С помощью клеточной инженерии получают и размножают ценные сорта растений
Селекция — отбор и создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами.
Породы животных, сорта растений, штаммы микроорганизмов — это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами. Теоретической основой селекции является генетика.
Основные методы селекции
Отбор
В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательным и методическим. Бессознательный отбор заключается в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенную породу или сорт. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами. В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор, который повышает приспособляемость организмов к условиям окружающей среды.
Сравнительная характеристика естественного и искусственного отбора
Показатели | Естественный отбор | Искусственный отбор |
Исходный материал для отбора | Индивидуальные признаки организмов | Индивидуальные признаки организмов |
Отбирающий фактор | Условия среды (живая и неживая природа) | Человек |
Путь благоприятных изменений | Остаются, накапливаются, передаются по наследству | Отбираются, становятся производительными |
Путь неблагоприятных изменений | Уничтожаются в борьбе за существание | Отбираются, бракуются, уничтожаются |
Направленность действия | Отбор признаков, полезных особи, популяции, виду | Отбор признаков, полезных человеку |
Результат отбора | Новые виды | Новые сорта растений, породы животных, штаммы микроорганизмов |
Формы отбора | Движущий, стабилизирующий, дизруптивный | Массовый, индивидуальный, бессознательный (стихийный), методический (сознательный) |
Массовый отбор — выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства.
Индивидуальный отбор — выделение отдельных особей с желательными признаками и получение от них потомства.
Массовый отбор чаще применяют в селекции растений, а индивидуальный — в селекции животных, что связано с особенностями размножения растений и животных.
Гибридизация
Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдалённую) гибридизацию.
Внутривидовая гибридизация — скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.
Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведёт к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, но с другой — ведёт к снижению жизнеспособности, продуктивности и вырождению. Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрёстное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом. Основная причина эффекта гетерозиса — отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.
Межвидовая (отдалённая) гибридизация — скрещивание разных видов.
Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале — гибрид пшеницы и ржи, мул — гибрид кобылы с ослом, лошак — гибрид коня с ослицей). Обычно отдалённые гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдалённых гибридов растений удаётся с помощью полиплоидии. Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.
Полиплоидия
Полиплоидия — увеличение числа хромосомных наборов.
Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины: удвоение хромосом в неделящихся клетках, слияние соматических клеток или их ядер, нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом. Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.
Индуцированный мутагенез
В естественных условиях частота возникновения мутаций сравнительно невелика. Поэтому в селекции используется индуцированный (искусственно вызванный) мутагенез — воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.
Клеточная и генная инженерия
Селекция растений, животных и микроорганизмов
Селекция растений Для селекционера очень важно знать свойства исходного материала, используемого в селекции. В этом плане очень важны два достижения отечественного селекционера Н. И. Вавилова: закон гомологических рядов в наследственной изменчивости и учение о центрах происхождения культурных растений.
Закон гомологических рядов в наследственной изменчивости: виды и роды, генетически близкие (связанные друг с другом единством происхождения), характеризуются сходными рядами в наследственной изменчивости. Так, например, у мягкой и твёрдой пшеницы и ячменя существуют остистые, короткоостые и безостые колосья. Зная наследственные изменения у одного вида, можно предвидеть нахождение сходных изменений у родственных видов и родов, что используется в селекции. Чем ближе между собой виды и роды, тем больше сходство в изменчивости их признаков. Н. И. Вавиловым закон был сформулирован применительно к растениям, а позднее подтверждён для животных и микроорганизмов.
В селекции растений наиболее широко используются такие методы, как массовый отбор, внутривидовая гибридизация, отдалённая гибридизация, полиплоидия.
Большой вклад в селекцию плодовых растений внёс отечественный селекционер И. В. Мичурин. На основе методов межсортовой и межвидовой гибридизации, отбора и воздействия условиями среды им были созданы многие сорта плодовых культур. Благодаря его работам многие южные сорта плодовых культур удалось распространить в средней полосе нашей страны.
Многие сорта культурных растений являются полиплоидными. Таковы некоторые сорта пшеницы, ржи, клевера, картофеля, свёклы и т. д. Сочетание отдалённой гибридизации с последующим получением полиплоидных форм позволило преодолеть бесплодие отдалённых гибридов. В результате многолетних работ Н. В. Цицина и его сотрудников были получены гибриды пырея и пшеницы, пшеницы и ржи (тритикале).
К наиболее важным достижениям селекции растений следует отнести создание большого количества высокопродуктивных сортов сельскохозяйственных растений.
Селекция животных
Как и культурные растения, домашние животные имеют диких предков. Процесс превращения диких животных в домашних называют одомашниванием (доместикацией). Почти все домашние животные относятся к высшим позвоночным животным — птицам и млекопитающим.
В селекции животных наиболее широко используются такие методы, как индивидуальный отбор, внутривидовая гибридизация (родственное и неродственное скрещивание) и отдалённая (межвидовая) гибридизация.
Использование индивидуального отбора связано с половым размножением животных, когда получить сразу много потомков затруднительно. В связи с этим селекционеру важно определить наследственные признаки самцов, которые непосредственно у них не проявляются (жирномолочность, яйценоскость). Поэтому оценка животных может быть осуществлена по их родословной и по качеству их потомства. Имеет определённое значение также учёт экстерьера, то есть совокупности внешних признаков животного. Подбор производителей в животноводстве особенно актуален в связи с применением в настоящее время искусственного осеменения, позволяющего получить от одного организма значительное число потомков. Родственное скрещивание ведёт к гомозиготности и чаще всего сопровождается уменьшением устойчивости животных к неблагоприятным факторам среды, снижением плодовитости и т. п. Для устранения неблагоприятных последствий используют неродственное скрещивание разных линий и пород. На основе межпородного скрещивания были созданы высокопродуктивные сельскохозяйственные животные (в частности М. Ф. Иванов создал высокопродуктивную породу свиней Белая украинская, породу овец Асканийская рамбулье). Неродственное скрещивание сопровождается гетерозисом, сущность которого состоит в том, что гибриды первого поколения имеют повышенную жизнеспособность и усиленное развитие. Примером эффективного использования гетерозиса служит выведение гибридных цыплят (бройлерное производство).
Отдалённая (межвидовая) гибридизация животных приводит к бесплодию гибридов. Но благодаря проявлению гетерозиса широко используется человеком. Среди достижений по отдалённой гибридизации животных следует отметить мула — гибрида кобылы с ослом, бестера — гибрида белуги и стерляди, продуктивного гибрида карпа и карася, гибридов крупного рогатого скота с яками и зебу, отдалённых гибридов свиней и т. д.
Селекция микроорганизмов
К микроорганизмам относятся прокариоты — бактерии, сине-зелёные водоросли; эукариоты — грибы, микроскопические водоросли, простейшие.
В селекции микроорганизмов наиболее широко используются индуцированный мутагенез и последующий отбор групп генетически идентичных клеток (клонов), методы клеточной и генной инженерии.
Деятельность микроорганизмов используют в промышленности, сельском хозяйстве, медицине. Ферментативную активность микроорганизмов (грибов и бактерий) используют в производстве молочных продуктов, хлебопечении, виноделии и др. С помощью микроорганизмов получают аминокислоты, белки, ферменты, спирты, полисахариды, антибиотики, витамины, гормоны, интерферон и пр.
Выведены штаммы бактерий, способные разрушать нефтепродукты, что позволит использовать их для очистки окружающей среды. Ведутся работы по перенесению генетического материала азотфиксирующих микроорганизмов в геном почвенных бактерий, которые этими генами не обладают, а также непосредственно в геном растений. Это позволит избавиться от необходимости производить огромное количество азотных удобрений.
Биотехнология — комплексная наука, разрабатывающая способы получения необходимых человеку веществ с помощью живых организмов..
Биотехнологические процессы давно используются в производстве хлеба, молочнокислых продуктов, вина, пива.
Объекты биотехнологии — микроорганизмы (бактерии, цианобактерии, грибы, протисты). Их особенности: короткий жизненный цикл, интенсивное размножение, большое разнообразие биохимических свойств, лёгкое получение мутантов.
В селекции микроорганизмов основными методами являются индуцированный мутагенез и отбор групп сходных по генотипу клеток с заданными свойствами.
В промышленных масштабах используется такое направление биотехнологии, как микробиологический синтез.
Микробиологический синтез — получение с помощью микроорганизмов ценных веществ: витаминов, белков, ферментов, лекарств и т. д.
Например, так получают незаменимую аминокислоту лизин (её добавляют в корм животных), антибиотики, уксусную и лимонную кислоты.
Из растительных клеток можно вырастить целый организм. С помощью этого метода получают и размножают ценные сорта растений.
К методам клеточной инженерии относится также гибридизация , т. е. слияние клеток . Разработаны методы гибридизации половых и соматических клеток.
Получение гибридных клеток, совмещающих свойства лимфоцитов и раковых клеток, позволяет быстро получить антитела.
добавление в ДНК кишечной палочки соответствующих человеческих генов дало возможность получать с помощью этой бактерии гормоны инсулин и соматотропин, необходимые в медицине.
Организмы, в геном которых встроены гены других видов, называют трансгенными , или генетически модифицированными (ГМО).
Клеточная инженерия — КЛЕТОЧНАЯ ИНЖЕНЕРИЯ, конструирование специальными методами клеток нового типа. Клеточная инженерия включает реконструкцию жизнеспособной клетки из отдельных фрагментов разных клеток, объединение двух целых клеток, принадлежащих различным видам
Клеточная инженерия связана с культивированием отдельных клеток или тканей на специальных искусственных средах|средах. Доказано, что если взять кусочки ткани и отдельные клетки из разных органов|органов, допустим|допустим, растений, хотя это возможно и у животных, и пересадить их на специальные среды|среды, содержащие минеральные соли|соли и другие вещества, то они способны расти. Это значит, что в таких изолированных от организма тканях и клетках продолжаются клеточные деления.
Новейшим методом клеточной селекции у растений, уже давшим огромный эффект, является метод|метод гаплоидов. Гаплоидные клетки имеют половинный набор хромосом. Пыльцевые зерна|зёрна (пыльца) имеют гаплоидный набор хромосом. Сейчас разработан метод|метод проращивания пыльцевых зёрен на искусственных средах|средах в пробирках и получения из них полноценных гаплоидных растений. Какое это имеет отношение к селекции? У полученных гибридов берут пыльцу, на питательных средах|средах в пробирках регенерируют из неё гаплоидные растения, а затем удваивают у них число хромосом и сразу получают полностью гомозиготные диплоидные растения. Так как мы берём пыльцу из гибридных растений и получаем через гаплоидные растения сразу гомозиготные диплоидные, то остаётся только оценить их и затем размножить лучшие.
При гибридизации соматических клеток растений их предварительно освобождают от плотной клеточной оболочки, а затем проводят слияние изолированных протопластов. В этом случае, как и при гибридизации клеток животных, также удаётся преодолевать барьеры нескрещиваемости, которые существуют при обычной (половой|половой) гибридизации растений разных видов и родов|родов. Из гибридной растительной клетки на специальной среде можно вырастить клеточную массу – каллюс, дифференцирующуюся в нормальное целое растение с корнями, стеблями|стеблями и т. д. Такое гибридное растение можно высадить в землю и выращивать и размножать обычными способами. Эти методы, в отличие от традиционных, позволяют сравнительно легко и быстро получать достаточное количество генетически разнообразного исходного материала для селекции. Их применение привело, напр., к увеличению урожайности ряда культур – картофеля, цитрусовых и др.
Другое направление клеточной инженерии – манипуляции с безъядерными клетками, свободными ядрами и другими фрагментами, сводящиеся к комбинированию разнородных частей клетки. Эти эксперименты, а также микроинъекции в клетку хромосом, красителей и т. п. проводят для выяснения взаимных влияний ядра|ядра и цитоплазмы, факторов, регулирующих активность генов, и т. п.
Путём соединения клеток разных зародышей на ранних стадиях их развития выращивают мозаичных животных, или химер, состоящих из двух различающихся генотипами видов клеток. С помощью таких экспериментов изучают процессы дифференцировки клеток и тканей в ходе развития организма.
Ведущиеся уже не одно десятилетие опыты по пересадке ядер соматических клеток в лишённые ядра|ядра (энуклеированные) яйцеклетки животных с последующим выращиванием зародыша во взрослый организм с кон. 20 в. получили широкую известность как клонирование животных.
Преимущество клеточной инженерии в том, что она позволяет экспериментировать с клетками, а не с целыми организмами. Последнее гораздо сложнее, а иногда и невозможно, особенно в случае млекопитающих животных и человека или при получении отдалённых гибридов. Методы клеточной инженерии в медицине, сельском хозяйстве или биотехнологии часто применяют в сочетании с генной инженерией.
Видео по теме : Клеточная инженерия
Каждый живой организм состоит из клеток: начиная от бактерии, заканчивая высшими млекопитающими. Высшие организмы состоят из органов|органов, органы|органы состоят из тканей, ткани состоят из клеток. Всё|Все свойства любого организма определяются его геномом, который находится в клетке (в любой|любой из клеток данного организма).
Генная и клеточная инженерия (это одно понятие) занимается вопросами связи между устройством ДНК и наследственными свойствами организмов. Конечно, она вооружена такими методами, о которых раньше, например, во времена Менделя, и мечтать не смели|смели.
Метод|Метод клеточной инженерии заключается на современном этапе в том, что специалисты получают фрагменты ДНК различных организмов и встраивают их в ДНК организма, выбранного как объект исследования. Этот метод|метод на языке учёных, обожающих специальные термины, называется экспрессией рекомбинантных ДНК. В качестве инструмента берутся рестриктазы — особые бактериальные ферменты, способные расщеплять ДНК. Их и называют образно — биологическими ножами.
Цель, которую несёт в себе клеточная инженерия: получение лекарств, выведение качественных сортов культурных растений, создание новых пород животных, и как высшая точка — избавление нашей цивилизации от всех болезней. Те, кто спорит (не хочется называть их мракобесами) должны иметь в виду, что один только синтетический инсулин спас и спасает миллионы диабетиков и продлевает им жизнь на десятки лет!
Опасения по поводу генной инженерии берут начало|начало с момента её рождения в 1972-ом году, когда группа П. Берга (США) синтезировала первую рекомбинантную ДНК из онкогенного вируса обезьян SV40 и E.coli. Последнее — это кишечная палочка, без которой человек не может жить. И в неё встроен вирус, вызывающий рак. Учёные в прямом смысле испугались, и даже не стали продолжать работы в тот момент. Наступил долгий период постановки исследований под строжайший контроль государства, сравнимый с контролем над работами по ядерному оружию.
К счастью, сложность и стоимость биологических генных работ сопоставима по сложности и стоимости с атомными исследованиями, и поэтому не по карману потенциальным террористам.
Клеточная технология и инженерия
Ключевые слова: клеточная технология и инженерия, клеточная инженерия, метод культуры клеток и тканей, тотипотентностъ, микроклоналъное размножение растений, соматическая гибридизация, гибридомы, моноклональные антитела, метод трансплантации ядер, клонирование.
Раздел ЕГЭ: 3.9. Биотехнология, ее направления. Клеточная и генная инженерия, клонирование…
Клеточной инженерией называют эксперименты с изолированными клетками организмов, которые позволяют конструировать клетки нового типа путём гибридизации и слияния клеточных структур (ядер, митохондрий, хлоропластов) для получения организмов с заданными свойствами. Предпосылкой к развитию клеточной инженерии стала клеточная технология, использующая методы выращивания клеток и тканей на питательных средах (in vitro).
Микроклональное размножение растений
Выращивание клеток и тканей на питательных средах получило название метода культуры клеток и тканей. Его создание связано с работами американского и французского учёных
Ф. Уайта и Р. Готре, проводившимися в начале XX в. Положительные результаты впервые были получены на моркови. Кусочек растительной ткани — эксплант — был выделен из корнеплода растения и помещён на питательную среду, содержащую минеральные соли, аминокислоты, гормоны и другие необходимые для роста и развития вещества. В результате митотического деления эксплант образовал однородную неспециализированную клеточную массу — каллус, клетки которого обладали тотипотентностью (от лат. totus — целый и potentia — сила) — способностью давать начало любому типу клеток. При разделении клеток и добавлении в питательную среду фитогормонов ауксинов и кининов, обеспечивающих рост и дифференцировку клеток, были получены небольшие по размеру растения-регенеранты, похожие на проростки. Эти растения отмыли от питательной среды и пересадили на поле, где они развились в полноценные экземпляры моркови.
Микроклональное размножение моркови
Таким образом, метод культуры клеток и тканей позволяет размножить какое-либо растение в искусственно созданных условиях, т. е. создать его клон. Главное преимущество микроклонального размножения растении по сравнению с семенным размножением состоит в том, что с его помощью можно за короткое время получить большое число генетически однородных особей, способных к быстрому росту, обладающих калиброванными качествами и не заражённых возбудителями болезней. В настоящее время в некоторых европейских странах, например Голландии и Финляндии, весь посадочный материал получают с помощью метода культуры клеток и тканей. В России существуют питомники микроклонального размножения овощных, плодовых и декоративных культур, в которых производят посадочный материал для выращивания картофеля, томатов, смородины, яблони, земляники, роз, гвоздик и др.
Соматическая гибридизация
Искусственное объединение целых клеток с образованием гибридных геномов называют соматической гибридизацией. С помощью метода клеточной технологии были созданы отдалённые гибриды соматических клеток не только растений, но и животных.
Путём соматической гибридизации клеток культурного картофеля (Solarium tuberosum) и дикого (Solarium chacoense) был выведен новый сорт, отличающийся необычайной мощностью куста и устойчивый к ряду заболеваний. Для гибридизации использовались протопласты клеток двух видов картофеля, лишённые клеточной стенки и имеющие только наружную плазматическую мембрану. Они выращивались на питательной среде, где и происходило их слияние с образованием гибридного каллуса и дальнейшее развитие из него соматического гибридного растения. Благодаря хозяйственно ценным признакам полученный соматический гибрид картофеля стал затем широко использоваться в практической селекции. Половой же гибрид этих двух видов картофеля такими признаками не обладает.
Гибридизация картофеля: 1 — родительская форма S. tuberosum; 2 — соматический гибрид; 3 — родительская форма S. chacoense; 4 — половой гибрид
Иные задачи стоят перед клеточной инженерией в отношении работы с животными клетками. Например, важным вопросом иммунологии является регуляция иммунного ответа организма на конкретный антиген. Его решение позволит преодолеть проблемы трансплантационного (при пересадке органов и тканей), противоопухолевого и противовирусного иммунитета. Разработка направления клеточной инженерии, связанного с созданием антител определённой специфичности, приближает решение этих проблем.
Для получения таких антител конструируют гибридомы (от лат. hybrida — помесь и ота — опухоль) — гибридные клетки, образованные из протопластов лимфоцитов селезёнки иммунизированных животных и раковых клеток. Гибридомы производят один вид антител — моноклональные антитела (свойство, характерное для лимфоцитов) и способны неограниченно размножаться (свойство раковых клеток). В 1975 г. немецкий и английский учёные Г. Кёллер и Ц. Милыитейн описали методику получения моноклональных антител от гибридомы В-лимфоцитов селезёнки мышей и опухолевых клеток мышиной плазмоцитомы (рис. 269). За эту работу они были удостоены Нобелевской премии.
В настоящее время получено большое разнообразие моноклональных антител (от разных гибридом). Их используют в медицине для нейтрализации дифтерийного и столбнячного токсинов, змеиных ядов, для распознавания антител и антигенов, а также биологически активных веществ (гормонов, ферментов), находящихся в крови, плазме и лимфе. Моноклональные антитела обладают преимуществом перед кровяными сыворотками, так как по специфичности действия служат идеальными реагентами на конкретный антиген. Введённые в организм моноклональные антитела блокируют антигены, поэтому их применяют с целью ранней диагностики онкологических заболеваний. Моноклональные антитела способны доставлять к клеткам опухоли радиоактивные вещества, позволяющие точно обнаружить её местонахождение в организме, а также лекарственные препараты, обеспечивающие разрушение опухоли.
Реконструкция яйцеклеток и клонирование животных
В 1952 г. американские учёные Р. Бриггс и Т. Кинг разработали хирургический метод трансплантации ядер эмбриональных клеток лягушки. Осуществляли такую трансплантацию с помощью микропипетки. Учёные установили, что если брать ядра из клеток зародыша на стадии бластулы, то примерно в 80 % случаях зародыши благополучно развиваются и превращаются в нормальных головастиков. Реконструированные таким способом яйцеклетки давали начало новому полноценному организму, причём его признаки полностью определялись генами, содержащимися в хромосомах пересаженных в яйцеклетки ядер.
Результатом этих работ стало открытие способности соматических ядер обеспечивать нормальное развитие яйцеклеток в зародыши. Эксперименты доказали, что наследственный материал соматических клеток способен сохраняться полноценным в функциональном отношении, а дифференцировка клеток является результатом активности и блокировки определённых генов. Методом трансплантации ядер соматических клеток в яйцеклетки получены клоны амфибий, рыб, мышей, кроликов, овец и др.
Развитие взрослой лягушки из реконструированной яйцеклетки
Уникален опыт по клонированию домашних овец. В 1997 г. была опубликована статья шотландского учёного Яна Уилмута, в которой сообщалось, что в результате использования донорского ядра клетки молочной железы овцы породы Финский дорсет было получено клональное животное — овца по кличке Долли. В эксперименте использовались не только эмбриональные клетки, но и фибробласты (клетки соединительной ткани) плода, а также клетки молочной железы взрослой овцы. Все три типа клеток принадлежали разным породам овец и имели одинаковое число хромосом — 54. Деление клеток всех трёх типов на определённой стадии останавливали и ядра клеток овцы-донора пересаживали в ооциты овцы-реципиента.
Читайте также: