Радиатор сво для компьютера что это
Привет Пикабу! Не все помнят времена, когда процессоры и видеокарты требовали в худшем случае простого радиатора, а про корпусные вентиляторы и системы водяного охлаждения никто и не слышал. Но все изменилось: современные процессоры и видеокарты могут потреблять под нагрузкой сотни ватт, так что уже никого не удивишь трехсекционными СВО, килограммовыми суперкулерами и парой-тройкой корпусных вертушек. Однако с прогрессом в области охлаждения ПК также прогрессировали и мифы, и сегодня мы о них поговорим.
Как всегда - текстовая версия под видео.
Миф №1. Чем производительнее охлаждение, тем ниже будет температура процессора.
Казалось бы, все верно: более крутое охлаждение способно отвести больше тепла от крышки процессора, значит его итоговая температура будет ниже. Однако тут ключевой момент — от крышки, а не от кристалла. А ведь между ними есть слой термоинтерфейса, да и зачастую сам кристалл достаточно толстый.
К чему это приводит? Да все к тому, что начиная с определенного тепловыделения процессора уже без разницы, чем вы его будете охлаждать: все упрется в временами не самый качественный термоинтерфейс под крышкой. За примерами ходить далеко не нужно: скальпирование Core i7-8700K и замена терможвачки под крышкой на жидкий металл снизит температуру под нагрузкой как минимум на десяток градусов. Более того — дополнительная шлифовка кристалла топового Core i9-9900K также способна убрать пару градусов.
Миф №2. Кулер нужно выбирать по TDP процессора
Многие производители кулеров и СВО пишут в характеристиках своего изделия, сколько ватт тепла оно может отвести. Аналогично, Intel и AMD пишут тепловыделение своих процессоров. Поэтому может показаться, что если вторая цифра меньше первой, то такое охлаждение вам подойдет.
Увы — тут есть сразу два заблуждения. Во-первых, реальное тепловыделение процессоров под нагрузкой и тем более разгоном зачастую куда выше, чем пишет производитель. Например, номинальный теплопакет Ryzen 9 3900X — 105 Вт, однако на деле он может потреблять почти в два раза больше, около 180-200 Вт. И если сотню ватт способны отвести даже не самые большие башни, то вот 200 Вт требует уже килограммовых суперкулеров или достаточно продвинутых СВО.
Intel тоже принимает в качестве значения TDP уровень энергопотребления при работе на базовой частоте.
Как же тогда узнать, подойдет вам определенный кулер или нет? Ответ прост — читайте его обзоры и смотрите, на каких тестовых системах его проверяют, после чего делайте логические выводы: к примеру, если кулер справился с Core i7-8700K, то и с более простым Core i5-8600K проблем не будет. И, с другой стороны, если с Ryzen 7 3800X у кулера проблемы, то брать его в пару к Ryzen 9 точно не стоит.
Миф №3. Для игровых ПК обязательно нужна СВО.
Как выглядит навороченный игровой компьютер? Правильно, масса вентиляторов с RGB подсветкой и обязательно система водяного охлаждения, куда же без нее. Однако на деле для подавляющего большинства ПК она просто не нужна.
Как итог — оставьте СВО для рабочих станций, где трудятся монструозные процессоры с парой-тройкой десятков ядер и тепловыделением под три сотни ватт. Собирая систему на домашних сокетах LGA1151 или AM4, переплачивать за водянку смысла нет.
Миф №4. Боксовые кулеры абсолютно не эффективны и их обязательно нужно менять.
В общем и целом, у большинства пользователей сложилось не самое лучшее впечатление о боксовых кулерах: дескать, они не эффективны и не справляются с процессорами, с которыми они идут в комплекте. Однако на деле это совсем не так.
Разумеется, небольшой алюминиевый радиатор с кусочком меди, не справится с Core i9 в разгоне. Но, к примеру, стоковый кулер вполне себе может удерживать температуры 6-ядерного Core i5-8400 в играх на уровне 60-75 градусов — и это при критичных температурах около сотни градусов. Еще лучше дела обстоят с боксовыми кулерами для Ryzen, которых существуют аж три версии.
Так, AMD Wraith Stealth, который поставляется с 4-ядерными Ryzen, вполне справляется с ними даже при небольшом разгоне процессора. А, например, AMD Wraith Prism, который поставляется вместе с Ryzen 7, вообще имеет 4 теплотрубки и показывает себя на уровне башенок за 1000-1500 рублей. Так что не стоит считать боксовые кулеры плохими — если вы не балуетесь разгоном и не нагружаете CPU чем-то сильнее игр, их возможностей вам вполне может хватить.
Миф №5. Жидкий металл всегда эффективнее термопасты
Жидкий металл отличается от термпопаст тем, что у него в разы выше коэффициент теплопроводности, из-за чего, в теории, температуры с ним должны быть ощутимо ниже. Однако на деле это далеко не всегда так. Например, если вы будете использовать вместо хорошей термопасты на крышке процессора жидкий металл, то вы снизите температуру… от силы на 2-3 градуса, а вот если под крышкой (то есть проведете скальпирование), то временами на 15-20 градусов.
Почему так? Все просто: площадь кристалла процессора на порядок меньше площади крышки, соответственно тепловой поток между крышкой и кристаллом оказывается огромным. Поэтому теплопроводности термопасты в этом случае не хватает, и выигрыш от перехода на жидкий металл становится ощутимым. А вот между крышкой процессора и подошвой кулера пятно контакта огромно, и тут уже хватает теплопроводности большинства термопаст, так что тратить жидкий металл тут не стоит.
Миф №6. Использование двух вентиляторов на одном радиаторе кулера существенно снизит температуру процессора.
В последнее время стали достаточно распространены процессорные кулеры с двумя и даже тремя вентиляторами, и, казалось бы, они должны эффективнее гонять воздух и тем самым лучше охлаждать ЦП. На деле все как обычно не так хорошо, как хотелось бы.
Миф №7. Расположение в корпусе блока питания никак не влияет на температуру его компонентов.
Большинство относительно дорогих корпусов не просто так имеют место под блок питания в нижней части корпуса — в таком случае его вентилятор захватывает холодный наружный воздух. В более простых корпусах блок питания вынужден брать теплый воздух внутри корпуса, что разумеется негативно повлияет на температуры внутри него.
А с учетом того, что обычно в простых сборках используют вместе с не самыми дорогими корпусами и не самые лучшие блоки питания — не нужно мешать последним нормально работать, стоит доплатить буквально несколько сотен рублей и взять корпус нижним расположением БП.
Миф №8. SSD не требуют радиаторов.
Небольшие M.2 накопители становятся все популярнее: они зачастую в разы быстрее обычных SATA SSD, а вот цены на них постоянно снижаются. Однако стоит понимать, что высокие скорости просто так не даются: производители таких накопителей используют мощные многоядерные контроллеры, теплопакет которых составляет единицы ватт.
Как итог, при работе они могут достаточно существенно греться и достигать критических температур, после чего наступает троттлинг и снижение производительности — в общем, все как у обычных процессоров или видеокарт. Так что если вы купили себе дорогой и быстрый Samsung 960 EVO — докупите к нему радиатор на AliExrpess, если такового нет на материнской плате, это позволит ему работать быстрее при большой нагрузке.
Мощные видеокарты всегда стоили дорого, а сейчас, с еще большим ослаблением рубля, цены точно не уменьшатся. Как итог, появляется желание сэкономить и взять видеокарту подешевле, и обычно в данном случае покупают референсные версии, которые максимально дешевые.
Однако зачастую быстро приходит понимание того факта, что охлаждение таких GPU или сильно шумит, или недостаточно эффективно и не позволяет толком разогнать видеокарту. Казалось бы, выхода тут нет: зачастую снизить шум можно только урезав видеокарте теплопакет, что снизит производительность, а для более-менее существенного разгона придется пускать вертушки на 100% оборотов, и играть в таком случае получится только в наушниках.
И не все знают, что выход из этой ситуации есть, и он достаточно прост — а именно можно отдельно купить кастомную систему охлаждения.
Она способная остудить даже горячую GTX 1080 Ti, причем стоит зачастую дешевле, чем разница между референсом и версией видеокарты от стороннего производителя с хорошим охлаждением.
Более того, в продаже встречаются и водоблоки для топовых RTX и AMD RX — такие решения не просто уберут все проблемы с нагревом, но и еще позволят неслабо разогнать видеокарту. В итоге, как видите, референская видеокарта — не приговор, ее почти всегда можно превратить в топовое решение за сравнительно небольшие деньги.
Как видите, мифов про охлаждение компонентов ПК хватает. Знаете какие-нибудь еще? Пишите об этом в комментариях.
Качественное охлаждение процессора является непременным условием его стабильной работы. Одним из лучших технических решений для охлаждения процессора являются системы жидкостного охлаждения (СЖО).
Как таковые СЖО начали производиться одновременно с появлением возможности разгонять процессоры. Сильное тепловыделение «кристаллов» превышало потенциал воздушных кулеров, энтузиасты стали мастерить самодельные СЖО. В обычном магазине ее было не так просто найти. Но, к счастью, производители систем охлаждения осознали потребности рынка, и освоили производство необслуживаемых СЖО, что послужило приобщению к жидкостному охлаждению широкой массы пользователей ПК.
Почему эффективность СЖО выше, чем у воздушного кулера
Эффективность СЖО достигается за счет того, что скорость теплоотвода с помощью движущегося жидкого теплоносителя намного выше, чем скорость естественного теплоотвода с помощью теплопередачи внутри металлического радиатора.
Скорость отвода тепла зависит не только от скорости движения жидкости, но и от теплоемкости жидкости, площади радиатора. В среднем СЖО обеспечивают примерно в три раза лучший теплосъем по сравнению с обычным воздушным охлаждением, в переводе на градусы это означает падение температуры на 15–25 градусов по сравнению с воздушным охлаждением при нормальной комнатной температуре.
Конструкция СЖО
Любая замкнутая система жидкостного охлаждения содержит следующие элементы:
Его назначение — эффективно снимать тепло с процессора и передавать его протекающей воде. Соответственно, чем выше теплопроводность материала, из которого изготовлены подошва и теплообменник водоблока, тем выше и эффективность этого элемента. Но теплопередача также зависит и от площади соприкосновения теплоносителя и радиатора — поэтому конструкция водоблока важна ничуть не меньше материала.
У необслуживаемых маломощных систем помпа обычно совмещена с водоблоком и располагается над ним. Функция помпы — обеспечить циркуляцию теплоносителя с такой скоростью, чтобы перепад температур между теплообменником водоблока и жидкостью был максимальным. Современные производители используют поверхность помпы в разных целях. Там может быть просто светящийся логотип, а может быть полноценный дисплей, отображающий температуру процессора, скорость вентилятора, или другие данные.
Назначение радиатора — рассеивать тепло, приносимое теплоносителем. Соответственно, он должен быть изготовлен из материала с высокой теплопроводностью, обладать большой площадью и быть укомплектован мощным вентилятором (вентиляторами). Если площадь радиатора СЖО сравнима с площадью радиатора процессорного кулера и вентилятор на ней установлен ничуть не мощнее, то не стоит ожидать от такой СЖО эффективности, превышающей эффективность того же кулера.
Соединительные трубки должны быть достаточной толщины, чтобы не создавать большого сопротивления водяному потоку. По этой причине обычно используются трубки диаметром от 6 до 13 мм — в зависимости от скорости потока жидкости. В качестве материала трубок обычно используется ПВХ или силикон. Лучше, если трубки имеют оплетку, защищающую их от повреждения.
Подсветка и мониторинг
Подсветка
Большинство необслуживаемых СЖО сейчас имеют в комплекте поставки вентиляторы с подсветкой. У бюджетных систем вентилятор может светиться одним цветом, в более дорогих системах установлены «ветродуйки», способные передать всю палитру цветов. Система с RGB встроится в единую систему подсветки компьютера и будет менять цвета синхронно с остальными компонентами, например материнской платой, оперативной памятью, видеокартой. В зависимости от типа подсветки, для питания используются разные виды коннекторов, что очень важно учитывать при выборе, так как некоторые из них могут быть несовместимы с материнской платой.
Одноцветная LED-подсветка может поддерживать только один зафиксированный цвет. В данном случае нельзя изменить цвета на другой или изменить режим частоты подсветки. Такая подсветка питается от того же коннектора что и мотор вентилятора или помпы. Это может быть 3-pin или 4-pin PWM или Molex разъемы. Встречаются так же комбинированные варианты.
F-RGB (Фиксированная многоцветная подсветка) может поддерживать сразу несколько цветов но в зафиксированном виде. В данном случае нельзя изменить ни цвет, ни режим частоты подсветки. Такая подсветка питается так же как и обычная одноцветная, через -pin или 4-pin PWM или Molex разъемы.
RGB-подсветка поддерживает весь спектр основных цветов радуги за исключением того, что в каждый момент времени устройство поддерживает только 1 цвет: белый, красный, желтый, зеленый, синий и фиолетовый (а также полное отключение подсветки, т.е. черный цвет). Кроме того, имеется возможность изменения режимов частоты работы подсветки, что поможет выбрать более подходящий для вас тип освещения. В такую подсветку встроены светодиоды 12v, которые контролируются специальными микросхемами в хабе или в материнской плате. Подсветка работает за счет распределения питания диодов по отдельным каналам: вентиляторы подключаются отдельно, а RGB-система — с помощью специального кабеля — к контроллеру. Питание такой подсветки подключается через разъемы 4pin 12V или 6-pin.
A-RGB-подсветка (Adressable RGB) — это более новая и более продвинутая версия RGB-подсветки. Ее основное отличие — возможность распределения цветовых сигналов между диодами раздельно, за счет того, что используется диоды 5V вместо 12V. Такая подсветка дает ультимативные возможности по ее настройке. Управление происходит с помощью программного обеспечения совместимого с вашей материнской платой, либо через ПДУ. A-RGB подсветка питается через коннектор 3pin 5v, вместо 4pin 12v.
НИКОГДА не пытайтесь подключить RGB-устройство к 3pin разъему, так как это почти мгновенно повредит материнскую плату. Обратной совместимости между 3pin 5v и 4pin 12v НЕ СУЩЕСТВУЕТ.
ARGB-подсветка позволяет выстраивать более сложные цветовые схемы благодаря наличию большего количества оттенков и возможности их чередования — начиная от обычной радуги, и заканчивая чередованием нескольких цветов одновременно.
Если вдруг у вашей материнской платы не предусмотрен контроль подсветки, то у многих моделей есть собственный независимый пульт, который «курирует» скорость, режимы и цвет. Ниже представлены типы разъемов в зависимости от производителя.
Современные СЖО поддерживают все самые популярные стандарты синхронизации подсветки, среди них можно выделить: ASUS AURA SYNC, GIGABYTE RGB FUSION, MSI Mystic Light Sync, ASRock Polychrome RGB, BIOSTAR RGB SYNC.
Дисплей
Для дополнительного мониторинга прямо на водоблок устанавливаются OLED-дисплеи. Например, дисплеи LiveDash у СЖО ASUS, которые позволяют выводить параметры температуры процессора, напряжения, скорости вращения вентиляторов, частоты и так далее.
Система подключается через внутренний порт USB на материнской плате и управляется специальным программным обеспечением.
Удобным и эффективным этот способо контроля можно назвать, только если системный блок стоит на столе и у него имеется прозрачная стенка.
Характеристики СЖО и варианты выбора
Обслуживаемая СЖО является выбором энтузиастов. Такие системы всегда дороже необслуживаемых, сложны в сборке и установке, а также после установки нет гарантии отсутствия протечек.
Следующим параметром, на который следует обратить внимание при выборе СЖО — это типоразмер радиатора. Радиаторы изготавливают под размер, кратный числу установленных вентиляторв. Вам нужно заранее определиться с тем, радиатор какого размера сможет уместиться в корпусе.
На сегодняшний день в продаже имеется несколько типоразмеров радиаторов:
В процессе эксплуатации СЖО необходимо регулярно прочищать радиатор от пыли, иначе эффективность охлаждения резко снизится. Еще очень важно, чтобы водоблок на процессоре располагался ниже верхнего уровня шлангов. Это нужно для того, чтобы имеющийся небольшой пузырек воздуха, оставляемый для компенсации расширения жидкости, внутри системы не попал в водоблок.
Количество подключаемых вентиляторов не оказывает прямое влияние на эффективность СЖО, но чем их больше, тем можно сделать ниже скорость вращения каждого отдельного вентилятора при сохранении общего воздушного потока, и, соответственно, снизить шумность при поддержании эффективности.
Минимальный уровень шума выше 40 дБ уже может восприниматься как некомфортный (40 дБ соответствует обычному звуковому фону в жилом помещении — негромкая музыка, спокойный разговор). Чтобы шум вентиляторов не мешал сну, он не должен превышать 30 дБ.
Регулировка скорости вращения вентиляторов может быть ручной и автоматической. Ручная регулировка позволяет менять скорость вращения вентиляторов в соответствии с личными предпочтениями, автоматическая же подстраивает скорость под текущую температуру процессора и обеспечивает лучшие условия работы оборудования.
Защита от протечек представляет собой емкость, которая отвечает за регулировку давления в замкнутом контуре. Емкость выполнена из эластичного материала. При избыточном давлении стенки емкости растягиваются, благодаря чему увеличивается фактический объем контура.
Тип коннектора питания вентилятора и помпы. У простых СЖО с вентиляторами без подсветки используется 2 коннектора – для помпы и для вентилятора. Если вентиляторы имеют подсветку, то добавляется еще третий коннектор для управления подсветкой и синхронизации смены цветов. Сегодня на рынке встречаются четыре типа коннектора питания помпы: 3-pin, 4-pin, SATA 15 pin и Molex.
3-pin коннектор на старых материнских платах не позволяет изменять скорость вращения вентилятора, но все новые материнские платы способны менять напряжение на таких коннекторах, меняя тем самым скорость.
Если ваша материнская плата не может управлять скоростью вращения 3-pin вентилятора, то кулеры и двигатель помпы СЖО с 3-pin коннектором питания будут всегда вращаться на максимальной скорости. Для изменения степени охлаждения придется дополнительно покупать «реобас».
4-pin коннектор предполагает управление скоростью вращения двигателей с помощью широтно-импульсной модуляции (ШИМ). При этом питание подается полное — 12 вольт, но не постоянно, а импульсами, меняя продолжительность которых можно очень точно задавать частоту вращения двигателей. Кроме того, при таком способе нет ограничения на минимальную скорость вращения — регулируемый таким способом двигатель может вращаться даже со скоростью 1 об/мин. Единственный недостаток такого способа — он сложнее в реализации, а, следовательно, — дороже, но не намного. Также, при использовании этого типа коннектора можно через программы мониторинга узнавать текущую скорость вращения вентиляторов. Примеры СЖО с питанием 4-pin можно увидеть здесь.
Коннекторы питания SATA 15 pin и MOLEX подойдут тем, у кого заняты все свободные 3- и 4-pin коннекторы материнской платы. Но в этом случае можно воспользоваться разветвителем питания вентиляторов. Примеры СЖО с питанием SATA.
Коннекторы типа MOLEX — это старейший вид компьютерного разъема питания, появившийся в начале 1960-х годов. Примеры СЖО с питанием MOLEX.
При выборе СЖО обязательно следует проверить ее совместимость с процессорным разъемом (сокет) вашей материнской платы.
Чаще всего современные СЖО поддерживают широкий набор процессорных разъемов, вплоть до старых, образца 2011 года (LGA 775). Типичный набор поддерживаемых сокетов состоит из AM4, LGA 1151, LGA 2066, TR4, LGA 1151-v2, sTRX4, LGA 1200, FM2+, LGA 1156, AM3, LGA 1155, AM3+, LGA 775, LGA 1366, AM2+, AM2, FM1, LGA 2011, FM2, LGA 1150.
Крепление водоблока к материнской плате производится через отверстия для системы охлаждения в материнской плате. С обратной стороны крепится усиливающая пластина, а с лицевой стороны водоблок прижимается другой пластиной, они обе стягиваются через материнскую плату винтами, идущими в комплекте поставки СЖО.
Актуальными разъемами на сегодняшний день являются AMD AM4 и Intel LGA1200.
Еще одним немаловажным параметром является тепловыделение процессора. Узнать значение TDP вашего процессора можно в разделе процессоров на сайте DNS, в расширенных фильтрах, характеристика «Тепловыделение (TDP)» или на официальном сайте производителя, и в соответствии с этим значением нужно подобрать СЖО. Здесь есть прямая зависимость между TDP и ценой — чем больше тепла может отвести СЖО, тем она дороже.
Привет Пикабу! СВО или системы водяного охлаждения, которые раньше были инструментами скорее для гиков, теперь доступны любому человеку — однако есть ли смысл ставить их в домашний ПК? Давайте разберемся. Как всегда, текстовая версия - под видео.
Минутка физики: водянки и кулеры работают одинаково. Ну, почти
Не все знают, но внутри обычной медной теплотрубки залита… жидкость, обычно — вода. Из-за пониженного давления она кипит при более низкой температуре, к тому же имеет высокую теплоемкость — короче говоря, это эффективный и дешевый теплоноситель. Разогреваясь и испаряясь рядом с горячей крышкой процессора, она переносится к более холодному радиатору, где конденсируется и вновь по специальному фитилю стекает к CPU, после чего цикл повторяется.
В СВО, очевидно, также используется жидкость, однако работает она чуть иначе: течет она не самостоятельно, а под действием помпы, и не испаряется, а просто нагревается у процессора и охлаждается у радиатора. Так что, как видите, на деле обычное воздушное охлаждение не такое уж и воздушное, оно действительно достаточно близко к водянкам.
Краткий экскурс в физику закончен, пора переходить непосредственно к компьютерам.
Водянка в игровых ПК — красиво, но абсолютно бесполезно
Никто не спорит, водянка зачастую смотрится внутри корпуса куда красивее, чем большая башня. К тому же маркетологи специально упирают на топовость — дескать, ты купил мощный CPU и видеокарту, крутую память и материнку. Очевидно, нужен классный охлад — то есть водянка.
Однако есть одно важное но: игры, даже самые тяжелые и процессорозависимые, типа Watch Dogs 2 или Assassin's Creed Odyssey, просто не могут нагрузить процессор также, как бенчмарки или рабочие задачи. Знаете, сколько ест в играх горячий Core i9-9900K в разгоне до 5 ГГц? Всего около 70-90 Вт. Это в два раза меньше, чем в бенчмарках. Такое количество тепла абсолютно без проблем отведет любая популярная башня за полторы тысячи рублей.
Но вы можете сказать — под водянкой в играх можно добиться 40-50 градусов, когда лучшие суперкулеры скорее всего смогут охладить топовые CPU лишь до 60-70. Да, тут все верно, СВО действительно снизит температуру процессора в играх. А зачем? Что это дает? Позволит повысить частоты? Да нет, вы раньше упретесь в возможности самого CPU. Увеличит срок жизни? Ну да, проживет кристалл не 30 лет, а 20 — действительно большая разница.
А что по шуму? Водянки всегда считаются более тихими, но так ли это на деле? Скорее нет, чем да. Проблема тут в том, что радиаторы СВО более плотные, чем у воздушных кулеров, поэтому чтобы продуть их нужны мощные высокооборотистые вентиляторы с большим давлением. А такие вентиляторы серьезно шумят.
За примерами далеко ходить не нужно — возьмем, достаточно крутую двухсекционную СВО NZXT Kraken X62 с двумя родными 140 мм вентиляторами и сравним с суперкулером Phanteks PH-TC14PE с такими же вертушками, который вдвое дешевле. Эффективность этих двух решений сравнима, а вот шум… Раскочегарив вентиляторы водянки на максимум, можно получить аж 61 дБ. С таким уровнем шума поработать получится только в наушниках. При этом у Phanteks все куда лучше — 49 дБ можно сравнить с урчанием холодильника, и такой шум сложно назвать громким или отвлекающим.
СВО не поможет в охлаждении новейших десктопных процессоров от Intel и AMD
Вот и получается забавная и грустная картина одновременно: ваш суперкулер или водянка в теории могут отвести 200-250 Вт, а на практике из-за экономии Intel ваш процессор, потребляя 150 Вт, уже перегревается. Конечно, как я уже сказал, вполне можно скапануть процессор — однако согласитесь ли вы это делать с вашим рабочим CPU, тем самым теряя гарантию и рискуя его повредить? Далеко не факт. А без этого СВО будет бесполезна с тем же Core i9-9900K.
В случае с Ryzen 3000 ситуация интереснее. С одной стороны, AMD использует качественный припой: его замена на жидкий металл в лучшем случае подарит вам пару градусов, так что игра свеч не стоит. Но вот сами кристаллы с ядрами маленькие, более того — у топовых CPU их две штуки и они рядом, ну и к тому же они расположены с краю, когда обычно лучший прижим и охлаждение что суперкулеры, что водянки обеспечивают в центре.
Все это и приводит к тому, что Noctua NH-U14S, способный удерживать температуру 100-ваттного Ryzen 7 2700X в жестком Prime95 на уровне 75 градусов, с трудом справляется с таким же 100-ваттным Ryzen 7 3700X, удерживая температуру последнего чуть выше 90 градусов. Так что, очевидно, попытка заменить кулер на водянку тут ничего не даст — в высоких температурах виновато не качество воздушного охлаждения, а внутренние особенности самих Ryzen 3000.
Получается, водянки не нужны?
Конечно нет. Они все еще нужны там, где и раньше — в топовых рабочих станциях. Взять, например, тот же AMD Threadripper 3990X. 64 ядра, 128 потоков, теплопакет в 280 Вт — однако на деле он потребляет все 350. При этом у него 8 процессорных кристаллов, и каждый из них греется не очень сильно из-за не самых высоких частот, то есть таких проблем как у Ryzen 3000 нет.
А что насчет видеокарт?
Тут все интереснее. Во-первых, видеокарты Nvidia имеют умный драйвер, который слегка повышает частоту при снижении температуры. Правда, разница едва ли превысит полсотни мегагерц, что даст в лучшем случае пару fps, так что отдавать за это лишние 15-20 тысяч рублей за водоблок явно не стоит.
Во-вторых, есть видеокарты, тепловыделение которых из коробки улетает в небеса. Взять ту же AMD Radeon RX Vega 64 Liquid Cooled — ее тепловыделение в Crysis 3 достигает аж 370 Вт. При разгоне — свыше 450 Вт! Очевидно, тут даже массивная воздушная система охлаждения с тремя вентиляторами скорее всего не справится, а вот СВО — вполне.
Думаете, что у Nvidia меньше? Как бы не так. Взять например ASUS RTX 2080 Ti Matrix. Ее официальный BIOS позволяет поднять TDP до 360 Вт. Более того, для GTX 1080 Ti существуют полностью разлоченные BIOS, с которыми тепловыделение уходит за 400 Вт. Разумеется, отвести такое количество тепла сможет лишь качественная СВО.
Но, опять же, стоит понимать, что такие заоблачные TDP имеют лишь топовые видеокарты и то под серьезным разгоном. У большинства среднеуровневых Nvidia GTX 1600 или AMD RX 5000 тепловыделение находится на уровне 150-200 Вт, и с этим вполне справится воздушное охлаждение с парой вентиляторов. Тратить деньги на СВО в случае нетоповых видеокарт просто нет смысла — будет выгоднее купить более мощную видеокарту, чем пытаться выжать все соки из более слабой.
Перейдем к минусам — водянки требуют обслуживания
Чем хороши кулеры? Они требуют минимум обслуживания — достаточно раз в год продувать их от пыли и он верой и правдой прослужит вам много лет. Самое худшее, что может случиться — это перестанет работать вентилятор, однако с учетом того, что практически всегда они все имеют стандартные размеры, его можно легко заменить.
Что касается водянок, то тут целый букет возможных проблем. Самая банальная — это протечка. Да, с современными СВО это редкость, но все же на различных форумах можно встретить посты с душераздирающими историями о том, как протекшая водянка убила все ниже по течению, а это обычно не самая дешевая видеокарта и блок питания.
Вторая и куда более массовая проблема — заиливание. Как говорится, вода камень точит, а уж пластик трубок тем более. Ситуация еще усугубляется, если вода подкрашена. Как итог — кто-то через год, кто-то позже, но все же достаточное количество людей сталкиваются с тем, что в лучшем случае вырастают температуры CPU, а в худшем забитая жижей помпа просто перестает работать.
И приходится разбирать всю систему, чистить радиатор и помпу, после чего заливать новую воду. А ведь далеко не все СВО разборные — хватает и необслуживаемых. Их в таком случае, если кончилась гарантия, можно смело нести в мусор.
Ну и третья проблема — умирает помпа. Это бывает и из-за жижи, и просто потому что это механика. Да, у современных помп время наработки на отказ зачастую составляет десятки тысяч часов, но так везет далеко не всем. Опять же, помпа меняется не везде — обычно только в кастомных СВО.
Конечно, стоит понимать, что возможно вам повезет, и у вас водянка проработает 5 лет без проблем. Но подумайте над тем, что будет, если вам не повезет — особенно если учесть, что у воздушного охлаждения вышеуказанных проблем нет вообще.
Выводы — водянка в домашнем компьютере не нужна
Подведем итоги. Водянки не помогают в разгоне современных CPU. Водянки не тихие. Водянки дорогие. Вопрос — а зачем их брать в обычные компьютеры? Ну разве что очень хочется. Во всех других случаях лучше обойтись суперкулером и оставить СВО для тех случаев, когда они действительно нужны — а именно для топовых рабочих станций. Свое мнение пишите в комментах.
7338 дней на пути к мечте
Вас не устраивает уровень шума Вашего компьютера?
Система охлаждения не справляется с Вашими комплектующими?
Вы хотите, чтобы компьютер отличался от других?
Вы любите делать что-то своими руками?
Вам просто нечего делать и Вы не знаете чем себя занять?
Если Вы ответили положительно хоть на один из этих вопросов – тогда эта статья для Вас. Даже если нет – прочитайте и , возможно, Вам всё же захочется создать свою СВО.
Так что же это такое? СВО – Система Водяного Охлаждения компьютера (правильнее назвать её СЖО – система жидкостного охлаждения, т.к. в качестве теплоносителя может применяться не только вода, но и другие жидкости, но мы, всё же, условимся называть любую такую систему СВО, приняв его как общепринятое название). Обычно его устанавливают как раз по вышеуказанным причинам. Т.е. необходимость использования водяного охлаждения вызывают следующие факторы: высокий уровень шума родного воздушного охлаждения (кулера), его низкая эффективность (высокие температуры комплектующих), моддинг системного блока (наведение красоты внутри и снаружи компьютера).
Рассмотрим из чего состоит СВО
В первую очередь скажем о жидкости, циркулирующей в системе – это может быть обычная водопроводная вода, дистиллированная вода, различные комбинации воды и спирта или воды и антифриза, чистый антифриз, масло, жидкий металл.
Главным же в системе водяного охлаждения является водоблок, он же ватерблок (Waterblock) – теплосъёмник, устройство, выполненное из теплопроводящего материала, которое передаёт тепло с нагревающихся элементов (центральный процессор, чипсет, графический процессор и др.) циркулирующей жидкости (далее для облегчения восприятия – вода). Структуру и изготовление рассмотрим ниже.
Вторым компонентом СВО можно назвать радиатор, который передаёт тепло от воды во внешнюю среду.
Не уступает ему по значимости и помпа – элемент, отвечающий за циркуляцию воды во всей системе. Виды и характеристики далее.
Следующими, менее важными, но не менее необходимыми являются шланги – по ним и перемещается вода по пути от ватерблоков к помпе и радиатору.
Ещё один элемент, который используется не всегда, и зависит от применяемой помпы – это расширительный бачок. Он служит для заправки СВО и для облегчения её прокачки (избавления от воздушных пузырьков и пробок). Также он служит для выравнивания давления – это необходимо так как вода при нагревании расширяется.
Вентиляторы используются для ускорения передачи тепла от радиатора в окружающую среду.
Далее идут компоненты, которые уже не являются необходимыми, но тоже используются – к ним относятся:
разветвители (тройники) - разделяют воду на несколько потоков до ватерблоков и объединяют после;
различные элементы управления (например, управление включения помпы, скорости вращения вентиляторов, датчики уровня воды и давления в системе);
а также элементы моддинга (различные подсветки, флуоресцентные добавки в жидкость и пр.).Общую схему СВО можно представить следующим образом.
Простейшая схема СВО
Рассмотрим более детально каждый из компонентов
Жидкость в СВО применяют различной консистенции. Как уже сказано выше – это может быть как обычная водопроводная вода, так и различные комбинации дистиллированной воды, спирта, антифриза, и пр. Обычную воду можно использовать только для кратковременных тестов СВО. В такой воде находятся различные примеси и микроорганизмы, которые могут осесть в помпе – что может увеличить её износ и в скором времени привести к поломке, образовать налёт на внутренней поверхности радиатора и теплосъемника, что ухудшит их теплопроводные качества, а также засорить шланги. По этим причинам при постоянной работе лучше использовать дистиллированную воду (желательно купленную в аптеке, а не изготовленную для автомобилей).
Иногда дистиллированную воду разбавляют спиртом или антифризом (чаще в пропорции 1:3). Это делается по двум причинам – во-первых, в антифризе обычно присутствуют антикоррозийные и антибактериальные добавки, а во-вторых, это позволяет опускать температуру ниже 0 (температура, при которой происходит замерзания воды). Также такие антифризы как, например, Тосол имеют свою окраску, что способствует их применению в СВО. В свою очередь можно использовать в такой жидкости различные флуоресцентные добавки. Например, можно пропустить воду через стержень текстовыделителя (маркера). Это позволит окрасить воду в желаемый цвет. Большинство текстовыделителей (кроме синего) светятся в ультрафиолете. Помимо прочего можно применять и жидкости, специально созданные производителями СВО.
Ватерблок/Водоблок (далее ВБ) – как основной компонент системы водяного охлаждения, требует особого внимания при покупке или изготовлении.
Можно выделить следующие характеристики ВБ:
- Тип используемого материала - ВБ могут быть как цельнометаллическими (чаще всего применяется медь (Cu), алюминий (Al), и иногда серебро (Ag)) так и составными (основание медь или алюминий, а крышка – акрил, оргстекло, и др.)
- Внутренняя структура основания – змейка, пирамидальная, игольчатая и др. (далее мы рассмотрим их более подробно на примерах).
- Количество штуцеров (втулка, один из концов которой имеет внутреннюю или наружную резьбу для крепления) – обычно бывает 2 (один вход и один выход) и 3 (один вход и два выхода) штуцера, но иногда ВБ создаются и с большим их количеством;
- Вид крепления – если это ВБ на центральный процессор, то крепления делятся по типу сокета (Socket) процессора, если для видеокарты – то по типу видеокарты, на которую он может быть закреплён.
Различные комбинации вышеперечисленных характеристик и позволяют подобрать ВБ для ваших нужд.
Остановимся более подробно на материале ВБ и их структуре.
Самым лучшим материалом для изготовления ватерблока, несомненно, является серебро, так как его теплопроводность на много превосходит теплопроводность у остальных металлов. Но его стоимость сводит на нет все преимущества использования серебра для создания ВБ. Далее рассмотрим алюминий. Его теплопроводность достаточно велика, а стоимость – низка, что иногда может привлечь к нему внимание как к материалу для ВБ, и если у вас нет возможности использовать медь, то можно обойтись и алюминием. При этом надо учитывать одно его свойство – если в системе присутствует элемент СВО изготовленный из меди (чаще это радиатор), то, вместе с алюминием, они могут образовать гальванопару. А это в свою очередь чревато выходом из строя всей системы. Поэтому при использовании алюминия в качестве материала ВБ следует подобрать радиатор, и другие компоненты – также выполненные из алюминия, а в качестве жидкости использовать дистиллированную воду. И, наконец, медь – она является оптимальным выбором для изготовления ВБ. У неё достаточно демократическая цена, отличная теплопроводность, относительная лёгкость обработки, прочность, доступность.
Итак, после того, как выбор материала для ВБ сделан, следует продумать, какую он будет иметь структуру. Рассмотрим возможные варианты на примерах:
- Плоскодонный или безканальный ватерблок (для CPU используется редко, чаще для чипсета и немощных видеокарт, а также для охлаждения памяти, элементов питания, винчестеров и пр.)
- Водоблок со змеевидной структурой (до сих пор не теряет своих позиций и часто используется как в самодельных, так и в заводских ВБ), которая в свою очередь делится на спиралевидную и зигзагообразную
Игольчатый ВБ (также как и «змейка» применяется как в промышленном, так и в ручном изготовлении ВБ) - внутренняя часть основания данных ватерблоков, содержит множество симметричных выступающих неровностей. Это могут быть пирамидки, ромбики, и т.д
- ВБ с использованием рёбер на основании – наиболее распространенный вид ватерблоков (особенно при ручном изготовлении)
- Также бывают ВБ со сложной внутренней структурой – микроканальные, многоэтажные раздельные и пр. Их структура редко повышает производительность, но часто увеличивает гидросопротивление, что в свою очередь либо требует увеличения мощности помпы, либо ухудшает температурные показатели системы в целом.
Радиатор – устройство, передающее (рассевающее) тепло от охлаждающей жидкости в окружающую среду. Параметры радиаторов:
- материал, из которого он изготовлен – лучше всего использовать полностью медные радиаторы, у которых и рёбра и трубки выполнены из меди. Также возможно использование радиаторов с латунными трубками. Желательно не устанавливать радиаторы, в изготовлении которых применяется алюминий, если ватерблоки сделаны из меди. И, наоборот, с теплосъёмниками из алюминия рекомендуются алюминиевые радиаторы (во избежание получения гальванопары).
- расстояние между рёбрами. При выборе радиатора необходимо продумать, чем он будет охлаждаться, т.е. будет ли передача тепла воздуху происходить в пассивном режиме или же для этого будут использованы вентиляторы. Если выбран первый вариант – то расстояние должно быть максимально возможным, чтобы между рёбрами не создавалось застойных зон, из-за которых рассеивание будет проходить медленно и как следствие охлаждающая жидкость будет хуже охлаждаться. С использованием вентиляторов следует учитывать их производительность – если она мала, то расстояние между рёбрами должно быть больше, если высока – можно использовать радиаторы с малым расстоянием межрёберным пространством и, соответственно, с большей площадью теплообмена при меньшем общем объёме.· площадь поверхности – от неё зависит скорость рассеивания тепла. Тут рекомендация одна: чем площадь больше – тем лучше.
Помпа (или циркулярный насос) – прибор, обеспечивающая циркуляцию жидкости в системе охлаждения. По видам делятся на погружную и внешнюю. Первая работает полностью погружённая в воду, вторая присоединяется к расширительному бачку (если он присутствует) или напрямую к шлангам.
Достоинства погружных помп:
- Стоимость заметно ниже.
- Большая распространенность.
- Относительно небольшие размеры.
- Звукоизоляция слоем воды в расширительном бачке.
- Необходимо использовать относительно большой расширительный бачок.
- Вся потребляемая мощность рассеивается в жидкость.
- Большие требования к характеристикам расширительного бачка.
Достоинства внешних помп:
- Универсальность, возможность работы как погруженными в жидкость, так и во внешнем исполнении
- Относительно высокое качество и надежность
- Достоверные характеристики, так как по многим из распространенных моделей уже накоплена внушительная статистика, включая лабораторные испытания.
- Невысокий уровень шума
- Возможность создания более компактных СВО
- Не вся потребляемая мощность рассеивается в жидкость
- Некоторые модели работают от 12в постоянного тока, специально для подключения к БП компьютера
- Относительно высокая цена
- Меньшая распространенность на рынке
- Менее компактные размеры
- Обычно помпы с питанием от 12в постоянного тока имеют меньшую производительность, чем 220в аналоги. Дополнительная нагрузка на 12в линию блока питания, что особенно важно для блоков питания не соответствующих стандарту ATX v2.0 или выше.
К характеристикам, на которые следует обратить внимание при выборе помпы, относятся:
- мощность (W)– количество потребляемой электроэнергии – чем оно ниже, тем лучше (меньше платить за электроэнергию);
- высота водяного столба (см.) – высота, на которую помпа может поднять воду – чем этот показатель выше, тем большее давление сможет создать помпа и соответственно можно создать более разветвлённую структуру СВО;
- производительность (л/ч) – объём жидкости, перегоняемой помпой в течение часа – влияет на скорость движения жидкости в системе. Важной роли не играет по нескольким причинам: во-первых, заявленная производительность может не соответствовать реальному (для китайских помп); во-вторых, ниже 400 л/ч помпы бывают редко, а уже такой скорости достаточно для средней СВО и от увеличения скорости температура упадёт незначительно.
Радиатор – устройство, передающее (рассевающее) тепло от охлаждающей жидкости в окружающую среду. Параметры радиаторов:
- материал, из которого он изготовлен – лучше всего использовать полностью медные радиаторы, у которых и рёбра и трубки выполнены из меди. Также возможно использование радиаторов с латунными трубками. Желательно не устанавливать радиаторы, в изготовлении которых применяется алюминий, если ватерблоки сделаны из меди. И, наоборот, с теплосъёмниками из алюминия рекомендуются алюминиевые радиаторы (во избежание получения гальванопары).
- расстояние между рёбрами. При выборе радиатора необходимо продумать, чем он будет охлаждаться, т.е. будет ли передача тепла воздуху происходить в пассивном режиме или же для этого будут использованы вентиляторы. Если выбран первый вариант – то расстояние должно быть максимально возможным, чтобы между рёбрами не создавалось застойных зон, из-за которых рассеивание будет проходить медленно и как следствие охлаждающая жидкость будет хуже охлаждаться. С использованием вентиляторов следует учитывать их производительность – если она мала, то расстояние между рёбрами должно быть больше, если высока – можно использовать радиаторы с малым расстоянием межрёберным пространством и, соответственно, с большей площадью теплообмена при меньшем общем объёме.· площадь поверхности – от неё зависит скорость рассеивания тепла. Тут рекомендация одна: чем площадь больше – тем лучше.
Расширительный бачок – его функции были описаны выше. Характеристики: вид и объём – и то и другое выбирается по желанию. Ограничение объёма в меньшую сторону – задаётся размером погружённой в него помпы, а в большую – местоположением (например, если в системном блоке, то свободным местом). Ограничения на вид – эстетические.
Вентиляторы – служат для ускорения передачи тепла от радиатора в окружающий его воздух – проще говоря, обдувают его. При выборе необходимо обратить внимание на шумовые характеристики и мощность. Также, значение имеет вид – если вентиляторы находятся в видимом месте.
Остальные мелочи. К ним относятся различные тройники, служащие для распараллеливания потока жидкости, обмотка на шланги – предотвращающая перегибы, датчики давления (движения) жидкости и её температуры, неоновые лампы для подсветки шлангов, проводов и охлаждающей жидкости и многое другое. Выбирайте, как говориться, на Ваш вкус и цвет.
Читайте также: