Семена дозревают наиболее интенсивно при температуре
Основной формой жизнедеятельности всех живых компонентов зерновой массы является дыхание (газообмен). Дыхание может происходить аэробно и анаэробно с выделением конечных продуктов дыхания и энергии. Но при хранении зерновых масс продовольственного и кормового назначения наибольшее значение имеет не вид или характер дыхания, а его интенсивность. Если дыхание замедлено (интенсивность его очень низкая), то оно не оказывает отрицательного влияния на сохранность и качество зерна и семян, происходят только незначительные потери массы (в пределах норм естественной убыли), за год не превышающие, как правило, 0,1-0,2 % при правильном хранении сухого зерна. При хранении очень сырого зерна (с влажностью более 20 %), находящегося в неохлажденном состоянии, такие же потери массы сухого вещества могут произойти за одни сутки. При интенсивном дыхании происходят не только потери в массе, но и значительные потери в качестве зерна и семян. Самым отрицательным следствием дыхания в этом случае является выделение большого количества тепла.
Самосогреванием зерновой массы называется явление самопроизвольного повышения ее температуры вследствие протекающих в ней физиологических процессов и плохой теплопроводности. В зависимости от исходного состояния зерна и условий хранения в каком-либо участке насыпи температура поднимается до 55-65 о, в редких случаях – до 70-75оС. Образующийся очаг самосогревания не остается локализованным. Тепло передается в соседние участки насыпи, что, в свою очередь, способствует активизации в них физиологических процессов и теплообразованию. Если не принять мер к ликвидации начавшегося процесса самосогревания, то вся зерновая масса окажется в греющемся состоянии.
При далеко зашедшем процессе самосогревания (если не принять мер к ликвидации его очага) температура зерна повышается до 50оС и выше, происходит интенсивное потемнение зерна, оно приобретает гнилостный запах. В процессе самосогревания активно идет гидролиз органических веществ, наблюдается тепловая денатурация белков, накапливается много аммиачного азота в зерновой массе. Процесс самосогревания завершается обугливанием зерна и полной потерей сыпучести зерновой массы, которая превращается в монолит, происходит полная потеря всех технологических качеств.
Радикальным средством борьбы с самосогреванием является активное вентилирование зерновой массы охлажденным воздухом, которое позволяет быстро и эффективно ликвидировать очаги самосогревания,а также применяют перебрасывание зерна зернопогрузчиками, пропуск через зерноочистительные воздушно-решетные машины, в результате чего зерно контактирует с атмосферным воздухом и охлаждается.
Прорастание (появление зародышевых корешков и зародышевого стебелька) сопровождается усиленным дыханием, выделением тепла, потерей массы сухого вещества (в течение 5 суток после начала прорастания зерно хлебных злаков теряет 4-5 % сухого вещества). Зерно при этом приобретает солодовый запах и сладкий вкус, то есть утрачивает свою свежесть.
Прорастание становится возможным в результате накопления зерном капельно-жидкой влаги (не менее 50 % от массы зерна), которая поступает в зерновую массу при нарушении правил перевозки и хранения (негерметичное хранилище: попадание в него атмосферных осадков через неисправную крышу, доступ грунтовых и талых вод через пол). Также капельно-жидкая влага образуется как конденсат при перепадах температур в различных участках зерновой массы вследствие явления термовлагопроводности – переноса влаги с потоками тепла (из теплых участков в холодные). Все эти процессы нельзя допускать при хранении зерна.
4. Послеуборочное дозревание
При правильном хранении в зерновой массе в первый период хранения свежеубранного зерна происходит его дальнейшее дозревание, которое заключается в повышении жизнеспособности семян, их всхожести и энергии прорастания. Отмечается также улучшение технологических качеств. В процессе послеуборочного дозревания происходят уменьшение содержания в зерне водорастворимых веществ, постепенное снижение активности ферментов, сокращение интенсивности дыхания, а также синтез сложных химических веществ (белков, крахмала, жиров). В результате зерно становится физиологически зрелым и вступает в состояние покоя, приобретая повышенную устойчивость при хранении. Для этого необходимо, чтобы зерно находилось в сухом состоянии (с влажностью ниже критической). В свежеубранном зерне с повышенной влажностью преобладание процессов гидролиза приводит не к уменьшению физиологической активности, а к ее дальнейшему росту. Семена не только не улучшают своих посевных качеств, но могут и снизить их.
Семена дозревают только в условиях положительной температуры и наиболее интенсивно при 15-30 оС. Поэтому в первый период хранения сухие свежеубранные семена не следует значительно охлаждать. Наиболее интенсивно послеуборочное дозревание протекает при активном доступе воздуха к семенам. Недостаток кислорода и накопление в зерновой массе диоксида углерода замедляют дозревание. При благоприятных условиях хранения процесс послеуборочного дозревания семян основных злаковых культур заканчивается в течение полутора-двух месяцев.
Сорбция – поглощение водяных паров и газов телами. Зерно всех культурных растений, семена сорняков и вся зерновая масса способны интенсивно поглащать или, как принято говорить, сорбировать (от лат. sorbere – поглощать) различные газы и пары. Сорбционные свойства зерна высокие, что объясняется его капиллярно-пористой структурой и способностью отдельных биохимических веществ зерна поглощать и удерживать строго определенное количество воды. Система макро– и микрокапилляров зерна с высокой активностью стенок капилляров обеспечивает интенсивное поглощение и удерживание молекул воды.
Наибольшей гигроскопичностью в зерне пшеницы обладает зародыш, затем оболочка и эндосперм. Щуплые и мелкие зерна обладают большей гигроскопичностью, чем выполненные, крупные. Это связано с тем, что отношение зародыша к размеру зерновки и отношение площади поверхности к массе зерна у щуплых и мелких зерен значительно больше. Битые и деформированные при обмолоте зерна также обладают повышенной гигроскопичностью.
Из-за высокой сорбционной способности зерновых масс хранить их в помещениях, где находятся пахучие вещества, нельзя. Следует своевременно проводить очистку партий зерна, в которых обнаружены корзинки полыни, дикого чеснока, кориандра и др.
Гигроскопичность зерновых масс, т. е. способность поглощать и отдавать пары воды – одно из его важнейших физико-химических свойств, учитываемых при хранении зерна и семян.
Зерно и зерновая масса способны поглощать или отдавать пары воды, происходит процесс сорбции или десорбции влаги. Это явление получило название гигроскопичности. Десорбция воды происходит, если парциальное давление водяного пара в непосредственной близости от поверхности зерна больше, чем в окружающем воздухе. Скважистость зерновой массы, обеспечивающая ее проницаемость, дает возможность каждому зерну принимать активное участие в процессах сорбции и десорбции.
Процессы сорбции и десорбции воды находятся у зерна в состоянии динамического равновесия. Каждому значению парциального давления водяного пара, находящегося в воздухе, и температуры соответствует определенное количество сорбируемой или десорбируемой воды. Сухое зерно поглощает водяные пары до тех пор, пока не наступит так называемое гигроскопическое равновесие, т. е. прекратится обмен влаги между зерном и воздухом. Установившаяся влажность зерна при данных параметрах влажности и температуры воздуха называется равновесной.
Равновесная влажность для злаковых культур и гречихи колеблется в пределах 7-36 %. При относительной влажности 60–70 % и температуре воздуха 20 є С зерно пшеницы имеет влажность 13,4-14,8 % и будет сухим (табл. 6).
Таблица 6
Равновесная влажность зерна различных культур при температуре 12 – 25 є С, % на сырую массу (по данным Б. А. Кригер)
* Равновесная влажность при температуре 20 є С.
У гречихи наблюдается неравномерное распределение влаги в ее морфологических частях. Так, при относительной влажности воздуха 75–77 % влажность гидрофильной части целого зерна составляет 15,6-15,9 %, а влажность гидрофильных каллоидов зародыша достигает 16,5-17,0 %. Повышенная влажность гидрофильных коллоидов зародыша по сравнению с плодовой оболочкой объясняется различиями в химическом свойстве. В ядре содержится гидрофильного белка в 4,5 раза выше, чем в плодовой оболочке. Эту закономерность в распределении влаги в анатомических частях гречихи следует учитывать при закладке ее на хранение. Гречиху на длительное хранение с влажностью более 13,0-13,55 % засыпать не следует.
С явлением сорбции и десорбции зерном, колосом и соломой влаги во время уборки урожая зерновых культур сталкивается в поле комбайнер. Так, если в ночные часы выпадает роса, то хлебные валки за ночь впитывают влагу, становятся не пригодными для обмолота, но в хорошую погоду по истечении некоторого времени они подсыхают и уборка продолжается.
Исследования влажности зерна, взятого в различное время из бункера комбайна, также говорят об этом (табл. 7).
Таблица 7
Влияние времени суток в период уборки урожая пшеницы на количество зерна различной влажности
При одной и той же относительной влажности и температуре воздуха зерно различных культур имеет различную влажность, что непосредственно связано с его химическим составом и гидрофильностью входящего в его состав белка.
Особенно заметными эти различия становятся при высокой влажности воздуха. Так, при относительной влажности воздуха 85 %, равновесная влажность зерна кукурузы составляет 18,1 %, а гороха, богатого белком, – 19,0 %.
С сухим веществом зерна и семян выявлены различные формы связи воды. На основе термодинамического принципа о формах связи воды, предложенного П. А. Ребиндером, сухие коллоиды поглощают первые порции воды с тепловым эффектом, соответствующим энергии образования химической связи. В зерне это химически связанная вода, удаление ее нарушает молекулярную структуру тканей зерновки. Затем, с повышением обводненности коллоида, тепловой эффект прогрессивно уменьшается, т. к. молекулы воды, окруженные гидратационными оболочками электроотрицательных группировок коллоидов, начинают удерживаться силами электростатического притяжения.
Вода эта адсорбционно связанная, при ее удалении структура ткани зерновки нарушается, а при последующем увлажнении восстанавливается.
Установлено, что молекулы воды в периферических слоях водных оболочек слабо удерживаются, и их можно удалить даже при небольшом внешнем воздействии. Внедряющиеся при набухании молекулы воды раздвигают молекулы коллоидов и тем самым ослабляют силы взаимного притяжения между ними. С увеличением толщины гидратного слоя уменьшаются силы притяжения воды, набухание затормаживается. Эта вода – капиллярно связанная, осмотически удерживаемая, при тепловой сушке может быть удалена без нарушения молекулярной структуры тканей.
В зерне не вся связанная вода удерживается с одинаковой энергией, и ее определяют как свободную и связанную. Та часть воды, которая удерживается большой силой, является связанной, а удерживаемая меньшей – свободной. Химически и адсорбционно связанной в зерне является связанная вода, капиллярно связанной и осмотически удерживаемой – свободная. При появлении в зерне и семенах свободной воды возрастает активность ферментов, участвующих в дыхании, активизируется сам процесс дыхания.
Граница появления в зерне свободной воды, при которой наблюдается резкий скачок интенсивности дыхательных процессов, получила название критической влажности.
Ее величина зависит от вида зерна, анатомического строения и химического состава. Чем больше в зерне содержится крахмала и белка, тем выше критическая влажность. Она низкая у семян масличных культур, т. к. вода в них удерживается только нелипидной частью семянки (табл. 8).
Таблица 8
Критическая влажность зерна и семян злаковых, бобовых и масличных культур
Зерно и семена масличных культур, содержащие свободную воду в значении ниже критического, считаются сухими и пригодны для хранения.
2.4. Физиологические процессы, протекающие в зерне при хранении
Любая зерновая масса – это биологическая система с присущими ей свойствами проявления жизнедеятельности в виде послеуборочного дозревания, дыхания, прорастания и самосогревания. Эти процессы, происходящие в результате жизнедеятельности входящих в нее живых компонентов (зерно, семена сорняков, насекомые и клещи, микроорганизмы), получили название физиологических. Знание их сущности и умение регулировать в зерновой массе их интенсивность прохождения дает возможность обеспечить надежное хранение зерна и семян.
2.4.1. Дыхание зерна
Рис. 49. Влияние температуры на интенсивность дыхания зерна (по В. Л. Кретовичу и А. П. Прохоровой) при влажности:
1 – 14 %; 2 – 16 %; 3 – 18 %; 4 – 22 %
В производственных условиях своевременное охлаждение зерна является эффективным мероприятием, обеспечивающим сохранность при временном хранении до сушки сырого зерна.
Итак, при хранении зерна и семян необходимо создавать условия для снижения интенсивности их дыхания до минимума за счет охлаждения или снижения влажности.
2.4.2. Послеуборочное дозревание зерна и семян
2.4.3. Самосогревание зерновых масс
Высокая физиологическая активность зерновых масс при небрежном отношении к свежеубранному зерну с повышенной влажностью, начиная с первых моментов его поступления, может вызвать крайне нежелательные явления, связанные с потерей всхожести семян и снижением технологических, пищевых и кормовых достоинств зерна. Из-за отсутствия надлежащего контроля и ухода за зерновыми массами и вследствие протекающих в них физиологических и физических процессов у влажного и сырого зерна наблюдается повышение температуры до 55–65 є С, а в отдельных случаях до 75 є С и выше. Это физиологическое явление получило название самосогревания зерновых масс.
Под самосогреванием понимают повышение температуры зерновой массы вследствие как интенсивных физиологических процессов, самопроизвольного распада запасных веществ зерна, так и из-за крайне низкой теплопроводности зерновой массы. Различные зерновые культуры по-разному проявляют свою способность к самосогреванию. По этому признаку, т. е. подверженности к самосогреванию, все зерновые культуры, как считает М.Г. Голик, можно условно разделить на 4 группы: первая – культуры, слабо подвергающиеся самосогреванию (горох и кукуруза в початках); вторая – умеренно подвергающиеся самосогреванию (пшеница, рожь, ячмень, рис); третья – легко подвергающиеся самосогреванию (просо, овес, кукуруза в зерне); четвертая – сильно подвергающиеся самосогреванию (подсолнечник, соя и другие масличные культуры).
Состоящая из автономных живых систем зерновок и некоторого количества семян сорных растений зерновая масса при влажности свыше критической интенсивно дышит, выделяя при аэробном типе дыхания огромное количество тепла. Самосогревание возникает в результате проявления активной жизнедеятельности зерна основной культуры, зерен других культур, семян сорных растений, микроорганизмов, насекомых и клещей. На возникновение самосогревания огромное влияние оказывают физиологически активные семена сорняков. В практике хранения зерна чаще всего самосогревание наблюдается в свежеубранных зерновых массах, своевременно не прошедших очистку от примесей.
Интенсивность дыхания семян сорняков, как об этом свидетельствуют данные исследований А. И. Стародубцевой, чрезвычайно велика (табл. 9).
Таблица 9
Интенсивность дыхания в свежеубранной зерновой массе зерна пшеницы и семян сорных растений при температуре 19–22 °C
При интенсивном развитии в зерновой массе скапливающихся в ограниченных участках насыпи насекомых и клещей создаются предпосылки для самосогревания зерна.
Любая партия зерна и семян в практике хранения называется зерновой массой. А поскольку зерновая масса – это совокупность живых организмов (зерно и семена основной культуры, примеси различного происхождения, микроорганизмы), то она будет устойчива при хранении, если нежелательные физиологические процессы в ней не происходят или они очень сильно замедлены. Иными словами, зерно хранится успешно, если оно находится в состоянии анабиоза.
Дыхание
Основной формой жизнедеятельности всех живых компонентов зерновой массы является дыхание (газообмен). Сущность дыхания и факторы, влияющие на его интенсивность, были рассмотрены в предыдущей теме. Дыхание может происходить аэробно и анаэробно с выделением конечных продуктов дыхания и энергии. Но при хранении зерновых масс продовольственного и кормового назначения наибольшее значение имеет не вид или характер дыхания, а его интенсивность. Если дыхание замедлено (интенсивность его очень низкая), то оно не оказывает отрицательного влияния на сохранность и качество зерна и семян, происходят только незначительные потери массы (в пределах норм естественной убыли), за год не превышающие, как правило, 0,1-0,2 % при правильном хранении сухого зерна. При хранении очень сырого зерна (с влажностью более 20 %), находящегося в неохлажденном состоянии, такие же потери массы сухого вещества могут произойти за одни сутки. При интенсивном дыхании происходят не только потери в массе, но и значительные потери в качестве зерна и семян. Самым отрицательным следствием дыхания в этом случае является выделение большого количества тепла, приводящего к самосогреванию зерновой массы.
Самосогревание
Самосогреванием зерновой массы называется явление самопроизвольного повышения ее температуры вследствие протекающих в ней физиологических процессов и плохой теплопроводности. В зависимости от исходного состояния зерна и условий хранения в каком-либо участке насыпи температура поднимается до 55-65 о , в редких случаях – до 70-75 о С. Образующийся очаг самосогревания не остается локализованным. Тепло передается в соседние участки насыпи, что, в свою очередь, способствует активизации в них физиологических процессов и теплообразованию. Если не принять мер к ликвидации начавшегося процесса самосогревания, то вся зерновая масса окажется в греющемся состоянии. Самосогревание широко распространено в мире и приводит к значительным потерям в массе сухого вещества зерна и снижению его пищевых, кормовых и посевных качеств. При запущенных формах самосогревания партия зерна вообще может быть непригодной к использованию.
Физиологической основой самосогревания является дыхание всех живых компонентов зерновой массы, приводящее к значительному выделению тепла. Физической основой самосогревания является плохая теплопроводность зерновой массы. Образование тепла в том или ином участке зерновой насыпи, превышающее отдачу его в окружающую среду, дает типичную картину самосогревания.
При далеко зашедшем процессе самосогревания (если не принять мер к ликвидации его очага) температура зерна повышается до 50 о С и выше, происходит интенсивное потемнение зерна, оно приобретает гнилостный запах. В процессе самосогревания активно идет гидролиз органических веществ, наблюдается тепловая денатурация белков, накапливается много аммиачного азота в зерновой массе. Процесс самосогревания завершается обугливанием зерна и полной потерей сыпучести зерновой массы, которая превращается в монолит, происходит полная потеря всех технологических качеств.
Радикальным средством борьбы с самосогреванием является активное вентилирование зерновой массы охлажденным воздухом, которое позволяет быстро и эффективно ликвидировать очаги самосогревания. Если же отсутствуют установки для активного вентилирования, необходимо принимать активные меры, позволяющие снизить температуру зерна. Это перебрасывание зерна зернопогрузчиками, пропуск через зерноочистительные воздушно-решетные машины, в результате чего зерно контактирует с атмосферным воздухом и охлаждается. Ручное перелопачивание зерна малоэффективно в борьбе с самосогреванием, наоборот, оно может привести к дальнейшему всплеску интенсивности физиологических процессов.
Прорастание
При хранении зерна и семян следует исключить их прорастание, которое совершенно недопустимо, так как сопровождается полной утратой семенных качеств и резким ухудшением технологических достоинств вследствие активного гидролиза запасных питательных веществ. Прорастание (появление зародышевых корешков и зародышевого стебелька) сопровождается усиленным дыханием, выделением тепла, потерей массы сухого вещества (в течение 5 суток после начала прорастания зерно хлебных злаков теряет 4-5 % сухого вещества). Зерно при этом приобретает солодовый запах и сладкий вкус, то есть утрачивает свою свежесть.
Прорастание становится возможным в результате накопления зерном капельно-жидкой влаги (не менее 50 % от массы зерна), которая поступает в зерновую массу при нарушении правил перевозки и хранения (негерметичное хранилище: попадание в него атмосферных осадков через неисправную крышу, доступ грунтовых и талых вод через пол). Также капельно-жидкая влага образуется как конденсат при перепадах температур в различных участках зерновой массы вследствие явления термовлагопроводности – переноса влаги с потоками тепла (из теплых участков в холодные). Все эти процессы нельзя допускать при хранении зерна.
Послеуборочное дозревание
При правильном хранении в зерновой массе не происходят нежелательные физиологические процессы, а, напротив, в первый период хранения свежеубранного зерна происходит его дальнейшее дозревание, которое заключается в повышении жизнеспособности семян, их всхожести и энергии прорастания. Отмечается также улучшение технологических качеств в небольших пределах: повышается качество сырой клейковины в зерне пшеницы, увеличивается выход масла при переработке маслосемян. Комплекс сложных биохимических процессов в зерне и семенах при хранении, приводящих к улучшению их посевных и технологических качеств, получил название послеуборочного дозревания.
В процессе послеуборочного дозревания происходят уменьшение содержания в зерне водорастворимых веществ, постепенное снижение активности ферментов, сокращение интенсивности дыхания, а также синтез сложных химических веществ (белков, крахмала, жиров). В результате зерно становится физиологически зрелым и вступает в состояние покоя, приобретая повышенную устойчивость при хранении. Послеуборочное дозревание происходит только в том случае, если синтетические процессы в семенах преобладают над гидролитическими. А для этого необходимо, чтобы зерно находилось в сухом состоянии (с влажностью ниже критической). Это главное условие для нормально протекающего процесса дозревания. В свежеубранном зерне с повышенной влажностью преобладание процессов гидролиза приводит не к уменьшению физиологической активности, а к ее дальнейшему росту. Семена не только не улучшают своих посевных качеств, но могут и снизить их. Послеуборочное дозревание в таких партиях зерна не происходит.
Важнейшим условием, обеспечивающим процесс послеуборочного дозревания, является также температура. Семена дозревают только в условиях положительной температуры и наиболее интенсивно при 15-30 о С. Поэтому в первый период хранения сухие свежеубранные семена не следует значительно охлаждать. Наиболее интенсивно послеуборочное дозревание протекает при активном доступе воздуха к семенам. Недостаток кислорода и накопление в зерновой массе диоксида углерода замедляют дозревание. При благоприятных условиях хранения процесс послеуборочного дозревания семян основных злаковых культур заканчивается в течение полутора-двух месяцев. Таким образом, послеуборочное дозревание имеет не только технологическое, но и экономическое значение.
Один из важнейших факторов воздействия на растения — температура окружающей среды, от которой, в свою очередь, зависит температура различных органов растения и в связи с этим интенсивность всех физиологических процессов в нем, рост и развитие.
Различают температуры прорастания семян минимальные, при которых прорастание едва начинается, оптимальные, при которых прорастание идет наиболее энергично, и, наконец, максимальные, при которых прорастание начинает прекращаться.
По требовательности к этому фактору томат относят к группе теплотребовательных растений.
Требовательность эта изменяется в разные фазы роста и развития и в зависимости от сорта. На требовательность растений к температуре особенно большое влияние оказывает интенсивность света, влажность и другие факторы.
Оптимальной температурой для прорастания семян и выхода семядольных листьев на поверхность почвы, при которой длительность фаз наименьшая, является +20…+25°С. Минимум же температуры для прорастания семян томата считают от +8 до +18°С, а для появления всходов — от +9 до + 16°С. При температуре +12…+15°С всходы появляются через 15—17 суток, при +18…+19°С — через 8—9 суток и при +22…+24°С — через 4—6 суток.
После появления всходов в течение 2—3 недель на развитие растений положительно влияет понижение температуры, особенно ночью. Оптимальной считается температура ночью +10…+12°С, днем в пасмурную погоду +12…+14°С и в солнечную + 14…+16°С, а далее до высаживания рассады соответственно +14…+16, +16…+18 и +20…+22°С. При таком температурном режиме наблюдается наименьший расход энергии и вырастает высококачественная рассада.
Растения томата очень чувствительны к заморозкам. Небольшие заморозки (-0,5…-ГС) и даже положительные краткосрочные температуры (+1…+3°С) вызывают гибель томата, только некоторые холодостойкие сорта выдерживают краткосрочные заморозки до —3…—4°С в безветренную погоду.
Высокие температуры также отрицательно сказываются на растениях. При температуре выше +30°С растения не плодоносят, так как пыльца у многих сортов теряет жизнеспособность и не прорастает, а если температура превышает +35°С, растения прекращают рост, а при +40°С — погибают. Вредоносное действие высоких температур усиливается в условиях недостатка влаги в почве. Оптимальной температурой для прорастания пыльцы является +22…+26°С, а для развития плодов +20…+24°С. При температуре ниже +10°С пыльца не созревает и не оплодотворяется, завязь опадает или дает поздние плоды.
Следует отметить, что в отношении томатного растения к температуре наблюдаются большие сортовые различия. Сорта селекции северных стран более холодостойкие и менее жаростойкие по сравнению с южными. Раннеспелые сорта более холодостойкие, чем позднеспелые.
За вегетационный период и плодоношение томата сумма средних суточных температур воздуха выше +15°С должна составлять не менее 1100—1200°С. Большая пластичность томатного растения и влияние экологических факторов на разных возрастных этапах приводят к большим интервалам оптимальных, минимальных и максимальных температур в жизни растения, что необходимо учитывать при выращивании.
Опыты показывают, что для каждого растения существуют свои температуры прорастания. Вот примерные данные.
Температура прорастания семян,˚С
Культура
Температура прорастания семян
Среднесуточная температура почвы на глубине заделки семян , при которой целесообразно сеять
Читайте также: