Sata mdl что это
В качестве предмета, я полагаю, глядя на SAN, и большинство поставщиков предлагают 10-килобайтные или 15-килобайтные «подходящие» SAS-диски, многие также предлагают 7,2 тыс. MDL / Nearline SAS-дисков.
У кого-нибудь есть авторитетное объяснение разницы, пожалуйста?
Во всех объяснениях, которые я прочитал, я пока не вижу ответа на вопрос, происходит ли какой-либо перевод протокола. т.е. когда накопитель получает команду SAS через интерфейс, если он затем преобразовывает ее внутренне в эквивалентную команду SATA перед выполнением фактической операции, или если это действительно "чистые" диски SAS, и это просто механика диска, которая создана для более низкая спецификация.Диски 7,2 К медленнее и проще в производстве, а также с более высокими порогами ошибок, что повышает производительность (и емкость). Однако с точки зрения операций ввода-вывода, которые может поддерживать каждый дискретный диск, накопители 7.2КБ заметно менее производительны, чем их более быстрые собратья. Поэтому они получают прозвище «Ближняя линия», так как они достигнут насыщения ввода-вывода намного быстрее, чем эквивалентное количество дисков 10К или 15К. Поэтому производителям хранилищ нужен способ передать: «у нас есть более быстрые вещи», поэтому они выбрали MDL / Nearline.
Именно так они стараются побудить людей, которым нужно как быстрое, так и много места для хранения, перейти на более быстрые диски. Те, кто ограничен в средствах, увидят, что вы можете получить (например) 1,5 ТБ леев / ближнюю линию за полцены 450-Гбайт накопителя 15 КБ, и задаетесь вопросом, почему такая дополнительная плата. Несмотря на это, 48 дисков с частотой вращения 7,2 тыс. Об / мин будут по-прежнему превосходить 12 дисков с частотой вращения 15 тыс. Об / мин. Просто 48 накопителей с частотой вращения 7,2 тыс. Об / мин, вероятно, будут иметь емкость 30 ТБ, тогда как 12 из 15 тыс. Об / мин могут иметь емкость всего 5 ТБ.
Какой еще способ сказать .
Пройдите 7,2 тыс. Об / мин, когда производительность - ваша цель номер один, а производительность - не цель.
Используйте 15 000 оборотов в минуту, когда производительность - ваша цель номер один, а емкость - вторичная.
36 мс, в то время как для SAS 10 тыс. Это будет
Отличный ответ от 1138, но еще один аспект примечания заключается в том, что средние приводы обычно не имеют рабочего цикла 24/365, это часто трудно определить в спецификациях, но это означает, что если вы будете долго и жестко управлять дисками, они Я буду терпеть неудачу FAR чаще, чем вы думаете. В качестве примера у нас было
200 дисковых массивов, заполненных 1 ТБ леев, и частота отказов> 20% в первый год, потому что массив работал 20-24 часа в сутки, нам пришлось поменять лот на 10 КБ.
В прошлой части цикла «Введение в SSD» мы рассказали про историю появления дисков. Вторая часть расскажет про интерфейсы взаимодействия с накопителями.
Общение между процессором и периферийными устройствами происходит в соответствии с заранее определенными соглашениями, называемыми интерфейсами. Эти соглашения регламентируют физический и программный уровень взаимодействия.
Интерфейс — совокупность средств, методов и правил взаимодействия между элементами системы.
Физическая реализация интерфейса влияет на следующие параметры:
- пропускная способность канала связи;
- максимальное количество одновременно подключенных устройств;
- количество возникающих ошибок.
Параллельные и последовательные порты
По способу обмена данными порты ввода-вывода делятся на два типа:
Последовательные порты — противоположность параллельным. Отправка данных происходит по одному биту за раз, что сокращает общее количество сигнальных линий, но усложняет контроллер ввода-вывода. Контроллер передатчика получает машинное слово за раз и должен передавать по одному биту, а контроллер приемника в свою очередь должен получать биты и сохранять в том же порядке.
Small Computer Systems Interface (SCSI) появился в далеком 1978 году и был изначально разработан, чтобы объединять устройства различного профиля в единую систему. Спецификация SCSI-1 предусматривала подключение до 8 устройств (вместе с контроллером), таких как:
- сканеры;
- ленточные накопители (стримеры);
- оптические приводы;
- дисковые накопители и прочие устройства.
Изначально SCSI имел название Shugart Associates System Interface (SASI), но стандартизирующий комитет не одобрил бы название в честь компании и после дня мозгового штурма появилось название Small Computer Systems Interface (SCSI). «Отец» SCSI, Ларри Баучер (Larry Boucher) подразумевал, что аббревиатура будет произноситься как «sexy», но Дал Аллан (Dal Allan) прочитал «sсuzzy» («скази»). Впоследствии произношение «скази» прочно закрепилось за этим стандартом.
В терминологии SCSI подключаемые устройства делятся на два типа:
Используемая топология «общая шина» накладывает ряд ограничений:
- на концах шины необходимы специальные устройства — терминаторы;
- пропускная способность шины делится между всеми устройствами;
- максимальное количество одновременно подключенных устройств ограничено.
Устройства на шине идентифицируются по уникальному номеру, называемому SCSI Target ID. Каждый SCSI-юнит в системе представлен минимум одним логическим устройством, адресация которого происходит по уникальному в пределах физического устройства номеру Logical Unit Number (LUN).
Команды в SCSI отправляются в виде блоков описания команды (Command Descriptor Block, CDB), состоящих из кода операции и параметров команды. В стандарте описано более 200 команд, разделенных в четыре категории:
- Mandatory — должны поддерживаться устройством;
- Optional — могут быть реализованы;
- Vendor-specific — используются конкретным производителем;
- Obsolete — устаревшие команды.
- TEST UNIT READY — проверка готовности устройства;
- REQUEST SENSE — запрашивает код ошибки предыдущей команды;
- INQUIRY — запрос основных характеристик устройства.
Дальнейшее усовершенствование SCSI (спецификации SCSI-2 и Ultra SCSI) расширило список используемых команд и увеличило количество подключаемых устройств до 16-ти, а скорость обмена данными по шине до 640 МБ/c. Так как SCSI — параллельный интерфейс, повышение частоты обмена данными было сопряжено с уменьшением максимальной длины кабеля и приводило к неудобству в использовании.
Начиная со стандарта Ultra-3 SCSI появилась поддержка «горячего подключения» — подключение устройств при включенном питании.
Первым известным SSD диском с интерфейсом SCSI можно считать M-Systems FFD-350, выпущенный в 1995 году. Диск имел высокую стоимость и не имел широкой распространенности.
В настоящее время параллельный SCSI не является популярным интерфейсом подключения дисков, но набор команд до сих пор активно используется в интерфейсах USB и SAS.
ATA / PATA
Интерфейс ATA (Advanced Technology Attachment), так же известный как PATA (Parallel ATA) был разработан компанией Western Digital в 1986 году. Маркетинговое название стандарта IDE (англ. Integrated Drive Electronics — «электроника, встроенная в привод») подчеркивало важное нововведение: контроллер привода был встроен в привод, а не на отдельной плате расширения.
Решение разместить контроллер внутри привода решило сразу несколько проблем. Во-первых, уменьшилось расстояние от накопителя до контроллера, что положительным образом повлияло на характеристики накопителя. Во-вторых, встроенный контроллер был «заточен» только под определенный тип привода и, соответственно, был дешевле.
ATA, как и SCSI, использует параллельный способ ввода-вывода, что отражается на используемых кабелях. Для подключения дисков с использованием интерфейса IDE необходимы 40-жильные кабели, также именуемые шлейфами. В более поздних спецификациях используются 80-жильные шлейфы: более половины из которых — заземления для уменьшения интерференции на высоких частотах.
На шлейфе ATA присутствует от двух до четырех разъемов, один из которых подключается в материнскую плату, а остальные — в накопители. При подключении двух устройств одним шлейфом, одно из них должно быть сконфигурировано как Master, а второе — как Slave. Третье устройство может быть подключено исключительно в режиме «только чтение».
Положение перемычки задает роль конкретного устройства. Термины Master и Slave по отношению к устройствам не совсем корректны, так как относительно контроллера все подключенные устройства — Slaves.
Особенным нововведением в ATA-3 считается появление Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.). Пять компаний (IBM, Seagate, Quantum, Conner и Western Digital) объединили усилия и стандартизировали технологию оценки состояния накопителей.
Поддержка твердотельных накопителей появилась с четвертой версии стандарта, выпущенной в 1998 году. Эта версия стандарта обеспечивала скорость обмена данными до 33.3 МБ/с.
Стандарт выдвигает жесткие требования к шлейфам ATA:
- шлейф обязательно должен быть плоским;
- максимальная длина шлейфа 18 дюймов (45.7 сантиметров).
Стандарт Serial ATA (SATA) был представлен 7 января 2003 года и решал проблемы своего предшественника следующими изменениями:
- параллельный порт заменен последовательным;
- широкий 80-жильный шлейф заменен 7-жильным;
- топология «общая шина» заменена на подключение «точка-точка».
Шестнадцать сигнальных линий для передачи данных в ATA были заменены на две витые пары: одна для передачи, вторая для приема. Коннекторы SATA спроектированы для большей устойчивости к множественным переподключениям, а спецификация SATA 1.0 сделала возможным «горячее подключение» (Hot Plug).
Некоторые пины на дисках короче, чем все остальные. Это сделано для поддержки «горячей замены» (Hot Swap). В процессе замены устройство «теряет» и «находит» линии в заранее определенном порядке.
Чуть более, чем через год, в апреле 2004-го, вышла вторая версия спецификации SATA. Помимо ускорения до 3 Гбит/с в SATA 2.0 ввели технологию Native Command Queuing (NCQ). Устройства с поддержкой NCQ способны самостоятельно организовывать порядок выполнения поступивших команд для достижения максимальной производительности.
Последующие три года SATA Working Group работала над улучшением существующей спецификации и в версии 2.6 появились компактные коннекторы Slimline и micro SATA (uSATA). Эти коннекторы являются уменьшенной копией оригинального коннектора SATA и разработаны для оптических приводов и маленьких дисков в ноутбуках.
Несмотря на то, что пропускной способности второго поколения SATA хватало для жестких дисков, твердотельные накопители требовали большего. В мае 2009 года вышла третья версия спецификации SATA с увеличенной до 6 Гбит/с пропускной способностью.
Особое внимание твердотельным накопителям уделили в редакции SATA 3.1. Появился коннектор Mini-SATA (mSATA), предназначенный для подключения твердотельных накопителей в ноутбуках. В отличие от Slimline и uSATA новый коннектор был похож на PCIe Mini, хотя и не был электрически совместим с PCIe. Помимо нового коннектора SATA 3.1 мог похвастаться возможностью ставить команды TRIM в очередь с командами чтения и записи.
Команда TRIM уведомляет твердотельный накопитель о блоках данных, которые не несут полезной нагрузки. До SATA 3.1 выполнение этой команды приводило к сбросу кэшей и приостановке операций ввода-вывода с последующим выполнением команды TRIM. Такой подход ухудшал производительность диска при операциях удаления.
Спецификация SATA не успевала за бурным ростом скорости доступа к твердотельным накопителям, что привело к появлению в 2013 году компромисса под названием SATA Express в стандарте SATA 3.2. Вместо того, чтобы снова удвоить пропускную способность SATA, разработчики задействовали широко распространенную шину PCIe, чья скорость превышает 6 Гбит/с. Диски с поддержкой SATA Express приобрели собственный форм-фактор под названием M.2.
«Конкурирующий» с ATA стандарт SCSI тоже не стоял на месте и всего через год после появления Serial ATA, в 2004, переродился в последовательный интерфейс. Имя новому интерфейсу — Serial Attached SCSI (SAS).
Несмотря на то, что SAS унаследовал набор команд SCSI, изменения были значительные:
- последовательный интерфейс;
- 29-ти жильный кабель с питанием;
- подключение «точка-точка»
Максимальное количество одновременно подключенных устройств в SAS-домене по спецификации превышает 16 тысяч, а вместо SCSI ID для адресации используется идентификатор World-Wide Name (WWN).
WWN — уникальный идентификатор длиной 16 байт, аналог MAC-адреса для SAS-устройств.
Несмотря на схожесть разъемов SAS и SATA, эти стандарты не являются полностью совместимыми. Тем не менее, SATA-диск может быть подключен в SAS-коннектор, но не наоборот. Совместимость между SATA-дисками и SAS-доменом обеспечивается при помощи протокола SATA Tunneling Protocol (STP).
Первая версия стандарта SAS-1 имеет пропускную способность 3 Гбит/с, а самая современная, SAS-4, улучшила этот показатель в 7 раз: 22,5 Гбит/с.
Peripheral Component Interconnect Express (PCI Express, PCIe) — последовательный интерфейс для передачи данных, появившийся в 2002 году. Разработка была начата компанией Intel, а впоследствии передана специальной организации — PCI Special Interest Group.
Последовательный интерфейс PCIe не был исключением и стал логическим продолжением параллельного PCI, который предназначен для подключения карт расширения.
PCI Express значительно отличается от SATA и SAS. Интерфейс PCIe имеет переменное количество линий. Количество линий равно степеням двойки и колеблется в диапазоне от 1 до 16.
Термин «линия» в PCIe обозначает не конкретную сигнальную линию, а отдельный полнодуплексный канал связи, состоящий из следующих сигнальных линий:
- прием+ и прием-;
- передача+ и передача-;
- четыре жилы заземления.
«Аппетиты» твердотельных накопителей растут очень быстро. И SATA, и SAS не успевают увеличивать свою пропускную способность, чтобы «угнаться» за SSD, что привело к появлению SSD-дисков с подключением по PCIe.
Хотя PCIe Add-In карты прикручиваются винтом, PCIe поддерживает «горячую замену». Короткие пины PRSNT (англ. present — присутствовать) позволяют удостовериться, что карта полностью установлена в слот.
Твердотельные накопители, подключаемые по PCIe регламентируются отдельным стандартом Non-Volatile Memory Host Controller Interface Specification и воплощены в множестве форм-факторов, но о них мы расскажем в следующей части.
Удаленные накопители
При создании больших хранилищ данных появилась потребность в протоколах, позволяющих подключить накопители, расположенные вне сервера. Первым решением в этой области был Internet SCSI (iSCSI), разработанный компаниями IBM и Cisco в 1998 году.
Идея протокола iSCSI проста: команды SCSI «оборачиваются» в пакеты TCP/IP и передаются в сеть. Несмотря на удаленное подключение, для клиентов создается иллюзия, что накопитель подключен локально. Сеть хранения данных (Storage Area Network, SAN), основанная на iSCSI, может быть построена на существующей сетевой инфраструктуре. Использование iSCSI значительно снижает затраты на организацию SAN.
У iSCSI существует «премиальный» вариант — Fibre Channel Protocol (FCP). SAN с использованием FCP строится на выделенных волоконно-оптических линиях связи. Такой подход требует дополнительного оптического сетевого оборудования, но отличается стабильностью и высокой пропускной способностью.
Существует множество протоколов для отправки команд SCSI по компьютерным сетям. Тем не менее, есть только один стандарт, решающий противоположную задачу и позволяющий отправлять IP-пакеты по шине SCSI — IP-over-SCSI.
Большинство протоколов для организации SAN используют набор команд SCSI для управления накопителями, но есть и исключения, например, простой ATA over Ethernet (AoE). Протокол AoE отправляет ATA-команды в Ethernet-пакетах, но в системе накопители отображаются как SCSI.
С появлением накопителей NVM Express протоколы iSCSI и FCP перестали удовлетворять быстро растущим требованиям твердотельных накопителей. Появилось два решения:
- вынос шины PCI Express за пределы сервера;
- создание протокола NVMe over Fabrics.
Протокол NVMe over Fabrics стал хорошей альтернативой iSCSI и FCP. В NVMe-oF используются волоконно-оптическая линии связи и набор команд NVM Express.
Стандарты iSCSI и NVMe-oF решают задачу подключения удаленных дисков как локальные, а компания Intel пошла другой дорогой и максимально приблизила локальный диск к процессору. Выбор пал на DIMM-слоты, в которые подключается оперативная память. Максимальная пропускная способность канала DDR4 составляет 25 ГБ/с, что значительно превышает скорость шины PCIe. Так появился твердотельный накопитель Intel® Optane™ DC Persistent Memory.
Для подключения накопителя в DIMM слоты был изобретен протокол DDR-T, физически и электрически совместимый с DDR4, но требующий специального контроллера, который видит разницу между планкой памяти и накопителем. Скорость доступа к накопителю меньше, чем к оперативной памяти, но больше, чем к NVMe.
Протокол DDR-T доступен только с процессорами Intel® поколения Cascade Lake или новее.
Заключение
Почти все интерфейсы прошли долгий путь развития от последовательного до параллельного способа передачи данных. Скорости твердотельных накопителей стремительно растут, еще вчера твердотельные накопители были в диковинку, а сегодня NVMe уже не вызывает особого удивления.
Обзор HP P4000 VSA
Такое семейство продуктов LeftHand раньше ассоциировалось исключительно с дисковыми массивами, самого базового уровня, и использовались лишь для подключения систем хранения данных (SAN) по протоколу ISCSI, но все развивается и не стоит на месте и теперь LeftHand называется после ребрендинга HP StorageWorks P4000, и дополнилось рядом функционала который присутствовал только в топовых решениях high-end класса.
Сама StorageWorks P4000 это два модуля хранения, стоечного вида сервера в которых два процессора архитектуры HP ProLiant , довольно неплохой RAID контроллер, так, что вы легко сможете построить на его базе дисковые raid массивы любой сложности. Жесткие диски тут MDL SAS.
Что такое MDL SAS и Enterprise SAS диск
HP P4000 VSA имеет диски нескольких уровней, во первых это двухпортовые SAS диски, у них два вида
Отличия у них в нескольких параметрах. Во первых MDL SAS это диск у которого SATA механика и интерфейс, шпиндель в дисках MDL SAS имеет скорость вращения 7200 оборотов в минуту. Объем дисков варьируется от 750 до 2000 гигабайт.
Enterprise SAS это диск с SAS механикой и интерфейсом и у них шпиндель уже крутится со скоростью в два раза больше, 15 000 оборотов. А так же больше запас прочности, как следствие надежность системы в целом. Объем у них заметно меньше от 300 до 600 гигабайт.
Продолжаем рассматривать HP P4000 VSA и его схему подключения, напомню что его модули по Ethernet сети и протоколу iSCSI, объединяются в кластер, и его уже ресурсы:
- RAM > оперативная память
- Дисковое пространство
- кэш-память
- сетевые интерфейсы
закладываются в общий пу и потом дербанятся, все кому что нужно. Так как у каждого узла две сетевые карты, то можно сделать отказоустойчивость между узлами кластера. Если брать технологии кластера HP P4000, то там можно из физических дисков разных узлов, создать общие дисковые тома. Управлять данной схемой можно из утилиты Centralized Management Console (CMC), она есть как для Windows так и для Linux версий.
Физический уровень занимается передачей битов по физическим каналам связи. Здесь определяются основные характеристики среды используемой для передачи данных и характеристики электрических сигналов.
Сигналы. Мы уже вскользь касались этого вопроса. При современных технологиях использование 5-ти вольтовых сигналов стало очень затруднительно, и кроме того, с ростом скорости работы возникают дополнительные сложности при переключении из одного состояния в другое. С такой проблемой уже однажды столкнулась SCSI, и сейчас, в Serial ATA был использован тот же подход. Уровень сигналов снижен и составляет 250 мв.
Способ передачи. Кроме того, вместо использовавшейся раннее в ATA однополярной передачи, обладающей низкой помехоустойчивостью, применена двухполярная (или еще ее называют дифференциальной. Снова же, так как и SCSI). Преимущество ее в гораздо большей помехозащищенности. При дифференциальной передаче по двум проводам передается один и тот же сигнал, но разной полярности. Шумы наводимые в проводах симметричны, и сложив оба полученных разнополярных сигнала можно получить шум, а вычев его из полученного сигнала - непосредственно чистый переданный сигнал. Собственно использование дифференциальной передачи и дало возможность снизить уровни используемого сигнала. Для кодирования передаваемой информации используется потенциальный код без возвращения к нулю (Non Return to Zero, NRZ). Он является одним из самых простых в реализации, благодаря двум резко различающимся потенциалам обладает хорошей распознаваемостью ошибок, но не обладает необходимым свойством самосинхронизации. Но с этим недостатком в SATA успешно борются гениально простым методом, о котором скажем ниже.
Физическая среда. Ключевой момент, ради которого то все и было затеяно: используется не параллельная физическая шина, а последовательная, состоящая из 2-х пар проводов (одной передачи и одной на прием) и несколько нулевых. Всего семь. Провод которыми соединяются устройство последовательной ATA становится таким образом тонким и круглым, гибким и удобным в использовании, не препятствует воздухообмену.
С другой стороны, изготовление провода функционирующего на столь высоких скоростях, как у Serial ATA, и при этом обладающего высокими механическими характеристиками, пусть и содержащего всего 7 проводов, обходится вряд ли дешевле, чем обычного 80-ти жильного. И если где-то и содержится возможность снижения стоимости пользования, как обещано разработчиками изначально, то вряд ли здесь. Зато безусловно задача согласования (терминирования) решается теперь намного и дешевле. А длина кабелей может достигать 1 метра. SATA может быть не только интерфейсом внутренних устройств хранения, но и… внешниих…
Разъемы. Так как проводов мало, то разъемы соответственно получаются очень компактными и удобными в использовании. На рисунке для сравнения представлены коннекторы традиционного параллельного (справа, стоит ли говорить) и нового последовательного интерфейса (слева):
Как вы думаете, какой из двух является разъемом шины данных? Думаете, что так же как и Parallel ATA тот, что пошире? Вот и не угадали! Тот, маленький который. Разъем питания по размерам теперь превосходит разъем data-кабеля. Конструктивно они оба выполнены с защитой от дурака: предусмотрен сложный ключ и вставить по другому их просто нельзя, в отличие от интерфейса ATA, где такую защиту, похоже, придумывали на скорую руку потом, пытаясь сохранить совместимость с версиями без оной. В результате вряд ли есть сегодня человек, который бы хоть раз не подключил IDE шлейф неправильно. А шире разъем питания по тому, что контакты в нем больше и надежнее. И их не 4, как в старом разъеме, - добавилась возможность использовать питание 3.3v.
Предвижу вопрос: а откуда же брать питание для SATA дисков? Ответ: обычное через специальный переходник
Спецификация SATA жестко не ограничивает размещение основных разъемов и выполнение дополнительных, и предлагает несколько вариантов. Один родной, а второй как всегда, для поддержки ошибок предыдущих версий.
Современные диски Barracuda ATA 7200.7 находятся между ними где-то посредине. Конечно же, в спецификации приведены конкретные требования к проводам, чертежи разъемов и т.п. Но нам это совершенно неинтересно.
Физический уровень осуществляет над поступившим кадром необходимые преобразования - конвертирует в последовательность, кодирует и выдает в линию и тоже самое в обратном порядке, когда получает данные с физической шины, т.е. от другого устройства. Взаимодействие физического уровня с вышележащим происходит по параллельной шине шириной 10, 20, 40 или другой, на усмотрение разработчика.
Канальный уровень выполняет функции арбитража и результата выполнения операций передачи данных, скремблирование, а также реализует механизмы обнаружения и коррекции ошибок. Теперь обо всем подробней.
Обнаружение и коррекция ошибок. В отличие от стандарта ATA, который различными механизмами обнаружения и коррекции ошибок обрастал по мере роста быстродействия, т.е. тогда, когда припирало и без них было не обойтись, в Serial ATA несколько механизмов заложены изначально. Во-первых, хорошей распознаваемостью обладает используемый на физическом уровне NRZ. Но это не главное, ряд ошибок может успешно его миновать. Как метод применяется избыточное кодирование 8B/10B. Суть его проста: 8 бит исходных данных дополняются 2-мя дополнительными битами. Итого получается 10 бит - т.е. 1024 возможных битовых комбинаций может быть в получившемся коде, в то время как в исходном - только 256.
Из результирующего кода отбирают 256 комбинаций, которые будут соответствовать 256-ти комбинациям исходного кода, а остальные считают запрещенными. Это позволяет распознавать искажение данных - если принята запрещенная последовательность, то при передаче произошла ошибка. Кроме того, в Serial ATA используется CRC код. О нем, не буду подробно, так как многие наверное наслышаны. Кстати то, что жесткие диски с SATA имеют максимальную скорость обмена по интерфейсу в 150 Мбайт в секунду, при том, что для SATA заявлена скорость передачи на физическом уровне в 1.5 Гбит/с, объясняется использованием избыточного 8B/10B кодирования, снижающего полезную пропускную способность интерфейса до 1.2 Гбит/с.
Скремблирование. Код NRZ, используемый на физическом уровне не обладает свойством самосинхронизации, так как при последовательности нулей или единиц сигнал в линии просто превращается в постоянный сигнал определенного уровня. Скремблирование помогает бороться с этим явлением, перемешивая данные, подлежащие передаче определенным образом так, чтобы вероятность появления единиц и нулей на выходе была приблизительно одинаковой.
Работает канальный уровень так: получает информационный кадр от транспортного, выполняя логическое кодирование и вычисление CRC, и спускает вниз - к физическому уровню. При получении данных от физического порядок действия обратный.
Задачей транспортного уровня является обеспечение вышележащим протоколам передачи с той степенью надежности, которая им требуется. Он упаковывает поступившие от прикладного уровня ATA команды в кадры и предает их следующему, или распаковывает поступившие снизу данные и передает на прикладной уровень. Задачей прикладного уровня является организация взаимодействия между драйвером контроллера и всего программного, что за ним дальше стоит и самим контроллером через блок регистров и портов. В SATA их набор расширен, но это уже нас занимает не так сильно. Особенно много об этих уровнях говорить нечего.
Т.е. что и как происходит на конкретном этапе вам теперь должно быть более или менее понятно, а именно дать общее преставление о работе я сейчас хотел. О преимуществах нового стандарта писано уже много раз, и только ленивый не читал про это. Хотя на самом деле их не шибко то и много. С точки зрения производительности пожалуй даже вообще никаких (не говоря про то, что в связке ATA - SATA через переходник вообще может быть проигрыш). Принципиально новыми функциями стандарт не наделили. Разве что поддержка горячего подключения и замены появилась. Она описана в спецификации, но, увы, опционально и целиком и полностью ее реализация на совести производителя. Может быть в будущем что то появится…
А что может появиться?
Программа развития стандарта составлена аж на десять лет вперед. В ней предусмотрена разработка трех версий. Первая - это та, которую мы имеем сегодня. Во второй будет в два раза увеличена пропускная способность - до 3 Гбит/с при сохранении полной совместимости с первой. А в третьей - до 6 Гбит/с. А вот совместимость будет под вопросом, говорится, что возможно будет механическая совместимость с предыдущими версиями. А может и нет. Электрическая быть должна. SATA II должна появится в середине следующего года, при том, что мы еще толком то и первой не видели. SATA III ожидается в середине 2007. Новую шину, наверное в обязательном порядке, будут учить думать - создавать очереди команд и их оптимизировать. Собственно говоря, это можно уже делать сегодня, но пока никто из производителей жестких дисков (а другая периферия на этой шине существует в крайне небольшом количестве, едва ли не в единичных экземплярах) не пытается ее воплотить в своих изделиях даже не смотря на то, что это обещает хороший прирост производительности, особенно в многозадачных средах. Дорого. Даже сейчас несмотря на все обещания разработчиков Serial ATA'ы диски с этим интерфейсом стоят дороже, равно как и оснащенные им материнские платы. Для тех применений где это действительно нужно существует SCSI, уже давно умеющий это делать. И вообще, мне кажется, что Serial ATA это попытки догнать быстрый уходящий поезд SCSI (вообще говоря, такую цель перед собой ставили разработчики). Но SCSI уже сегодня умеет очень много всего (о чем мы поговорим в отдельной статье), что и не снилось SATA и гораздо более высокие пропускные способности - 320 Мбайт/с уже доступны (Ultra320 SCSI), и ведутся работы над 640 Мбайт/с (Ultra640 SCSI)… И сложные громоздкие разъемы и дорогие кабеля тоже не аргумент - уже давно проработана поддержка последовательной физической среды. Впрочем, сравнение двух интерфейсов и прогнозирование развития на задумано в данной статье. Пора ставить точку. Поживем - увидим.
Читайте также: