (при подключении через телефонную сеть);
сетевые адаптеры (при подключении к одному каналу);
мультиплексоры (при подключении к нескольким каналам),
Компьютерные сети используются в следующих целях:
совместного использования ресурсов (данных, оборудования, программ);
обеспечения надёжного хранения данных (в разных местах);
для передачи данных между удалёнными друг от друга пользователями.
Взаимодействие в КС происходит по определенным правилам – протоколам , которые обеспечивают подключение к сети разнотипных ЭВМ с различными ОС.
Основные характеристики компьютерных сетей:
скорость передачи (Мбит/с);
достоверность передачи информации (ошибок/знак);
надёжность (среднее время безотказной работы в сетях).
Компьютеры сети могут быть серверами и клиентами (рабочими станциями).
Сервер – компьютер, обеспечивающий пользователей сети ресурсами (оборудованием, данными и программами, выполняющими задания пользователей). Серверы могут быть файловыми ( предназначены для хранения и обработки большого объема данных для всех пользователей), выделенными (на них устанавливается общая сетевая ОС и общие внешние устройства – принтеры, модемы, винчестеры т.п.), а также – одновременно файловыми и выделенными.
Клиент – компьютер, через который пользователь получает доступ к сети.
Компьютеры, объединенные в локальную сеть, физически могут располагаться различным образом. Однако порядок их подсоединения к сети определяется топологией – усредненной геометрической схемой соединений узлов сети.
Наиболее распространенными топологиями локальных сетей, в которых передающей средой является кабель, являются кольцо, шина, звезда (рисунки 14, 15 и 16).
Последовательная организация обслуживания узлов сети снижает ее быстродействие, а выход из строя одного из узлов может привести к нарушению функционирования кольца (при отсутствии дополнительного контура).
Рисунок 14 - Топология кольцо
Рисунок 15 - Топология шина
Данная топология значительно упрощает взаимодействие узлов сети друг с другом, но в то же время работоспособность локальной вычислительной сети зависит от надежности работы центрального узла.
Рисунок 16 - Топология звезда
При построении реальных вычислительных сетей используются эти топологии, а так же их сочетания.
Сеть Интернет
Сеть Интернет – глобальная компьютерная сеть, точнее - сообщество сетей. В состав его на добровольной основе входят различные региональные и локальные сети. У этого сообщества нет единого центра управления.
Протоколы Интернета можно разделить на два типа:
протокол TCP - используется для управления передачей данных (регулировка, синхронизация, организация их в виде пакетов);
прикладные (обеспечивают функционирование служб сети Интернет – протоколы высокого уровня):
протокол FTP – используется для передачи файлов ;
протокол SMTP – используется для передачи электронной почты .
Каждому компьютеру, подключенному к сети Интернет (даже временно), присваивается числовой адрес , называемый IP -адресом . IP -адрес содержит информацию, необходимую для идентификации узла в сети. Он состоит из четырех чисел, разделенных точками.
IP -адрес трудно запоминаем пользователем, поэтому некоторые узлы в сети Интернет имеют символьные DNS -адреса ( Domain Name System – система доменных имен), например, www . site . net . В сети Интернет существуют специальные DNS -серверы, которые по DNS -адресу выдают его IP -адрес. DNS -адрес может иметь произвольную длину, образуется как символьный адрес в локальной сети и включает в себя несколько уровней доменов. Уровни доменов разделяются точками. Самый правый домен – домен верхнего уровня. Чем левее домен, тем ниже его уровень.
Для доступа к ресурсам расположенных в сети компьютеров используется унифицированный указатель ресурса – URL (Uniform Resource Locator). Адрес URL является сетевым расширением понятия полного имени ресурса, например, файла или приложения и пути к нему в ОС. В адресе URL, кроме имени файла и директории, где он находится, указывается сетевое имя компьютера, на котором этот ресурс расположен, и протокол доступа к ресурсу, который можно использовать для обращения к нему. Ресурсы предоставляются только для чтения и копирования.
Информация в сети передается небольшими порциями – пакетами ( группами байт фиксированной длины). Любой Клиент и любой Сервер умеют преобразовывать поток передаваемой информации в набор отдельных пакетов и "склеивать" полученные пакеты обратно в поток информации. Обычно размер пакетов в сети небольшой - от нескольких байт до нескольких килобайт.
Каждый пакет состоит из заголовка и информационной части. Заголовок - это аналог почтового конверта. В заголовке указывается, кому и от кого этот пакет передан - адрес отправителя пакета и адрес получателя, а также иная служебная информация, необходимая для успешной "склейки" пакетов получателем. В информационной части - собственно сама передаваемая информация. Адреса отправителя/получателя в заголовке пакета используется сетевым оборудованием для определения - куда какой пакет отправлять.
Применение пакетной передачи данных позволяет повысить надежность передачи информации и строить сеть таким образом, что маршруты доставки от одной точки сети до другой пакетов информации могут проходить по разным физическим каналам связи и, меняться в зависимости от их работоспособности или загрузки. Это значительно увеличивает "живучесть" сети в целом - даже если часть каналов связи будут неработоспособными, информация все равно может быть доставлена по другим работающим каналам.
Основные популярные сервисы сети Интернет:
почтовая служба ( e-mail );
информационный сервис ( www );
служба передачи файлов ( ftp ).
E - mail предназначена для обмена электронными письмами между пользователями. Она построена по принципу клиент-серверной архитектуры (пользователь работает с клиентской программой, которая взаимодействует с сервером почтового сервиса – mail . ru , gmail . com , yandex . ru , rambler . ru и т.п.). Зарегистрировавшись на сервере, пользователь получает адрес, который имеет следующий формат - <логин пользователя>@<имя почтового домена>. Используется в почтовой службе SMTP -протокол ( Simple Mail Transfer Protocol – протокол пересылки почты).
WWW -сервис является основной информационной службой Интернета, которая охватывает всю глобальную сеть (« world - wide - web » - «всемирная паутина» ). Информация в сети представляется в виде гипертекстовых документов (созданных с помощью языка HTML ) - web -страниц . Располагаются эти документы на специальных web -серверах .
Совокупность web -страниц, объединённых общей тематикой и связанных гиперссылками, - web -сайт .
Сайт, содержащий самостоятельно обновляемую пользователем информацию личного характера – блог .
Сайт, на котором можно общаться (и не только в реальном времени) по определённой тематике – форум .
Средство общения в реальном времени – чат .
FTP -сервис используется для удобной передачи файлов большого размера (программ, изображений, видеофайлов). Хранятся такие файлы на специальных ftp -серверах, для доступа к которым используются специальные программы, пересылающие файлы по ftp -протоколу ( file transfer protocol – протокол передачи файлов).
В глобальных сетях для передачи информации применяются следующие виды коммутации:
Большой интерес представляет глобальная информационная сеть Интернет.
Интернет объединяет множество различных компьютерных сетей (локальных, корпоративных, глобальных) и отдельных компьютеров, которые обмениваются между собой информацией по каналам общественных телекоммуникаций.
В настоящее время в Интернете существует достаточно большое количество сервисов, обеспечивающих работу со всем спектром ресурсов. Наиболее известными среди них являются:
Запись адреса электронной почты строится по определенной форме и состоит из двух частей:
Имя_пользователя, чаще всего, имеет произвольный характер и задается самим пользователем.
Имя_сервера жестко связано с выбором пользователем сервера, на котором он разместил свой почтовый ящик.
Условное разделение адресов электронной почты:
У каждой сетевой службы должен быть свой протокол. Он определяет порядок взаимодействия клиентской и серверной программ. От него зависит, что может запросить та или иная сторона, а что — не может; на что может ответить сторона, а на что — не должна. Он же определяет, в какой форме должен быть сделан запрос и как должен быть представлен ответ.
Кроме того, электронная почта позволяет:
Телеконференция - это форум, где проводятся дискуссии по отдельной теме.
Телеконференция осуществляется на базе программно-технической среды, которая обеспечивает взаимодействие пользователей. Основным достоинством телеконференций является возможность получения практически любой информации в достаточно короткие сроки.
Три типа телеконференций
Всё обеспечение сети разделяют на два вида:
1.Аппаратное – оборудование, которое обеспечивает существование и функционирование сети
2.Программное – программы необходимые для работы в сети
Чтобы сеть функционировала нужны сервера, компьютеры абонентов, устройства для объединения компьютеров в сети и линии связи между ними.
Компьютер-сервер – это высокопроизводительный компьютер, который постоянно подключён к сети и имеет бесперебойное электропитание, при этом он занимается постоянным приёмом/передачей информации по сети и обеспечивает предоставление информационных услуг в сети.
Компьютер-терминал – это наш домашний компьютер, через который мы выходим в интернет для получения и передачи информации.
Чтобы выйти в интернет не достаточно одного компьютера, ещё для этого необходим модем.
Модем – название произошло от слов модулятор/демодулятор. Модуляция – это преобразование информации из дискретной цифровой формы в аналоговую при передаче информации в сеть, демодуляция – наоборот. Информация в ЭВМ имеет дискретную двоичную форму, а линии телефонной связи, через которые выходим в интернет передают аналоговый – непрерывный сигнал, вот для того чтобы преобразовывать сигнал из одного вида в другой и нужен модем.
Модем (модулятор/демодулятор) — устройство для преобразования физической формы представления информации из компьютерного стандарта в стандарт телефонной связи и обратно.
До развития интернета самыми популярными были модемы для коммутируемых телефонных линий или как их ещё называли dial-up модемы, которые издавали шипяще-звинящие звуки в момент подключения к сети и обеспечивали скорость передачи до 8 килобит в секунду.
На скорость работы таких модемов влияла их скорость, измеряющаяся в бодах.
Бод — единица скорости передачи сигнала, измеряемая числом дискретных переходов или событий в секунду. Бод используется как единица измерения при обозначении скорости модемов для коммутируемых телефонных линий, выражающая число изменений состояния канала связи в секунду (для модема – действительную частоту несущей при передаче данных).
Названа в честь Эмиля Бодо, изобретателя кода Бодо — кодировки символов для телетайпов.
Иногда ошибочно считают, что бод — это количество бит, переданное в секунду. Но это верно лишь для двоичного кодирования. Например, в современных модемах используется квадратурная амплитудная манипуляция, и одним изменением уровня сигнала может кодироваться несколько (до 16) бит информации.
Например, при символьной скорости 2400 бод скорость передачи может составлять 9600 бит/c благодаря тому, что в каждом временном интервале передаётся 4 бита.
Кроме этого, бодами выражают полную ёмкость канала, включая служебные символы (биты), если они есть. Эффективная же скорость канала выражается другими единицами, например битами в секунду (бит/c, bps).
В высокоскоростных модемах один символ несёт несколько битов. Например, модемы V.22bis и V.32 передают 4 бита на 1 символ, V.32bis – 6 битов, а V.34 – 9.
До появления DSL модемов скорость интернета у обычных пользователей была не большой, но теперь с приходом технологий DSL и VPN скорость интернета ограничивается чаще только тарифным планом провайдера.
Также необходимым наличием, в случае подключения к интернету по выделенному каналу связи или с помощью DSL модема необходима сетевая карта.
Сетевая карта (сетевая плата или Ethernet-адаптер или NIC – network interface card) – периферийное устройство, позволяющее компьютеру взаимодействовать с другими устройствами сети.
Существует 4 основных вида линий (каналов) связи:
1. Телефонные линии
2. Электрическая кабельная сеть
3. Оптоволоконная кабельная сеть
4. Радиосвязь (радиорелейные линии, спутники)
Все эти каналы связи различаются по пропускной способности, помехоустойчивости, стоимости.
Самый дешёвые – телефонные, т.к. их уже протянули и они используются и для обычных телефонов, самые дорогие – оптоволоконные.
Помехоустойчивые – оптоволоконные, неустойчивые – радиосвязь.
Пропускная способность — это максимальная скорость передачи информации по каналу. Измеряется в Кбит/с или Мбит/с.
Примерная оценка пропускной способности телефонных линий около 50Мбит/с, у оптоволоконных и радиосвязи до 1Гбит/с.
Основным ПО для функционирования сетей являются сетевые операционные системы на серверах: Windows Server, FreeBSD, различные версии Linux и другие.
ПО делится на два вида:
Базовое — обеспечивает поддержку работы сети по протоколу TCP/IP.
Прикладное — обеспечивает работу служб интернета — WWW, почта и другие.
Основная технология работы сети – клиент-сервер – программа-клиент на компьютере абонента сети формирует запросы, а сервер обрабатывает эти запросы.
Интернет — это всемирная система компьютерных сетей, объединённых на базе общего протокола TCP/IP, также её именуют WWW – World Wide Web – всемирная паутина или всемирная информационная сеть.
Всемирная сеть состоит из сети документов, ещё их называют веб-страницами, связанных между собой гиперссылками.
Гиперссылка (гипертекст) — это слово или участок текста, который выделен каким-либо цветом и щелчок по которому позволит перейти на другую веб-страницу или веб-сайт.
Гиперссылка, связанная с другой страницей образует гиперсвязь. Если гиперсвязь осуществляется между мультимедиа документами, то она образует систему — гипермедиа.
Веб-страницы хранятся на веб-сервере, а если страницы находятся в одном домене, то все вместе они составляют веб-сайт.
Для просмотра веб-документов в сети Интернет необходима клиент-программа — браузер.
Практически все услуги Internet построены на принципе клиент-сервер. Вся информация в Интернет хранится на серверах. Обмен информацией между серверами сети осуществляется по высокоскоростным каналам связи или магистралям.
К таким магистралям относятся: выделенные телефонные аналоговые и цифровые линии, оптические каналы связи и радиоканалы, в том числе спутниковые линии связи. Серверы, объединенные высокоскоростными магистралями, составляют базовую часть Интернет.
Отдельные пользователи подключаются к сети через компьютеры местных поставщиков услуг Интернета, Internet - провайдеров (Internet Service Provider - ISP), которые имеют постоянное подключение к Интернет. Региональный провайдер, подключается к более крупному провайдеру национального масштаба, имеющего узлы в различных городах страны.
Сети национальных провайдеров объединяются в сети транснациональных провайдеров или провайдеров первого уровня. Объединенные сети провайдеров первого уровня составляют глобальную сеть Internet.
Услуги, которые могут быть предоставлены пользователям в Интернет:
- электронная почта E-mail;
- компьютерная телефония;
- передача файлов FTP;
- терминальный доступ для интерактивной работы на удаленном компьютере TELNET;
- глобальная система телеконференций USENET;
- справочные службы;
- доступ к информационным ресурсам и средства поиска информации в Интернете.
Кроме того, Интернет - это мощное средство ведения электронного бизнеса и дистанционного (интерактивного или он-лайн) обучения.
Компьютерная сеть (вычислительная сеть, сеть передачи данных) – система связи компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило – различные виды электрических сигналов, световых сигналов или электромагнитного излучения.
По назначению компьютерные сети распределяются
Вычислительные сети предназначены главным образом для решения заданий пользователей с обменом данными между их абонентами. Информационные сети ориентированы в основном на предоставление информационных услуг пользователям. Смешанные сети совмещают функции первых двух.
Для классификации компьютерных сетей используются разные признаки, выбор которых заключается в том, чтобы выделить из существующего многообразия такие, которые позволили бы обеспечить данной классификационной схеме такие обязательные качества:
возможность классификации всех, как существующих, так и перспективных, компьютерных сетей;
дифференциацию существенно разных сетей;
однозначность классификации любой компьютерной сети;
наглядность, простоту и практическую целесообразность классификационной схемы.
Определенное несоответствие этих требований делает задание выбору рациональной схемы классификации компьютерной сети достаточно сложной, такой, которая не нашла до этого времени однозначного решения. В основном компьютерные сети классифицируют по признакам структурной и функциональной организации.
По территориальной распространенности
CAN (Controller Area Network – сеть контроллеров) – стандарт промышленной сети, ориентированный прежде всего на объединение в единую сеть различных исполнительных устройств и датчиков.
LAN (Local Area Network) – локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин "LAN" может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Зарубежные источники дают даже близкую оценку - около шести миль (10 км) в радиусе. Локальные сети являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью.
MAN (Metropolitan Area Network) – городские сети между учреждениями в пределах одного или нескольких городов, связывающие много локальных вычислительных сетей.
WAN (Wide Area Network) – глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример WAN - сети с коммутацией пакетов (Frame relay), через которую могут "разговаривать" между собой различные компьютерные сети. Глобальные сети являются открытыми и ориентированы на обслуживание любых пользователей.
PAN (Personal Area Network) – персональная сеть, предназначенная для взаимодействия различных устройств принадлежащих одному владельцу.
По типу функционального взаимодействия
По типу сетевой топологии
Клиент-сервер (англ. Client-server) – вычислительная или сетевая архитектура, в которой задания или сетевая нагрузка распределены между поставщиками услуг (сервисов), называемыми серверами, и заказчиками услуг, называемыми клиентами. Нередко клиенты и серверы взаимодействуют через компьютерную сеть и могут быть как различными физическими устройствами, так и программным обеспечением.
Неработоспособность сервера может сделать неработоспособной всю вычислительную сеть.
Поддержка работы данной системы требует отдельного специалиста – системного администратора.
Высокая стоимость оборудования.
Однора́нговая, децентрализо́ванная или пи́ринговая (от англ. peer-to-peer, P2P – равный к равному) сеть – это оверлейная компьютерная сеть, основанная на равноправии участников. В такой сети отсутствуют выделенные серверы, а каждый узел (peer) является как клиентом, так и сервером. В отличие от архитектуры клиент-сервера, такая организация позволяет сохранять работоспособность сети при любом количестве и любом сочетании доступных узлов. Участниками сети являются пиры.
Многоранговая сеть – это компьютерная сеть, в состав которой входят один или несколько выделенных серверов. Остальные компьютеры такой сети (рабочие станции) выступают в роли клиентов.
Топология типа общая ши́на , представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.
В топологии «шина» отсутствует центральный абонент, через которого передается вся информация, которая увеличивает ее надежность (ведь при отказе любого центра перестает функционировать вся управляемая этим центром система). Добавление новых абонентов в шину достаточно простое и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины нужно минимальное количество соединительного кабеля по сравнению с другой топологией. Правда, нужно учесть, что к каждому компьютеру (кроме двух крайних) подходит два кабеля, что не всегда удобно.
Шине не страшны отказы отдельных компьютеров, потому что все другие компьютеры сети могут нормально продолжать обмен. Кроме того, так как используется только один кабель, в случае обрыва нарушается работа всей сети. Может показаться, что шине не страшен и обрыв кабеля, поскольку в этом случае остаются две полностью работоспособных шины. Однако из-за особенности распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных устройств – Терминаторов.
Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной.
При построении больших сетей возникает проблема ограничения на длину связи между узлами, в таком случае сеть разбивают на сегменты. Сегменты соединяются различными устройствами – повторителями концентраторами или хабами. Например, технология Ethernet позволяет использовать кабель длиной не более 185 метров.
Небольшое время установки сети;
Дешевизна (требуется меньше кабеля и сетевых устройств);
Выход из строя рабочей станции не отражается на работе сети.
Неполадки в сети, такие как обрыв кабеля и выход из строя терминатора, полностью блокируют работу всей сети;
Сложная локализация неисправностей;
С добавлением новых рабочих станций падает производительность сети.
Кольцо́ — это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов.
Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли репитера, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.
Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие – позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.
Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).
В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера.
Практически полное отсутствие дополнительного оборудования;
Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.
Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
Сложность конфигурирования и настройки;
Сложность поиска неисправностей.
Необходимость иметь две сетевые платы, на каждой рабочей станции.
Звезда́ – базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно сетевой концентратор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило, «дерево»). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом ложится очень большая нагрузка, потому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе не возможны, потому что управление полностью централизовано.
Рабочая станция, с которой необходимо передать данные, отсылает их на концентратор. В определённый момент времени только одна машина в сети может пересылать данные, если на концентратор одновременно приходят два пакета, обе посылки оказываются не принятыми и отправителям нужно будет подождать случайный промежуток времени, чтобы возобновить передачу данных.
выход из строя одной рабочей станции не отражается на работе всей сети в целом;
хорошая масштабируемость сети;
лёгкий поиск неисправностей и обрывов в сети;
высокая производительность сети (при условии правильного проектирования);
гибкие возможности администрирования.
выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;
для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.
Краткая история развития компьютерных сетей
Компьютерные сети появились в результате развития телекоммуникационных технологий и компьютерной техники. То есть появились компьютеры. Они развивались. Были телекоммуникационные системы, телеграф, телефон, то есть связь. И вот люди думали, хорошо было бы если бы компьютеры могли обмениваться информацией между собой. Эта идея стала основополагающей идеей благодаря которой появились компьютерные сети.
50-е годы: мейнфреймы
Начало 60-х годов: многотерминальные системы
В дальнейшем к одному мейнфрейму стали подключать несколько устройств ввода-вывода, появился прообраз нынешних терминальных систем да и сетей в целом.
70-е годы: первые компьютерные сети
Середина 70-х годов: большие интегральные схемы
Локальная сеть (Local Area Network, LAN) – объединение компьютеров, сосредоточенных на небольшой территории. В общем случае локальная сеть представляет собой коммуникационную систему, принадлежащую
одной организации.Сетевая технология – согласованный набор программных и аппаратных средств (драйверов, сетевых адаптеров, кабелей и разъемов), а также механизмов передачи данных по линиям связи, достаточный для построения вычислительной сети.
В период с 80-х до начала 90-х годов появились и прочно вошли в нашу жизнь:
Общие принципы построения сетей
Со временем основной целью компьютерных развития сетей (помимо передачи информации) стала цель распределенного использования информационных ресурсов:
- Периферийных устройств: принтеры, сканеры и т. д.
- Данных хранящихся в оперативной памяти устройств.
- Вычислительных мощностей.
Достичь эту цель помогали сетевые интерфейсы. Сетевые интерфейсы это определенная логическая и/или физическая граница между взаимодействующими независимыми объектами.
Сетевые интерфейсы разделяются на:
- Физические интерфейсы (порты).
- Логические интерфейсы (протоколы).
Из определения обычно ничего не ясно. Порт и порт, а что порт?
Начнем с того что порт это цифра. Например 21, 25, 80.
Протокол
Протокол, например TCP/IP это адрес узла (компьютера) с указанием порта и передаваемых данных. Например что бы передать информацию по протоколу TCP/IP нужно указать следующие данные:
Пара клиент—сервер
Начнем с определений.
При этом программа может быть установлена на Клиенте, а база данных программы на Сервере.
Топология физических сетей
Под топологией сети понимается конфигурация графа, вершинам которого соответствуют конечные узлы сети (например, компьютеры) и коммуникационной оборудование (например, маршрутизаторы), а ребрам – физические или информационные связи между вершинами.
- Полносвязная (а).
- Ячеистая (б).
- Кольцо (в).
- Звезда (г).
- Дерево (д).
- Шина (е).
Адресация узлов сети
Множество всех адресов, которые являются допустимыми в рамках некоторой схемы адресации, называется адресным пространством. Адресное пространство может
иметь плоскую (линейную) организацию или иерархическую организацию.Для преобразования адресов из одного вида в другой используются специальные вспомогательные протоколы, которые называют протоколами разрешения адресов.
Коммутация
Соединение конечных узлов через сеть транзитных узлов называют коммутацией. Последовательность узлов, лежащих на пути от отправителя к получателю, образует маршрут.
Обобщенные задачи коммутации
- Определение информационных потоков, для которых требуется прокладывать маршруты.
- Маршрутизация потоков.
- Продвижение потоков, то есть распознавание потоков и их локальная коммутация на каждом транзитном узле.
- Мультиплексирование и демультиплексирование потоков.
Уровни сетевой модели OSI и уровни TCP/IP
Для упрощения структуры большинство сетей организуются в наборы уровней, каждый последующий возводится над предыдущим.
Целью каждого уровня является предоставление неких сервисов для вышестоящих уровней. При этом от них скрываются детали реализации предоставляемого сервиса.
Протоколы, реализующие модель OSI никогда не применялись на практике, но имена и номера уровней используются по сей день.
- Физический.
- Канальный.
- Сетевой.
- Транспортный.
- Сеансовый.
- Представления.
- Прикладной.
Для лучшего понимания приведу пример. Вы открываете страницу сайта в интернете. Что происходит?
Канальный уровень. Канальный уровень это технология каким образом будут связаны узлы (передающий и принимающий), тут вспоминает топологию сетей: кольцо, шина, дерево. Данный уровень определяет порядок взаимодействия между большим количеством узлов.
- Сетевые протоколы (IPv4 и IPv6).
- Протоколы маршрутизации и построения маршрутов.
Сеансовый уровень. Отвечает за управление сеансами связи. Производит отслеживание: кто, в какой момент и куда передает информацию. На этом уровне происходит синхронизация передачи данных.
Прикладной уровень. Осуществляет взаимодействие приложения (например браузера) с сетью.
Уровни TCP/IP
Набор протоколов TSP/IP основан на собственной модели, которая базируется на модели OSI.
- Прикладной, представления, сеансовый = Прикладной.
- Транспортный = Транспортный.
- Сетевой = Интернет.
- Канальный, физический = Сетевой интерфейс.
Уровень сетевого интерфейса
Уровень сетевого интерфейса (называют уровнем 2 или канальным уровнем) описывает стандартный метод связи между устройствами которые находятся в одном сегменте сети.
Этот уровень предназначен для связи расположенных недалеко сетевых интерфейсов, которые определяются по фиксированным аппаратным адресам (например MAC-адресам).
Уровень сетевого интерфейса так же определяет физические требования для обмена сигналами интерфейсов, кабелей, концентраторов, коммутаторов и точек доступа. Это подмножество называют физическим уровнем (OSI), или уровнем 1.
Например, интерфейсы первого уровня это Ethernet, Token Ring, Point-to-Point Protocol (PPP) и Fiber Distributed Data Interface (FDDI).
Немного о Ethernet на примере кадра web-страницы
Пакеты Ethernet называют кадрами. Первая строка кадра состоит из слова Frame. Эта строка содержит общую информацию о кадре.
В полном заголовке Ethernet есть такие значения как DestinationAddress и SourceAddress которые содержат MAC-адреса сетевых интерфейсов.
Поле EthernetType указывает на следующий протокол более высокого уровня в кадре (IPv4).
Коммутаторы считывают адреса устройств локальной сети и ограничивают распространение сетевого трафика только этими адресами. Поэтому коммутаторы работают на уровне 2.
Уровень Интернета
Уровень интернета называют сетевым уровнем или уровнем 3. Он описывает схему адресации которая позволяет взаимодействовать устройствам в разных сетевых сегментах.
Если адрес в пакете относится к локальной сети или является широковещательным адресом в локальной сети, то по умолчанию такой пакет просто отбрасывается. Поэтому говорят, что маршрутизаторы блокируют широковещание.
Стек TCP/IP реализован корпорацией Microsoft ну уровне интернета (3). Изначально на этом уровне использовался только один протокол IPv4, позже появился протокол IPv6.
Протокол версии 4 отвечает за адресацию и маршрутизацию пакетов между узлами в десятках сегментах сети. IPv4 использует 32 разрядные адреса. 32 разрядные адреса имеют довольно ограниченное пространство, в связи с этим возникает дефицит адресов.
Протокол версии 6 использует 128 разрядные адреса. Поэтому он может определить намного больше адресов. В интернете не все маршрутизаторы поддерживают IPv6. Для поддержки IPv6 в интернете используются туннельные протоколы.
В Windows по умолчанию включены обе версии протоколов.
Транспортный уровень
Транспортный уровень модели TCP/IP представляет метод отправки и получения данных устройствами. Так же он создает отметку о предназначении данных для определенного приложения. В TCP/IP входят два протокола транспортного уровня:
- Протокол TCP. Протокол принимает данные у приложения и обрабатывает их как поток байт.Байты группируются, нумеруются и доставляются на сетевой хост. Получатель подтверждает получение этих данных. Если подтверждение не получено, то отправитель отправляет данные заново.
- Протокол UDP.Этот протокол не предусматривает гарантию и подтверждение доставки данных. Если вам необходимо надежное подключение, то стоит использовать протокол TCP.
Прикладной уровень
Обучаю HTML, CSS, PHP. Создаю и продвигаю сайты, скрипты и программы. Занимаюсь информационной безопасностью. Рассмотрю различные виды сотрудничества.
Читайте также: