С помощью компьютерного имитационного моделирования можно изучать
Моделирование является одним из способов познания мира.
Понятие моделирования достаточно сложное, оно включает в себя огромное разнообразие способов моделирования: от создания натуральных моделей (уменьшенных и или увеличенных копий реальных объектов) до вывода математических формул.
Для различных явлений и процессов бывают уместными разные способы моделирования с целью исследования и познания.
Объект, который получается в результате моделирования, называется моделью . Должно быть понятно, что это совсем не обязательно реальный объект. Это может быть математическая формула, графическое представление и т.п. Однако он вполне может заменить оригинал при его изучении и описании поведения.
Хотя модель и может быть точной копией оригинала, но чаще всего в моделях воссоздаются какие-нибудь важные для данного исследования элементы, а остальными пренебрегают. Это упрощает модель. Но с другой стороны, создать модель – точную копию оригинала – бывает абсолютно нереальной задачей. Например, если моделируется поведение объекта в условиях космоса. Можно сказать, что модель – это определенный способ описания реального мира.
- Создание модели.
- Изучение модели.
- Применение результатов исследования на практике и/или формулирование теоретических выводов.
Видов моделирования огромное количество. Вот некоторые примеры типов моделей:
Математические модели . Это знаковые модели, описывающие определенные числовые соотношения.
Графические модели. Визуальное представление объектов, которые настолько сложны, что их описание иными способами не дает человеку ясного понимания. Здесь наглядность модели выходит на первый план.
Имитационные модели. Позволяют наблюдать изменение поведения элементов системы-модели, проводить эксперименты, изменяя некоторые параметры модели.
Над созданием модели могут работать специалисты из разных областей, т.к. в моделировании достаточно велика роль межпредметных связей.
Совершенствование вычислительной техники и широкое распространение персональных компьютеров открыло перед моделированием огромные перспективы для исследования процессов и явлений окружающего мира, включая сюда и человеческое общество.
Компьютерное моделирование – это в определенной степени, то же самое, описанное выше моделирование, но реализуемое с помощью компьютерной техники.
Для компьютерного моделирования важно наличие определенного программного обеспечения.
При этом программное обеспечение, средствами которого может осуществляться компьютерное моделирование, может быть как достаточно универсальным (например, обычные текстовые и графические процессоры), так и весьма специализированными, предназначенными лишь для определенного вида моделирования.
Очень часто компьютеры используются для математического моделирования. Здесь их роль неоценима в выполнении численных операций, в то время как анализ задачи обычно ложится на плечи человека.
Обычно в компьютерном моделировании различные виды моделирования дополняют друг друга. Так, если математическая формула очень сложна, что не дает явного представления об описываемых ею процессах, то на помощь приходят графические и имитационные модели. Компьютерная визуализация может быть намного дешевле реального создания натуральных моделей.
С появлением мощных компьютеров распространилось графическое моделирование на основе инженерных систем для создания чертежей, схем, графиков.
Если система сложна, а требуется проследить за каждым ее элементом, то на помощь могут придти компьютерные имитационные модели. На компьютере можно воспроизвести последовательность временных событий, а потом обработать большой объем информации.
Однако следует четко понимать, что компьютер является хорошим инструментом для создания и исследования моделей, но он их не придумывает. Абстрактный анализ окружающего мира с целью воссоздания его в модели выполняет человек.
Одной из важных проблем в области разработки и создания современных сложных технических систем является исследование динамики их функционирования на различных этапах проектирования, испытания и эксплуатации. Сложными системами называются системы, состоящие из большого числа взаимосвязанных и взаимодействующих между собой элементов. При исследовании сложных систем возникают задачи исследования как отдельных видов оборудования и аппаратуры, входящих в систему, так и системы в целом.
К разряду сложных систем относятся крупные технические, технологические, энергетические и производственные комплексы.
При проектировании сложных систем ставится задача разработки систем, удовлетворяющих заданным техническим характеристикам. Поставленная задача может быть решена одним из следующих методов:
- методом синтеза оптимальной структуры системы с заданными характеристиками;
- методом анализа различных вариантов структуры системы для обеспечения требуемых технических характеристик.
Оптимальный синтез систем в большинстве случаев практически невозможен в силу сложности поставленной задачи и несовершенства современных методов синтеза сложных систем. Методы анализа сложных систем, включающие в себя элементы синтеза, в настоящее время достаточно развиты и получили широкое распространение.
Любая синтезированная или определенная каким-либо другим образом структура сложной системы для оценки ее показателей должна быть подвергнута испытаниям. Проведение испытаний системы является задачей анализа ее характеристик. Таким образом, конечным этапом проектирования сложной системы, осуществленного как методом синтеза структуры, так и методом анализа вариантов структур, является анализ показателей эффективности проектируемой системы.
Среди известных методов анализа показателей эффективности систем и исследования динамики их функционирования следует отметить:
- аналитический метод;
- метод натуральных испытаний;
- метод полунатурального моделирования;
- моделирование процесса функционирования системы на ЭВМ.
Строгое аналитическое исследование процесса функционирования сложных систем практически невозможно. Определение аналитической модели сложной системы затрудняется множеством условий, определяемых особенностями работы системы, взаимодействием ее составляющих частей, влиянием внешней среды и т.п.
Натуральные испытания сложных систем связаны с большими затратами времени и средств. Проведение испытаний предполагает наличие готового образца системы или ее физической модели, что исключает или затрудняет использование этого метода на этапе проектирования системы.
Широкое применение для исследования характеристик сложных систем находит метод полунатурального моделирования. При этом используется часть реальных устройств системы. Включенная в такую полунатуральную модель ЭВМ имитирует работы остальных устройств системы, отображенных математическими моделями. Однако в большинстве случаев этот метод также связан со значительными затратами и трудностями, в частности, аппаратной стыковкой натуральных частей с ЭВМ.
Исследование функционирования сложных систем с помощью моделирования их работы на ЭВМ помогает сократить время и средства на разработку.
Затраты рабочего времени и материальных средств на реализацию метода имитационного моделирования оказываются незначительными по сравнению с затратами, связанными с натурным экспериментом. Результаты моделирования по своей ценности для практического решения задач часто близки к результатам натурного эксперимента.
Метод имитационного моделирования основан на использовании алгоритмических (имитационных) моделей, реализуемых на ЭВМ, для исследования процесса функционирования сложных систем. Для реализации метода необходимо разработать специальный моделирующий алгоритм. В соответствии с этим алгоритмом в ЭВМ вырабатывается информация, описывающая элементарные процессы исследуемой системы с учетом взаимосвязей и взаимных влияний. При этом моделирующий алгоритм сроится в соответствии с логической структурой системы с сохранением последовательности протекаемых в ней процессов и отображением основных состояний системы.
Основными этапами метода имитационного моделирования являются:
- моделирование входных и внешних воздействий;
- воспроизведение работы моделируемой системы (моделирующий алгоритм);
- интерпретация и обработка результатов моделирования.
Перечисленные этапы метода многократно повторяются для различных наборов входных и внешних воздействий, образуя внутренний цикл моделирования. Во внешнем цикле организуется просмотр заданных вариантов моделируемой системы. Процедура выбора оптимального варианта управляет просмотром вариантов, внося соответствующие коррективы в имитационную модель и в модели входных и внешних воздействий.
Процедура построения модели системы, контроля точности и корректировки модели по результатам машинного эксперимента задает и затем изменяет блок и внутреннего цикла в зависимости от фактических результатов моделирования. Таким образом, возникает внешний цикл, отражающий деятельность исследователя по формированию, контролю и корректировке модели.
Метод имитационного моделирования позволяет решать задачи исключительной сложности. Исследуемая система может одновременно содержать элементы непрерывного и дискретного действия, быть подверженной влиянию многочисленных случайных факторов сложной природы, описываться весьма громоздкими соотношениями и т.п. Метод не требует создания специальной аппаратуры для каждой новой задачи и позволяет легко изменять значения параметров исследуемых систем и начальных условий. Эффективность метода имитационного моделирования тем более высока, чем на более ранних этапах проектирования системы он начинает использоваться.
Следует, однако, помнить, что метод имитационного моделирования является численным методом. Его можно считать распространением метода Монте-Карло на случай сложных систем. Как любой численный метод, он обладает существенным недостатком – его решение всегда носит частный характер. Решение соответствует фиксированным значениям параметров системы и начальных условий. Для анализа системы приходится многократно моделировать процесс ее функционирования, варьируя исходные данные модели. Таким образом, для реализации имитационных моделей сложной модели необходимо наличие ЭВМ высокой производительности.
Для моделирования системы на ЭВМ необходимо записывать моделирующий алгоритм на одном из входных языков ЭВМ. В качестве входных языков для решения задач моделирования могут быть с успехом использованы универсальные алгоритмические языки высокого уровня, Си, Паскаль и др.
Анализ развития наиболее сложных технических систем позволяет сделать вывод о все более глубоком проникновении ЭВМ в их структуру. Вычислительные машины становятся неотъемлемой, а зачастую и основной частью таких систем. Прежде всего это относится к сложным радиоэлектронным системам. Среди них различные автоматические системы, в том числе системы автоматической коммутации (электронные АТС), системы радиосвязи, радиотелеметрические системы, системы радиолокации и радионавигации, различные системы управления.
При построении таких систем в значительной степени используются принципы и структуры организации вычислительных машин и вычислительных систем (ВС). Характерной особенностью является наличие в системах нескольких процессоров, объединенных различными способами в специализированную ВС. При этом осуществляется переход от «жесткой» логики функционирования технических систем к универсальной «программной» логике. В силу этого все более значительную роль в таких системах, наряду с аппаратными средствами, играет специализированное системное и прикладное программное обеспечение.
На этапах разработки, проектирования, отладки и испытания сложных систем с высоким удельным весом аппаратно-программных средств вычислительной техники ставится задача анализа и синтеза вариантов организации структуры аппаратных средств, а также разработки и отладки специализированного ПО большого объема. Эта задача может быть решена с помощью аппаратно-программного моделирования с использованием универсальных моделирующих комплексов, построенных на базе однородных ВС с программируемой структурой.
Аппаратно-программное моделирование можно считать частным случаем полунатурного моделирования. На первом этапе разрабатывается концептуальная модель заданного класса систем на основе анализа типовых процессов, структур и аппаратных блоков. Концептуальная модель реализуется на аппаратно-программных средствах моделирующего комплекса. При этом моделирующий комплекс может настраиваться на соответствующую структуру системы программным путем за счет возможности программирования структуры используемой микропроцессорной ВС. Часть аппаратных и программных средств микропроцессорной ВС моделирующего комплекса непосредственно отражает аппаратно-программные средства, входящие в исследуемую систему (аппаратное моделирование), другая часть реализует имитационную модель функциональных средств исследуемой системы, внешней обстановки, влияния помех и т.п. (программное моделирование).
Разработка аппаратно-программных моделирующих комплексов является сложной технической задачей. Несмотря на это, применение таких комплексов находит все большее распространение. При достаточной производительности вычислительных средств комплекса процесс исследования системы может вестись в реальном масштабе времени. В составе комплекса могут использоваться как универсальные микроЭВМ общего назначение, так и вычислительные средства, непосредственно входящие в исследуемую систему. Подобные моделирующие комплексы являются универсальными стендами для разработки и отладки аппаратно-программных средств, проектируемых систем заданного класса. Они могут использоваться в качестве тренажеров по обучению обслуживающего персонала.
3. Математическая модель объекта — это: а) созданная из какого-либо материала модель, точно отражающая внешние признаки объекта-оригинала; б) описание в виде схемы внутренней структуры изучаемого объекта; в) совокупность данных, содержащих информацию о количественных характеристиках объекта и его поведения в виде таблицы; г) совокупность записанных на языке математики формул, отражающих те или иные свойства объекта-оригинала или его поведение;
4. Файловая система персонального компьютера наиболее адекватно может быть описана в виде: а) табличной модели; б) графической модели; в) иерархической модели; г) математической модели.
5. Расписание движение поездов может рассматриваться как пример: а) табличной модели; б) графической модели; в) компьютерной модели; г) математической модели.
6. Компьютерное имитационное моделирование ядерного взрыва позволяет: а) экспериментально проверить влияние высокой температуры и облучения на природные объекты; б) провести натурное исследование процессов, протекающих в природе в процессе взрыва и после него; в) уменьшить стоимость исследований и обеспечить безопасность людей; г) получить достоверные данные о влиянии взрыва на людей, животных, растения;
7. Привести 2 примера материальных моделей.
8. Процесс построения модели, как правило, предполагает: а) описание всех свойств исследуемого объекта; б) выделение наиболее существенных с точки зрения решаемой задачи свойств объекта; в) выделение свойств объекта безотносительно к целям решаемой задачи; г) описание всех пространственно-временных характеристик изучаемого объекта;
9. Отметь ИСТИННОЕ высказывание: а) непосредственное наблюдение — это хранение информации; б) чтение справочной литературы — это поиск информации; в) запрос к информационным системам — это защита информации; г) построение графической модели явления — это передача информации; д) прослушивание радиопередачи — это обработки информации.
10. Рисунки, карты, чертежи, диаграммы, схемы, графики представляют собой: а) табличные информационные модели. б) математические модели; в) графические информационные модели; г) иерархические информационные модели.
11. В биологии классификация представителей животного мира представляет собой: а) иерархическую модель; б) табличную модель; в) графическую модель; г) математическую модель.
12. Географическую карту следует рассматривать скорее всего как: а) математическую информационную модель; б) вербальную информационную модель; в) табличную информационную модель. г) графическую информационную модель.
13. С помощью компьютерного имитационного моделирования можно изучать (следует отметить ЛОЖНОЕ ВЫСКАЗЫВАНИЕ): а) демографические процессы, протекающие в социальных системах; б) тепловые процессы, протекающие в технических системах;
в) инфляционные процессы в промышленно-экономических системах; г) процессы психологического взаимодействия учеников в классе.
д) процесс выявления существенных признаков рассматриваемого объекта.
2. Модель — это:
а) фантастический образ реальной действительности;
б) м атериальный или абстрактный заменитель объекта, отражающий его пространственно-временные характеристики;
в) м атериальный или абстрактный заменитель объекта, отражающий его существенные характеристики;
г) описание изучаемого объекта средствами изобразительного искусства;
д) информация о несущественных свойствах объекта.
3. При изучении объекта реальной действительности можно создать:
а) одну единственную модель.
б) несколько различных видов моделей, каждая из которых отражает те или иные существенные признаки объекта;
в) одну модель, отражающую совокупность признаков объекта;
г) точную копию объекта во всех проявлениях его свойств и поведения;
д) вопрос не имеет смысла.
4. Процесс построения модели, как правило, предполагает:
а) описание всех свойств исследуемого объекта;
б) выделение наиболее существенных с точки зрения решаемой задачи свойств объекта;
в) выделение свойств объекта безотносительно к целям решаемой задачи;
г) описание всех пространственно-временных характеристик изучаемого объекта;
д) выделение не более трех существенных признаков объекта.
5. Натурное моделирование – это:
а) моделирование, при котором в модели узнается моделируемый объект, то есть натурная модель всегда имеет визуальную схожесть с объектом-оригиналом;
б) создание математических формул, описывающих форму или поведение объекта-оригинала;
в) моделирование, при котором в модели узнается какой-либо отдельный признак объекта-оригинала;
г) совокупность данных, содержащих текстовую информацию об объекте-оригинале;
д) создание таблицы, содержащей информацию об объекте-оригинале.
6. Информационной моделью объекта нельзя считать:
а) описание объекта-оригинала с помощью математических формул;
б) другой объект, не отражающий существенных признаков и свойств объекта-оригинала;
в) совокупность данных в виде таблицы, содержащих информацию о качественных и количественных характеристиках объекта-оригинала;
г) описание объекта-оригинала на естественном или формальном языке;
д) совокупность записанных на языке математики формул, описывающих поведение объекта-оригинала.
7. Математическая модель объекта — это:
а) созданная из какого-либо материала модель, точно отражающая внешние признаки объекта-оригинала;
б) описание в виде схемы внутренней структуры изучаемого объекта;
в) с овокупность данных, содержащих информацию о количественных характеристиках объекта и его поведения в виде таблицы;
г) совокупность записанных на языке математики формул, отражающих те или иные свойства объекта-оригинала или его поведение;
д) последовательность электрических сигналов.
8. К числу математических моделей относится:
а) милицейский протокол;
б) правила дорожного движения;
в) формула нахождения корней квадратного уравнения;
г) кулинарный рецепт;
д) инструкция по сборке мебели.
9. К числу документов, представляющих собой информационную модель управления государством, можно отнести:
а) Конституцию РФ;
б) географическую карту России;
в) Российский словарь политических терминов;
д) список депутатов государственной Думы.
10. К информационным моделям, описывающим организацию учебного процесса в школе, можно отнести:
а) классный журнал;
б) расписание уроков;
в) список учащихся школы;
г) перечень школьных учебников;
д) перечень наглядных учебных пособий.
11. Табличная информационная модель представляет собой:
а) набор графиков, рисунков, чертежей, схем, диаграмм;
б) описание иерархической структуры строения моделируемого объекта;
в) описание объектов (или их свойств) в виде совокупности значений, размещаемых в таблице;
г) систему математических формул;
д) последовательность предложений на естественном языке.
12. Отметь ЛОЖНОЕ продолжение к высказыванию: “К информационному процессу поиска информации можно отнести. ”:
а) непосредственное наблюдение;
б) чтение справочной литературы;
в) запрос к информационным системам;
г) построение графической модели явления;
д) прослушивание радиопередач.
13. Отметь ИСТИННОЕ высказывание:
а) непосредственное наблюдение — это хранение информации;
б) чтение справочной литературы — это поиск информации;
в) запрос к информационным системам — это защита информации;
г) построение графической модели явления — это передача информации;
д) прослушивание радиопередачи — это обработки информации.
14. Рисунки, карты, чертежи, диаграммы, схемы, графики представляют собой:
а) табличные информационные модели.
б) математические модели;
в) натурные модели;
г) графические информационные модели;
д) иерархические информационные модели.
15. Описание глобальной компьютерной сети Интернет в виде системы взаимосвязанных следует рассматривать как:
а) натурную модель;
б) табличную модель;
в) графическую модель;
г) математическую модель;
д) сетевую модель.
16. Файловая система персонального компьютера наиболее адекватно может быть описана в виде:
а) табличной модели;
б) графической модели;
в) иерархической модели;
г) натурной модели;
д) математической модели.
17. В биологии классификация представителей животного мира представляет собой:
а) иерархическую модель;
б) табличную модель;
в) графическую модель;
г) математическую модель;
д) натурную модель.
18. Расписание движение поездов может рассматриваться как пример:
а) натурной модели;
б) табличной модели;
в) графической модели;
г) компьютерной модели;
д) математической модели.
19. Географическую карту следует рассматривать скорее всего как:
а) математическую информационную модель;
б) вербальную информационную модель;
в) табличную информационную модель.
г) графическую информационную модель;
д) натурную модель.
20. К числу самых первых графических информационных моделей следует отнести:
а) наскальные росписи;
б) карты поверхности Земли;
в) книги с иллюстрациями;
г) строительные чертежи и планы;
21. Укажите ЛОЖНОЕ утверждение:
а) “Строгих правил построения любой модели сформулировать невозможно”;
б) “Никакая модель не может заменить само явление, но при решении конкретной задачи она может оказаться очень полезным инструментом”;
в) “Совершенно неважно, какие объекты выбираются в качестве моделирующих — главное, чтобы с их помощью можно было бы отразить наиболее существенные черты, признаки изучаемого объекта”;
г) “Модель содержит столько же информации, сколько и моделируемый объект”;
д) “Все образование — это изучение тех или иных моделей, а также приемов их использования”.
22. Построение модели исходных данных; построение модели результата, разработка алгоритма, разработка программы, отладка и исполнение программы, анализ и интерпретация результатов — это:
а) разработка алгоритма решения задач;
б) список команд исполнителю;
в) анализ существующих задач;
г) этапы решения задачи с помощью компьютера;
д) алгоритм математической задачи.
23. В качестве примера модели поведения можно назвать:
а) список учащихся школы;
б) план классных комнат;
в) правила техники безопасности в компьютерном классе;
г) план эвакуации при пожаре;
д) чертежи школьного здания.
24. Компьютерное имитационное моделирование ядерного взрыва позволяет:
а) экспериментально проверить влияние высокой температуры и облучения на природные объекты;
б) провести натурное исследование процессов, протекающих в природе в процессе взрыва и после взрыва;
в) уменьшить стоимость исследований и обеспечить безопасность людей;
г) получить достоверные данные о влиянии взрыва на здоровье людей;
д) получить достоверную информацию о влиянии ядерного взрыва на растения и животных в зоне облучения.
25.С помощью компьютерного имитационного моделирования можно изучать (следует отметить ЛОЖНОЕ ВЫСКАЗЫВАНИЕ):
а) демографические процессы, протекающие в социальных системах;
б) тепловые процессы, протекающие в технических системах;
в) инфляционные процессы в промышленно-экономических системах;
г) процессы психологического взаимодействия учеников в классе;
д) траектории движения планет и космических кораблей в безвоздушном пространстве.
Компьютерное моделирование как новый метод научных исследований основывается на:
- построении математических моделей для описания изучаемых процессов;
- использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.
Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно изменяя его коэффициенты , начальные и граничные условия, исследовать, как при этом будет вести себя объект . Имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями, имитирующими поведение реальных объектов, процессов или систем.
Реальные процессы и системы можно исследовать с помощью двух типов математических моделей: аналитических и имитационных.
В аналитических моделях поведение реальных процессов и систем (РПС) задается в виде явных функциональных зависимостей (уравнений линейных или нелинейных, дифференциальных или интегральных, систем этих уравнений). Однако получить эти зависимости удается только для сравнительно простых РПС. Когда явления сложны и многообразны исследователю приходится идти на упрощенные представления сложных РПС. В результате аналитическая модель становится слишком грубым приближением к действительности. Если все же для сложных РПС удается получить аналитические модели, то зачастую они превращаются в трудно разрешимую проблему. Поэтому исследователь вынужден часто использовать имитационное моделирование .
Имитационное моделирование представляет собой численный метод проведения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими поведение реальных объектов, процессов и систем во времени в течение заданного периода. При этом функционирование РПС разбивается на элементарные явления, подсистемы и модули. Функционирование этих элементарных явлений, подсистем и модулей описывается набором алгоритмов, которые имитируют элементарные явления с сохранением их логической структуры и последовательности протекания во времени.
Имитационное моделирование - это совокупность методов алгоритмизации функционирования объектов исследований, программной реализации алгоритмических описаний, организации, планирования и выполнения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими функционирование РПС в течение заданного периода.
Под алгоритмизацией функционирования РПС понимается пооперационное описание работы всех ее функциональных подсистем отдельных модулей с уровнем детализации, соответствующем комплексу требований к модели.
"Имитационное моделирование" (ИМ)- это двойной термин. "Имитация" и " моделирование " - это синонимы. Фактически все области науки и техники являются моделями реальных процессов. Чтобы отличить математические модели друг от друга, исследователи стали давать им дополнительные названия. Термин "имитационное моделирование" означает, что мы имеем дело с такими математическими моделями, с помощью которых нельзя заранее вычислить или предсказать поведение системы, а для предсказания поведения системы необходим вычислительный эксперимент (имитация) на математической модели при заданных исходных данных.
Основное достоинство ИМ:
- возможность описания поведения компонент (элементов) процессов или систем на высоком уровне детализации;
- отсутствие ограничений между параметрами ИМ и состоянием внешней среды РПС;
- возможность исследования динамики взаимодействия компонент во времени и пространстве параметров системы;
Эти достоинства обеспечивают имитационному методу широкое распространение.
Рекомендуется использовать имитационное моделирование в следующих случаях:
- Если не существует законченной постановки задачи исследования и идет процесс познания объекта моделирования. Имитационная модель служит средством изучения явления.
- Если аналитические методы имеются, но математические процессы сложны и трудоемки, и имитационное моделирование дает более простой способ решения задачи.
- Когда кроме оценки влияния параметров (переменных) процесса или системы желательно осуществить наблюдение за поведением компонент (элементов) процесса или системы (ПС) в течение определенного периода.
- Когда имитационное моделирование оказывается единственным способом исследования сложной системы из-за невозможности наблюдения явлений в реальных условиях (реакции термоядерного синтеза, исследования космического пространства).
- Когда необходимо контролировать протекание процессов или поведение систем путем замедления или ускорения явлений в ходе имитации.
- При подготовке специалистов для новой техники, когда на имитационных моделях обеспечивается возможность приобретения навыков в эксплуатации новой техники.
- Когда изучаются новые ситуации в РПС. В этом случае имитация служит для проверки новых стратегий и правил проведения натурных экспериментов.
- Когда особое значение имеет последовательность событий в проектируемых ПС и модель используется для предсказания узких мест в функционировании РПС.
Однако ИМ наряду с достоинствами имеет и недостатки:
- Разработка хорошей ИМ часто обходится дороже создания аналитической модели и требует больших временных затрат.
- Может оказаться, что ИМ неточна (что бывает часто), и мы не в состоянии измерить степень этой неточности.
- Зачастую исследователи обращаются к ИМ, не представляя тех трудностей , с которыми они встретятся и совершают при этом ряд ошибок методологического характера.
И тем не менее ИМ является одним из наиболее широко используемых методов при решении задач синтеза и анализа сложных процессов и систем.
Одним из видов имитационного моделирования является статистическое имитационное моделирование , позволяющее воспроизводить на ЭВМ функционирование сложных случайных процессов.
При исследовании сложных систем, подверженных случайным возмущениям используются вероятностные аналитические модели и вероятностные имитационные модели .
В вероятностных аналитических моделях влияние случайных факторов учитывается с помощью задания вероятностных характеристик случайных процессов (законы распределения вероятностей, спектральные плотности или корреляционные функции). При этом построение вероятностных аналитических моделей представляет собой сложную вычислительную задачу . Поэтому вероятностное аналитическое моделирование используют для изучения сравнительно простых систем.
Подмечено, что введение случайных возмущений в имитационные модели не вносит принципиальных усложнений, поэтому исследование сложных случайных процессов проводится в настоящее время, как правило, на имитационных моделях .
В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.
Статистическая модель случайного процесса - это алгоритм , с помощью которого имитируют работу сложной системы, подверженной случайным возмущениям; имитируют взаимодействие элементов системы, носящих вероятностный характер.
При реализации на ЭВМ статистического имитационного моделирования возникает задача получения на ЭВМ случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий задачу генерирования последовательности случайных чисел с заданными законами распределения, получил название " метод статистических испытаний " или " метод Монте-Карло ".
Так как метод Монте-Карло кроме статистического моделирования имеет приложение к ряду численных методов (взятие интегралов, решение уравнений), то целесообразно иметь различные термины.
Итак, статистическое моделирование - это способ изучения сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационных моделей .
Метод Монте-Карло - это численный метод, моделирующий на ЭВМ псевдослучайные числовые последовательности с заданными вероятностными характеристиками.
Методика статистического моделирования состоит из следующих этапов:
- Моделирование на ЭВМ псевдослучайных последовательностей с заданной корреляцией и законом распределения вероятностей ( метод Монте-Карло ), имитирующих на ЭВМ случайные значения параметров при каждом испытании;
- Преобразование полученных числовых последовательностей на имитационных математических моделях .
- Статистическая обработка результатов моделирования.
Обобщенный алгоритм метода статистических испытаний представлен на рис. 5.1.
По теме: методические разработки, презентации и конспекты
Презентация к уроку "Моделирование" в 9 классе
Презентация к первому уроку по теме "Модели и моделирование", УМК Н.Угриновича.
Урок "Моделирование кокеток" 8 класс
Обобщающий урок по разделу "Моделирование кокеток" в 8 классе коррекционной школы 8 вида. Целью данного урока является совершенствование умений и навыков моделирования, принципах раздвижки выкройки, н.
Моделирование фартук. 5 класс
Цели:ознакомить учащихся с понятием о моделировании, с приемами моделирования;сформировать навыки по моделированию фартука.
Моделирование фартука 5 класс
Урок- презентация по теме "Моделирование фартука" 5 класс.
Презентация урока "Моделирование одежды" 7 класс
Тема раздела программы:Создание изделий из текстильных материаловТема урока:Моделирование плечевого изделияЦели:Продолжить формирование способности учащихся выбора моделей одежды, в зависимости от осо.
Презентация урока "Моделирование одежды" 7 класс
Тема раздела программы:Создание изделий из текстильных материаловТема урока:Моделирование плечевого изделияЦели:Продолжить формирование способности учащихся выбора моделей одежды, в зависимости от осо.
План - конспект урока по технологии "Художественное моделирование юбок" 6 класс
Урок знакомит обучающихся с приемами художественного моделирования юбок разного фасона.
Читайте также: