Ремонт и диагностика материнской платы ноутбука
Материнская плата ноутбука не включается. На примере ASUS A6F рассмотрим общий принцип ремонта и поиска неисправностей, которые препятствуют запуску материнской платы и поможет нам в этом POWER On Sequence (такая страничка имеется во многих схемах ноутбуков).
По диаграмме можно отследить всю процедуру запуска материнской платы, начиная с момента включения питания и вплоть до готовности процессора выполнять инструкции BIOS и определить, на каком из этапов у нас происходит ошибка. В той же pdf-ке к материнской плате, можно найти более детальную схему распределения напряжений:
Первым делом следует убедиться в наличии питающего напряжения 19 вольт на входе материнской платы и, желательно, напряжения с АКБ (аккумуляторной батареи). Отсутствие входных напряжений A/D_DOCK_IN и АС_ВАТ_SYS представляется достаточно частой проблемой и проверку следует начинать с блока питания и разъёма на плате.
Если напряжение на участке (разъём — P-mosfet) отсутствует, то необходимо разорвать связь между сигналами A/D_DOCK_IN и AC_BAT_SYS. Если напряжение со стороны A/D_DOCK_IN появилось, то причина неисправности скрывается дальше и надо разбираться с участком (P-mosfet — нагрузка):
Необходимо исключить вариант короткого замыкания (КЗ) по AC_BAT_SYS (19В). Чаще всего, КЗ заканчивается не дальше, чем на силовых транзисторах в цепях, требующих высокой мощности (питание процессора и видеокарты) или на керамических конденсаторах. В ином случае, необходимо проверять все, к чему прикасается AC_BAT_SYS.
Если КЗ отсутствует, то обращаем внимание на контроллер заряда и P-MOS транзисторы, которые являются своеобразным «разводным мостом» между блоком питания и аккумулятором. Контроллер заряда выполняет функцию переключателя входных напряжений. Для понимания процесса работы, обратимся к datasheet, в котором нас интересует минимальные условия работы контроллера заряда:
Как видно по схеме, контроллер MAX8725 управляет транзисторами P3 и P2, тем самым переключая источники питания между БП и аккумулятором — P3 отвечает за блок питания, а P2 за аккумулятор. Необходимо проверить работоспособность этих транзисторов.
Разберем принцип работы контроллера. При отсутствии основного питания, контроллер автоматически закрывает транзистор P3 (управляющий сигнал PDS) тем самым перекрывая доступ блока питания к материнской плате и открывает транзистор P2 (управляющий сигнал PDL). В таком случае плата работает только от аккумулятора.
Если мы подключим блок питания, контроллер должен перекрыть питание от аккумулятора закрывая P2 и открывая P3, обеспечив питание от внешнего блока питания и зарядку аккумулятора.
При диагностике входного напряжения от сети мы не используем аккумулятор и проверяем только сигнал PDS. В нормальном режиме он должен "подтягиваться" к земле, тем самым открывая P-MOS и пропуская 19В на плату. Если контроллер неправильно управляет транзистором P3, то необходимо проверить запитан ли сам контроллер. Затем проверяем основные сигналы DCIN, ACIN, ACOK, PDS. При их отсутствии, меняем контроллер и, на всякий случай, P-MOS транзисторы.
Если проблем с входными напряжениями нет, но плата все равно не работает, переходим к следующему шагу.
1–2. Питание EC контроллера
Embedded Contoller (EC) управляет материнской платой ноутбука, а именно включением/выключением, обработкой ACPI-событий и режимом зарядки аккумулятора. Также эту микросхему ещё называют SMC (System Management Controller) или MIO (Multi Input Output).
Контакты микросхемы EC контроллера программируются под конкретную платформу, а сама программа, как правило, хранится в BIOS или на отдельной FLASH микросхеме.
Вернувшись к схеме запуска материнской платы, первым пунктом видим напряжение +3VA_EC, которое является основным питанием EC контроллера и микросхемы BIOS. Данное напряжение формирует линейный стабилизатор MIC5236YM:
Благодаря присутствию сигнала AC_BAT_SYS, микросхема должна выдать напряжение +3VAO, которое с помощью диагностических джамперов преобразуется в +3VA и +3VA_EC.
+3VA и +3VA_EC питают Embedded контроллер и BIOS, при этом запускается основная логика платы, которая отрабатывается внутри EC контроллера. Основными причинами отсутствия +3VA и +3VA_EC могут служить короткое замыкание внутри компонентов (ЕС, BIOS и т.д.), либо повреждение линейного стабилизатора или его обвязки.
3. Дежурные напряжения (+3VSUS, +5VSUS, +12VSUS)
После того как был запитан EC и он считал свою прошивку, контроллер выдает разрешающий сигнал VSUS_ON для подачи дежурных напряжений (см. пункт 3 последовательности запуска). Этот сигнал поступает на импульсную систему питания во главе которой стоит микросхема TPS51020:
Как видно на схеме, нас интересуют напряжения, отмеченные на схеме зеленым цветом +5VO, +5VSUS, +3VO, +3VSUS. Для того, что бы эти напряжения появились на плате необходимо что бы микросхема была запитана 19В (AC_BAT_SYS) и на входы 9, 10 приходили разрешающие сигналы ENBL1, и ENBL2.
Если же напряжение ENBL присутствует на плате и TPS51020 запитан, то значит TPS51020 должен формировать +5VO, +5VSUS, +3VO, +3VSUS (проверяется мультиметром на соответствующих контрольных точках).
Если напряжения +5VO, +3VO не формируются, проверяем эти линии на КЗ или заниженное сопротивление. В случае обнаружения КЗ, разрываем цепь и выясняем, каким компонентом оно вызвано.
При отсутствии или после устранения КЗ, снова проверяем напряжения и если их нет, то меняем сам контроллер вместе с транзисторами которыми он управляет.
4. Сигнал VSUS_GD
На этом этапе контроллер дежурных напряжений сообщает EC контроллеру о том, что дежурные питания в норме. Проблем тут быть не должно.
5. Сигнал RSMRST
Если сигнал выходит, но до южного моста не доходит, то проверяем южный мост и часовой кварц, в худшем случае меняем сам южный мост.
6. Кнопка включения (сигнал PWRSW_EC)
На этом этапе необходимо проверить прохождение сигнала от кнопки включения до EC контроллера. Для этого меряем напряжение на кнопке и проверяем ее функциональность, если после нажатия напряжение не падает, то проблема в кнопке. Так же можно закоротить этот сигнал с землей и проверить включение.
7. Сигнал включения (сигнал PM_PWRBTN)
Если южный мост его успешно принял, то следующим этапом является выдача ответа в виде двух сигналов PM_SUSC, PM_SUSB, которые, в свою очередь, являются разрешением южного моста EC контроллеру включать основные напряжения платы (если южный мост никак не реагирует на сигнал PM_PWRBTN, то проблема скрывается в нем).
8–9. Основные напряжения
Диагностика неисправности ноутбука это сложная тема и у каждого имеется свой подход к решению данной проблемы. В этой статье мы хотим поделиться своим опытом выявления неисправности материнских плат. Конечно же, полностью разобрать все нюансы и проблемы, возникающие при тестировании плат в одной статье не получится. Поэтому изложим материал в сжатой форме, что бы был понятен принцип диагностики.
Причин неработоспособности ноутбука существует множество. Поэтому рассмотрим самые сложные случаи, при которых стандартные операции, такие как блочная замена комплектующих не помогает и все упирается в неработоспособность материнской платы.
Проблема, из-за которой материнская плата не работает, может скрываться на этапе до или после выполнения инструкций BIOS.
В этой статье мы будем рассматривать проблемы, возникающие до выполнения BIOS.
В качестве примера возьмем ноутбук A6F.
Для того что бы выяснить почему плата не подает признаков жизни, нужно для начала разобраться в схеме распределения питания и последовательности запуска(Power On Sequence).
Последовательность запуска - схематическое отображение процесса запуска платы от момента подачи напряжений на плату до готовности процессора к выполнению задач BIOS.
Весь процесс запуска разбит на 14 этапов, на каждом из которых можно увидеть, что происходит с платой и если плата не стартует, то выполняя проверку шаг за шагом 1-14, можно определить на каком этапе возникла проблема и устранить ее.
Так выглядит последовательность запуска ноутбука A6F.
В качестве вспомогательной схемы используется более детальная схема распределения напряжений, к ней можно обращаться если на каком-то из этапов последовательности возникли проблемы с питанием.
Разберем шаг за шагом последовательность запуска и рассмотрим типичные проблемы на каждом из этапов запуска.
Как видим, весь процесс разбит на 14 этапов, но до выполнения 1го этапа существует еще один не менее важный для диагностики. Он отвечает за подачу входных напряжений на плату. Условно обозначим этот этап «0-1».
Отсутствие входных напряжений является распространённой проблемой. Происходит это из-за некачественных источников питания или из-за перегрузки, вызванной высоким потреблением любого из компонентов использующих внешнее питание.
Напряжения входа(19В) проходят дистанцию с чекпоинтами и далеко не всегда доходят до финиша. Эту дистанцию можно отобразить в упрощенной блок схеме:
Более подробно участок схемы (Разъем – Pmosfet) выглядит следующим образом:
Если нет напряжения на участке (Разъем– Pmosfet), то необходимо разорвать связь между сигналами AD_DOCK_IN и AC_BAT_SYS и если напряжение со стороны AD_DOCK_IN появилось, то причина неисправности скрывается дальше и надо разбираться с участком (Pmosfet - Нагрузка):
Необходимо исключить вариант короткого замыкания (КЗ) по AC_BAT_SYS (19В). Чаще всего КЗ заканчивается не дальше чем на силовых транзисторах в цепях требующих высокой мощности (питане процессора, видео-карты) или на керамических конденсаторах. В ином случае необходимо проверять все к чему прикасается AC_BAT_SYS.
Если КЗ отсутствует, то обращаем внимание на контроллер заряда и P-MOS транзисторы, которые являются своеобразным «разводным мостом» между блоком питания и аккумулятором. Контроллер заряда выполняет функцию переключателя входных напряжений. Для понимания процесса работы, обратимся к datasheet, в котором нас интересует минимальные условия работы контроллера заряда:
Как видно по схеме, контроллер MAX8725 управляет транзисторами P3 и P2. Тем самым переключает источники питания БП и Аккумулятор.
P3 отвечает за блок питания, P2 – за аккумулятор. Необходимо проверить работоспособность этих транзисторов.
Разберем принцип работы контроллера:
При отсутствии основного питания, контроллер автоматически закрывает транзистор P3 (управляющий сигнал PDS) тем самым перекрывает доступ блока питания к материнской плате и открывает транзистор P2 (управляющий сигнал PDL). В таком случае плата может работать только от аккумулятора. Если мы подключим блок питания, контроллер должен перекрыть питание от аккумулятора закрывая P2 и открывая P3, обеспечив питание от внешнего блока питания и зарядку аккумулятора.
При диагностике входного напряжения от сети мы не используем аккумулятор и проверяем только сигнал PDS. В нормальном режиме он должен подтягиваться к земле, тем самым открывая P-MOS и пропуская 19В на плату. Если контроллер не правильно управляет транзистором P3, то необходимо проверить запитан ли сам контроллер.
Затем проверяем основные сигналы DCIN, ACIN, ACOK, PDS. Если сигналы отсутствуют, то меняем контроллер и на всякий случай P-mos транзисторы.
Если в процессе диагностики проблем с входными напряжениями небыли обнаружены, или были устранены, но плата все равно не работает, то переходим к следующему этапу.
1-2 Питание EC контроллера.
Embedded Contoller - предназначенный для управления мобильной платформой (материнской платой ноутбука), как на уровне включения и выключения, так и для обработки ACPI-событий. В задачи EC-контроллера входит обслуживание аккумулятора: выбор режима его заряда, контроль разрядки. Как правило, с помощью EC-контроллера реализуется и контроллер клавиатуры.
Эту микросхему часто еще называют SMC (System Management Controller) или MIO(Multi Input Output)
Микросхема уникальна тем, что имеет большое количество General Purpose Input/Output (GPIO) контактов, которые запрограммированы специально для конкретной платформы. Программа управления этим контроллером чаще всего хранится вместе с BIOS или на отдельной FLASH микросхеме.
Возвращаясь к диагностике, смотрим на последовательность запуска, пункт 1. На данном этапе нас интересует напряжение +3VA_EC. Оно и является основным питание EC контроллера и микросхемы BIOS.
Судя по схеме распределения питания, это напряжение формирует линейный стабилизатор MIC5236YM:
Благодаря присутствию сигнала AC_BAT_SYS, с которым мы разобрались ранее, микросхема должна выдать напряжение +3VAO которое с помощью диагностических джамперов преобразуется в +3VA и +3VA_EC.
+3VA и +3VA_EC питают Embedded контроллер и BIOS, при этом запускается основная логика платы, которая отрабатывается внутри EC контроллера. Если нет этих напряжений, то разбираемся почему.
Причины отсутствия +3VA и +3VA_EC:
1) Короткое замыкание внутри компонентов (ЕС, BIOS и т.д.), которые запитаны от этих напряжений.
2) Повреждение линейного стабилизатора или его обвязки.
Разобравшись с +3VA и +3VA_EC, переходим к следующему этапу.
3 Дежурные напряжения (+3VSUS, +5VSUS, +12VSUS).
После того как был запитан EC и он считал свою прошивку, контроллер выдает разрешающий сигнал VSUS_ON для подачи дежурных напряжений (см. пункт 3 последовательности запуска). Этот сигнал поступает на импульсную систему питания во главе которой стоит микросхема TPS51020:
Как видно на схеме, нас интересуют напряжения, отмеченные на схеме зеленым цветом +5VO, +5VSUS, +3VO, +3VSUS.
Для того, что бы эти напряжения появились на плате необходимо что бы микросхема была запитана 19В (AC_BAT_SYS) и на входы 9, 10 приходили разрешающие сигналы ENBL1, и ENBL2.
Отсутствие сигнала VSUS_ON говорит о том, что либо повреждена прошивка (хранящаяся в BIOS), либо сам EC контроллер.
Если же напряжение ENBL присутствует на плате и TPS51020 запитан, то значит TPS51020 должен формировать +5VO, +5VSUS, +3VO, +3VSUS. Проверяем их мильтиметром на соответствующих контрольных точках.
Если напряжения +5VO, +3VO не формируются, проверяем эти линии на КЗ или заниженное сопротивление.
Если обнаружено КЗ, разрываем цепь и выясняем, каким компонентом оно вызвано.
При отсутствии или после устранения КЗ, снова проверяем напряжения и если их нет, то меняем сам контроллер вместе с транзисторами которыми он управляет.
На этом этапе контроллер дежурных напряжений сообщает EC контроллеру о том, что дежурные питания в норме.
Проблем быть не должно, разве что промежуточный транзистор между EC и TPS51020, вышел из строя.
Проще всего сначала прошить BIOS, где хранится прошивка EC.
Если сигнал выходит, но до южного моста не доходит, то проверяем южный мост и часовой кварц, в худшем случае надо будет менять сам южный мост.
На этом этапе необходимо проверить прохождение сигнала от кнопки включения до EC контроллера. Для этого меряем напряжение на кнопке и проверяем ее функциональность, если после нажатия напряжение не падает, то проблема в кнопке. Так же можно закоротить этот сигнал с землей и проверить включение.
Как уже было сказано ранее, EC контроллер обрабатывает ACPI-события.
Рассмотрим более подробно ACPI состояния:
A.C.P.I.
– S0--Working Status
– S1--POS(Power on Suspend)
– S3--STR(Suspend to RAM), Memory Working
– S4--STD(Suspend to Disk), H.D.D. Working
– S5--Soft Off
Так вот, состояние этих сигналов отвечает за ACPI состояние питания на материнской плате:
Если хоть одного из этих напряжений не будет, плата не запустится, по этому, проверяем каждую систему питания, начиная от +1.8V, заканчивая +12VS.
10 Питание процессора
11 Включение тактового генератора
12 Завершающий сигнал готовности питания (PWROK).
Если этот сигнал присутствует, и логика EC исправна, то это значит, что все напряжения на плате должны быть включены.
Если возникли проблемы с этими сигналами, то проверяем работоспособность северного и южного моста.
Проверка мостов это тема, заслуживающая отдельной статьи. Но в вкратце можно сказать, что необходимо проверять сопротивления по всем линиям питания этих мостов, и при отклонении от нормы мосты нужно менять. Так же обычная диодная прозвонка сигнальных линий может определить неисправный мост, но из-за того что эти сложные микросхемы припаяны по технологии BGA, добраться до выводов практически невозможно. Эти выводы не всегда приходят на элементы, которые легко достать щупом тестера. Поэтому, существует более удобный способ добраться до выводов, это вспомогательные диагностические платы, которые вставляются в разъемы, идущие прямо к выводам мостов. Например, диагностическая плата для проверки северного моста и каналов памяти.
14 Завершающий этап последовательности запуска
После завершения последовательности начинается выполнение инструкций BIOS.
Давайте делиться алгоритмом вывления неисправностей на ноутбуках и стационарных. а имеено последовательность диагностики и какие узды проверять при определенном поведении техники.
Не включается ноутбук
1. Проверяем дежурное напряжени там то там то и т/д
2.
Какие основные сигналы и за что отвечают.
т/к начинающему ремонтнику очень сложно в одиночку со всем этим разобраться.
На форумах имеется по канкретным моделям и не в полной мере. но общего нету.
P.S. алгоритм имеено касаемый схемотехники а не блочного ремонта.
Поправь правописание и можно начинать!
Для затравки:
Если КЗ по входу и гасит БП действуем так:
- проверяем где именно КЗ, совсем на входе или по B+ (общее питание)
- если по B+ есть, первым делом проверить КЗ по верхним ключам всех преобразователей вторичных напряжений начиная с дежурных
- если там КЗ нет, то можно подключать ЛБП на выжигание
Можно про метод выжигания поподробнее. Как понимаю по линии к примеру с питанием 5в подключаем ЛБП и понемногу добавляем напругу который будет адски калиться или прогорит тот и был не желец. Только вот опасение что можно пожеч как контактные площадки когда тот же транзюк пыхнет так и другие элементы по данной цепи питания
Какой ЛбП рекомендуете от . до . вольт и ампеража
Блок универсальный 30В 5А с ограничением по току и без защиты от КЗ , защита только по перегрузке.
Мне никаких дорожек выжигать не удавалось никогда. А если руки из ж. то никакие советы не помогут
Я тоже пишу с англоязычной.. мне ничего не мешает.
Понемногу увеличиваем силу тока а не напругу, если это допустим 1.2в куда Вы там будете повышать?
30в 5а дороговат был для меня, взял 19в 3а вполне хватает, правда пришлось нахлобучить вентилятор на него, т.к. иногда нужно довольно долго ждать разогрева, а блок греется быстрее :)
Чтобы ничего не пожечь - нужно понимать куда ты подаёшь ток.
Насчёт того какие сигналы нужны, и в какой последовательности - скачайте схему на какой-нибудь лаптоп от самсунга, там есть страничка где показана очерёдность возникновения сигналов, и условия для их возникновения. Очень позновательно скажу я Вам. Пример в аттаче..
Диагностика материнской платы ноутбука
Диагностика материнской платы ноутбукаДля диагностики неисправности материнской платы ноутбука нужно знать последовательность ее включения.
Последовательность включения ноутбука
При включении ноутбука дежурное напряжение через кнопку подается на мультиконтроллер , который запускает все контроллеры ШИМ, вырабатывающие все напряжения (их много), и, при нормальном исходе, вырабатывают сигнал PowerGood. По этому сигналу снимается сигнал resetс процессора и он начинает выполнять программный код, записанный в BIOS с адресом ffff 0000.
Затем BIOSзапускает POST (PowerOnSelfTest), который выполняет обнаружение и самотестирование системы. Во время самотестирования обнаруживается и инициализируется видеочип, включается подсветка, определяется тип процессора. Из данных BIOS определяется его тактовая частота, множитель, настройки. Затем определяется тип памяти, ее объем, проводится ее тестирование. После этого происходит обнаружение, инициализация и проверка подключенных накопителей – привода, жесткого диска, картридера, флоппи дисковода и др., а после проверка и тестирование дополнительных устройств.
После завершения POST управление передается загрузчику операционной системы на жестком диске, который и загружает ее ядро.
Приводим схему последовательности включения ноутбука
Схема последовательности включения ноутбука
Алгоритм проверки
проверка напряжений питания согласно datasheet;
проверка PowerGood и сигнала запуска;
контроль опроса BIOS;
диагностика загрузки по посткарте, показывающий на каком этапе прекращается загрузка.
Рассматриваем 2 варианта:
1. Питание не появляется, светодиод питания не горит.
ite-microcontrollerИщем неисправность в схеме управления питанием. Проверяем Мультиконтроллер — микросхему, управляющую схемами ШИМ, формирования напряжений. Также в нем встроены контроллеры периферии (клавиатуры, мыши, температуры, вентилятора, аккуиулятора, тачпэда и др.). Иногда в мультиконтроллер входит контроллер USB. Часто это микросхема ITE. На мультиконтроллер подается напряжение питания непосредственно с адаптера (обычно 19В), а дальше передается на другие устройства. Таким образом контроллер управляет процессом включения в ноутбуке.
За распределение питания может отвечать и схема коммутации питания (например, может быть чип MAXIM). Она отвечает за переключение питания с внешнего адаптера на питание от батареи, контролирует зарядку и др.
В некоторых случаях слетает прошивка микроконтроллера. В этом случае ноутбук не запускается, хотя все напряжения присутствуют и нужные сигналы подаются.
2. Питание есть, светодиод питания горит, но ноутбук не включается, экран темный. Индикатор жесткого диска сначала включается и гаснет, затем не горит.
Разбираем ноутбук, прогреваем микросхемы чипсета по-очереди. После каждого прогрева пробуем на включение. Если ноутбук включается, то виноват конкретный чип. Очень важна предыстория поломки — например, если до поломки перестали работать USB порты, то скорее всего вышел из строя Южный мост. Если были артефакты на встроенном видео, то виноват Северный мост.
Зачастую диагностика неисправности материнской платы ноутбука осложняется тем,что в схеме нет последовательности запуска (Power Up Sequence).
В данной статье возьму за пример схему от ноутбука Lenovo ThinkPad Edge 14 LD-Note Calpella Discrete.
Как видим в этой схеме отсутствует последовательность запуска,что значительно осложняет представление о том, в какой момент тот или иной сигнал/напряжение должно появится.В этом случае можно найти схему от ближайшей модели в которой есть интересующая нас последовательность запуска и опираясь на неё провести диагностику.
Для этого я возьму схему от Lenovo Thinkpad E40 LD-Note AMD DIS.
Итак,в схеме от LD-Note AMD DIS на странице 52 видим представленную в виде блок-схемы последовательность запуска.Давайте разберём что здесь к чему.
Последовательность запуска материнской платы ноутбука
В красных кружках подписаны цифры от 1 до 30 что и является количеством шагов до полного запуска платы.
Я распишу каждый из данных шагов и представлю их на схеме от Lenovo ThinkPad Edge 14 LD-Note Calpella Discrete где у нас последовательность запуска отсутствет.
Первый шаг это входные напряжение блок питания(БП) и/или батарея(АКБ).1a и 1b это напряжение от которого будет запитана плата.В зависимости от подключенного источника питания Charger(контроллер заряда) открывает входные ключи,например если плата запитана от БП(1a),то Charger выберет 1AC и откроет входной ключ PQ75(Lenovo Thinkpad E40),на схеме Lenovo ThinkPad Edge 14 это PQ54,тем самым пропуская напряжение с БП на общую шину питания VIN.При питании только от батареи выбор Chargerа 1BAT и он открывает PQ74(Lenovo Thinkpad E40),на схеме Lenovo ThinkPad Edge 14 это PQ3,тем самым так же пропуская напряжение с АКБ на общую шину питания VIN.На рисунке 1 показан участок схемы где 19V с БП попадают на шину VIN.
Последовательность запуска материнской платы ноутбука
Давайте разберёмся как это происходит.Сперва нужно разобраться с названиями ножек самого транзистора и его структуры.На большинство транзисторов в интернете есть документация.В нашем случае в схеме указано что это TPCA8109.На первой странице даташита на него,указано что это P-канальный транзистор.
Как известно P-канальные транзисторы открываются в том случае если на его затвор(GATE)подать отрицательное напряжение.
На рисунке 1.1 я обозначил где у него находится ключ(первая ножка),на самом транзисторе так же ключ обозначается точкой в углу.На этом же рисунке снизу указана распиновка ножек:
1,2,3 - SOURCE(Исток)
4 - GATE(Затвор)
5,6,7,8 - DRAIN(Сток)
Последовательность запуска материнской платы ноутбука
Итак,мы разобрались с типом транзистора и его распиновкой.Теперь перейдём к схеме.
Сначала рассмотрим вариант при питании от БП и АКБ.
На рисунке 2 мы видим PQ54,(хотя в схеме он и находится в перевёрнутом виде,это не столь важно так как в открытом виде напряжение через себя он все равно пропускает).
Последовательность запуска материнской платы ноутбука
Для того чтобы он открылся нужно что бы на затворе(GATE)появился 0(за счёт этого PQ54 откроется,чтобы там появился 0,транзистор PQ56 должен быть открыт,таким образом подтягивая напряжение на затворе к земле и открывая PQ54.PQ56 это N-канальный транзистор и открывается положительным напряжением на затворе,в данном случае это сигнал ACOK,когда он появится на затворе PQ56,тот в свою очередь откроется и подтянет к земле 19V на затворе PQ54,таким образом открывая его и пропуская 19V на плату.Сигнал ACOK выходит с Chargera и равен напряжению от 3 до 5 вольт.Транзистор PQ3 при этом должен быть закрыт,так как через него шина VIN запитывается от АКБ.Для того чтобы PQ3 был закрыт на его затворе должно быть напряжение БП 19V.Что бы оно там появилось транзистор PQ6 так же должен быть открыт.Таким образом он пропустит через себя напряжение БП,его выход подключен к затвору PQ3,таким образом на затворе PQ3 появляется напряжение БП не давая ему открыться.При питании только от БП всё должно происходить так же.
Итак,на
Читайте также: