Принципы построения сетей wi fi
В статье рассмотрены вопросы, касающиеся построения бесшовной Wi-Fi сети (беспроводной сети с бесшовным роумингом) в загородном доме. Бесшовная беспроводная сеть подразумевает создание единого информационного пространства, в состав которого входят от двух до нескольких десятков источников сигнала (точек доступа (ТД)) и в котором клиентские устройства (абоненты беспроводной сети: ноутбуки, смартфоны, планшеты и т.д.) могут перемещаться без потери связи. Переключение от одной ТД к другой происходит автоматически, при этом в качестве предпочтительной ТД выбирается та, сигнал которой лучше.
1. Стандарты WI-FI
1.1 Действующие стандарты Wi-Fi:
- IEEE 802.11a;
- IEEE 802.11b;
- IEEE 802.11g;
- IEEE 802.11n (Wi-Fi 4 – принятое упрощенное название);
- IEEE 802.11ac (Wi-Fi 5);
- IEEE 802.11ax (Wi-Fi 6, сертификация Wi-Fi Alliance вышла 16.09.2019).
Современные беспроводные сети строятся с использованием стандартов Wi-Fi 4 и Wi-Fi 5. При этом при использовании Wi-Fi 4 обеспечивается обратная совместимость с 802.11b и 802.11g, что позволяет использовать старые устройства для доступа в сеть. 802.11a имеет совместимость с Wi-Fi 5 и может пригодиться для подключения очень старого ноутбука к беспроводной сети.
Последнее время производители оборудования для построения беспроводных сетей отказываются от поддержки 802.11a. IEEE 802.11ac поддерживается не всеми клиентскими устройствами, включая современные смартфоны.
В таблице приведены основные характеристики стандартов Wi-Fi:
1.2. Фактическая полезная нагрузка
Существенная разница между скоростью подключения и фактической полезной нагрузкой обусловлена большим объемом служебной информации,полудуплексной природой Wi-Fi, потерями пакетов при передаче и как следствие затратами на повторную отправку, а также зависит от количества подключенных абонентов. Производители оборудования идут на хитрость и везде указывают скорость подключения.
Кроме того скорость Wi-Fi сети снижается пропорционально снижению уровня сигнала по мере удаления от точки доступа. Так даже на расстоянии более 50 метров скорость может снизиться до нескольких Мбит/с, а при наличии препятствий в виде толстых стен или железобетонных перекрытий уровень сигнала, а вместе с ним и скорость, могут снизиться до минимальных значений (1-2 Мбит/с) уже на расстоянии 10-15 метров. При еще большем снижении уровня сигнала, как правило, происходит разрыв связи.
2. MIMO/MU-MIMO
Как видно из таблицы выше существенный скачок скорости произошел с выходом стандарта Wi-Fi 4. Этого удалось добиться за счет применения технологии MIMO, которая обеспечивает поддержку приема и передачи с использованием нескольких антенн. (В MIMO как раз фишка в том, что передается несколько независимых уникальных потоков, которые формируются на отдельных радиотрактах. А несколько антенн – это всего лишь технология разнесенного приема-передачи, где при передаче один и тот же поток излучается с нескольких антенн, что повышает SNR на приемнике). Точка доступа с поддержкой Wi-Fi 4 может иметь по четыре передающих и принимающих антенны (MIMO 4x4). Чаще встречаются схемы MIMO 3x2 и MIMO 2x2. Клиентские устройства обычно используются MIMO 2x2 или MIMO 2x1.
Таким образом, ТД с MIMO 4x4 может обеспечить скорость до 600 Мбит/с.
Очередное повышение пропускной способности произошло с выходом стандарта Wi-Fi 5. В нем используется технология MU-MIMO, в которой может использоваться до 8 приемников и передатчиков (на точке доступа) и позволяет передавать данные нескольким пользователям в один момент времени, а также увеличена ширина канала (до 160 МГц).
Принцип работы MIMO и MU-MIMO показан на рисунке:
Технология MU-MIMO не завоевала рынок Wi-Fi и вот почему:
- Мало MU-MIMO клиентов. То есть почти нет клиентов, поддерживающих явное формирование диаграммы направленности, которое является обязательным требованием для MU-MIMO;
- MU-MIMO работает эффективно только при существенном разнесении клиентов в пространстве. В современных высокоплотных сетях обеспечить данное условие невозможно;
- Для MU-MIMO необходимо формировать диаграмму направленности при передаче. Это осуществляется с помощью предварительного обмена специальными кадрами. Если необходимо передать небольшой объем данных, то формирование луча может занять больше времени, нежели непосредственная передача данных.
Клиентские устройства Wi-Fi 5 могут поддерживать MIMO 4x4, но чаще всего встречаются схемы MIMO 3x2 и MIMO 2x2 и даже MIMO 2x1.
Стоит учитывать, что ноутбуки, поддерживающие MIMO 4x4, относятся к топовому сегменту, а смартфонов поддерживающих данную конфигурацию на момент написания статьи найти и вовсе не удалось.
Таким образом, максимальная фактическая полезная нагрузка канала связи может достигать 4500 Мбит/с для точки доступа и до 2250 Мбит/с для абонента (для конфигурации 4x4).
При этом, большинство устройств будут передавать данные с более низкой скоростью, примерно пропорциональной количеству антенн и ширине канала.
С учетом вышесказанного в большинстве случаев переплачивать за вот таких «крабов» смысла нет:
3. Диапазоны частот Wi-Fi
Важным отличием Wi-Fi диапазонов является радиус действия. В идеальных условиях радиус действия диапазона 5 ГГц меньше, чем у 2,4 ГГц. Серьезной помехой для более высокочастотного диапазона будет даже листва деревьев, дождь или туман, в то время как низкие частоты менее чувствительны к таким преградам. Поэтому в обычных условиях (дом/квартира) радиус действия примерно в 2 раза больше в пользу диапазона 2,4 ГГц. При этом стандарт 802.11ac, работающий в диапазоне 5 Ггц, поддерживает большую скорость передачи.
Зачастую современное оборудование для построения БЛВС (беспроводная локальная вычислительная сеть) поддерживает оба диапазона. При этом оно стоит в 1,5-2 раза дороже, чем аналогичное с поддержкой только 2,4 ГГц.
Некоторые материалы очень сильно поглощают и/или отражают сигнал, поэтому может сложиться такая ситуация с образованием «мертвых зон»:
4. Выбор диапазона для беспроводной сети
В квартирах диапазон 2,4 ГГц может быть зашумлен соседскими ТД. В загородном доме данная проблема отсутствует (но могут быть исключения в виде соседей, которые выкрутили мощность передатчика точки доступа на максимум), поэтому для организации беспроводной сети предпочтительнее использовать диапазон 2,4 ГГц. Это обеспечит большую зону покрытия и позволит обойтись меньшим количеством ТД. При этом за счет использования ТД с технологией MIMO можно обеспечить полезную скорость сети до 200 Мбит/с на точке доступа и 50-100 Мбит/с для клиентских устройств, чего будет достаточно в 95-99% случаев. Кроме этого стоит помнить, что диапазон 5 ГГц может не поддерживаться некоторыми клиентскими устройствами.
Эффективное расстояние сигнала для диапазона 2,4 ГГц при отсутствии препятствий и сильных помех составляет примерно 100 метров. При определении необходимого количества ТД учитывать данные о затухании сигнала из таблицы:
Например, при прохождении через 2 деревянные стены эффективный прием будет возможен на расстоянии около 9 метров (первое прохождение: 100*30%=30 метров, второе прохождение: 30*30%=9 метров).
По мере снижения уровня сигнала будет снижаться и скорость передачи.
Эффективное расстояние не является главным фактором при проектировании Wi-Fi сети. Существует проблема "скрытой станции" которая проявляется в том, что одно или несколько клиентских устройств могут слышать точку доступа, но не слышать другие клиентские устройства. Из-за особенности полудуплексного доступа к радиосреде (CSMA/CA) это приводит к увеличению количества повторно передаваемых пакетов, как следствие снижение пропускной способности сети. Если клиент слышит точку доступа через стену, то это не значит, то он слышит других клиентов, а это, как мы выяснили, снизит пропускную способность сети.
У всего Enterprise оборудования, которое я видел, есть функционал роуминга из 5 ГГц в 2.4 ГГц. То есть, когда клиент начинает слышать точку доступа хуже -70 dBm в 5 ГГц, он “роумится” на точку, которую слышно лучше и при этом она имеет тот же SSID, даже если она в 2.4 ГГц. Таким образом, нет необходимости держать два SSID под 2.4 и 5 ГГц, это раз. И два – роуминг из 5 ГГц в 2.4 ГГц это вообще не фокус, а обыденность.
!ПРИМЕЧАНИЕ: Если вы планируете использовать Wi-Fi сеть для создания системы видеонаблюдения, следует учесть, что большинство современных моделей беспроводных видеокамер поддерживают только 802.11n. При этом даже при использовании MIMO 4x4 на одну точку доступа можно подключить не более 4 видеокамер. И даже в таком случае возможны подвисания и потеря связи. На самом деле очень много зависит от самих камер видеонаблюдения, какой поток информации они транслируют, сколько мегапикселей матрицы и пр. В этих вопросах лучше проконсультироваться со специалистами.
Для видеонаблюдения лучше всего организовать проводное соединение. Беспроводные камеры можно применить, когда возможность протянуть кабель отсутствует (например, чтобы не портить ремонт).
5. Определение зоны покрытия сети
Перед покупкой оборудования для организации беспроводной сети с бесшовным роумингом нужно определить необходимую зону покрытия. Это может быть дом (часть дома) и двор (его часть) и т.д.
Для более точного определения зоны покрытия нужно понять, где и для чего будет использоваться беспроводная сеть: управление системой «Умный дом», взаимодействие внутри домашней локальный сети, выход в Интернет и т.д.
6. Диаграмма направленности
Важной характеристикой ТД является диаграмма направленности антенны:
- всенаправленная;
- секторная;
- направленная.
7.1 Всенаправленная ТД
Сигнал всенаправленной ТД распространяется равномерно во все стороны:
7.2 Секторная ТД
Диаграмма направленности секторной ТД выглядит следующим образом (сигнал распространяется в определенных направлениях):
7.3 Направленная ТД
ТД с узконаправленной антенной используются для передачи сигнала на расстояния от нескольких сотен метров до нескольких километров в прямой видимости, когда организация альтернативных каналов связи невозможна. При этом в дождь или туман связь будет пропадать. Диаграмма направленности ТД с направленной антенной выглядит так:
Точки доступа делятся на внутренние (для эксплуатации внутри помещений) и внешние (для эксплуатации вне помещений). Внешние точки доступа имеют более широкий температурный диапазон, а также лучше защищены от воздействия окружающей среды.
Зная типы ТД, особенности распространения и ослабления сигнала можно без проблем рассчитать необходимое количество точек доступа с учетом планировки дома и необходимой зоны действия сигнала. При этом рекомендуется располагать точки доступа на каждом этаже, а также установить ТД недалеко от межэтажного проема, т.к. перекрытие очень сильно снижает уровень сигнала.
7. WI-FI контроллер
При бесшовном роуминге во всей области действия Wi-Fi создается сеть с единым названием (идентификатором) и организуется централизованное управление точками доступа. Это обеспечивается посредством контроллера беспроводной сети (Wi-Fi контроллера). Обобщенная схема организации такого подключения выглядит так:
В качестве контролера может выступать специальное устройство или программа. У некоторых производителей в качестве контроллера может выступать одна из точек доступа, которой назначается данная роль.
Wi-Fi контроллер может устанавливаться на персональный компьютер, откуда и осуществляется управление оборудованием. При использовании в качестве контроллера специального устройства или одной из точек доступа управление осуществляется посредством веб-интерфейса (как правило) или специального ПО (консоли).
Кроме очевидных функций по созданию сети контроллер обеспечивает мониторинг радиосреды в зоне покрытия, что позволяет обнаруживать помехи и осуществлять необходимые корректировки в автоматическом режиме (смену каналов точек доступа, подстройку мощности сигнала и т.д.).
Точки доступа соединяются между собой через коммутатор стандартным сетевым кабелем (витая пара), как показано на схеме выше. При этом питание точек доступа осуществляется от самого коммутатора с использованием технологии PoE (коммутатор также должен поддерживать PoE). Применимые модели коммутаторов лучше уточнить у производителя выбранного Wi-Fi оборудования. Стоит учитывать, что длина сетевого кабеля для работы PoE ограничена и зависит от выбранного оборудования. Как правило, она указывается в характеристиках ТД и составляет порядка 60-100 метров.
Если по каким то причинам не получается запитать ТД доступа напрямую от коммутатора с поддержкой PoE или между коммутатором и ТД слишком большое расстояние, может использоваться промежуточный коммутатора или PoE-инжектор (идет в комплекте с некоторыми ТД). Схема использования PoE-инжектора:
Большинство управляющих и владельцев бизнеса не до конца представляют себе список факторов, которые должны быть учтены при проектировании беспроводной сети. Да и некоторые системные и сетевые администраторы, привыкшие к работе с проводными сетями, поддерживают мифы и легенды, которыми окутаны беспроводные сети. В данном материале мы попытаемся обозначить основные моменты, на которые стоит обратить внимание на этапе проектирования Wi-Fi сетей. По этому списку можно будет понять, насколько вы подготовлены с технической точки зрения.
Все действия, выполняемые в процессе проектирования, построения и эксплуатации беспроводной сети можно условно разделить на восемь последовательных шагов.
Пропуск или небрежное выполнение одного из них может иметь негативные последствия для всего беспроводного проекта в целом. В данной статье мы сконцентрируемся в основном на сугубо технических вопросах построения беспроводной сети. Итак, приступим!
Этот пункт вызывает больше всего прений, хотя он технический лишь отчасти. Многие администраторы склонны недооценивать его важность, да и управляющие поначалу не видят в нем смысла.
Радиоразведка должна выполняться с помощью специализированного оборудования, показывающего радиочастотную обстановку на объекте до развертывания беспроводной сети. Что можно понять в этот момент и почему этот этап важен? Во время радиоразведки можно не только выяснить, есть ли у соседей беспроводные сети, какова их мощность, какие каналы они используют и так далее, но и получить информацию о помехах, возникающих на частотах в 2.4 и 5 ГГц.
Иногда помехи возникают на одном или двух смежных каналах, но может быть и так, что мощный шум обнаруживается во всем частотном диапазоне.
Источники помех известны почти всегда: микроволновые печи, оборудование Bluetooth и плохо экранированные кабели USB 3.0. Информация о мощности шумовых помех в конкретном месте позволит еще на этапе проектирования оценить соотношение сигнал/шум — SNR (Signal-Noise Ratio). Однако нужно понимать, что создавать помехи может и другое электронное оборудование. Кроме помех серьезное влияние вашу сеть могут оказывать и беспроводные сети соседних организаций. Радиоразведка в этом случае позволит более правильно распределить беспроводные каналы. О построении карты частот мы тоже поговорим.
Радиочастотное обследование и правильное планирование — ключ к хорошо работающей и надежной сети. И наоборот, неподходящее оборудование вкупе с отсутствием радиочастотного планирования и безграмотной установкой могут свести на нет все технологические преимущества отдельных сетевых элементов и технологий и привести к частичной или полной неработоспособности беспроводной сети.
Проводить радиочастотное обследование нужно и после завершения всех работ по настройке беспроводного оборудования. С его помощью можно оценить, насколько точно были выполнены расчеты, то есть насколько хорошим будет покрытие. Например, если при радиоразведке был обнаружен слабый источник шума, полностью устранить который нельзя, то радиочастотное обследование после развертывания сети даст представление о том, какой SNR удалось получить и удалось ли минимизировать негативные факторы. Немаловажно также иметь представление и о том, насколько далеко распространяется беспроводной сигнал от вашей сети, где возможен его прием и подключение к Wi-Fi.
Так как для радиочастотного исследования требуется дополнительное оборудование (использование ПО для обычных ноутбуков и телефонов дает лишь частичное представление), приобретение портативных версий измерительных инструментов даст возможность бизнесу сэкономить в долгосрочной перспективе, так как позволит многократно использовать при эксплуатации сети уже приобретенные инструменты.
В статье рассмотрены вопросы, касающиеся построения бесшовной Wi-Fi сети (беспроводной сети с бесшовным роумингом) в загородном доме. Бесшовная беспроводная сеть подразумевает создание единого информационного пространства, в состав которого входят от двух до нескольких десятков источников сигнала (точек доступа (ТД)) и в котором клиентские устройства (абоненты беспроводной сети: ноутбуки, смартфоны, планшеты и т.д.) могут перемещаться без потери связи. Переключение от одной ТД к другой происходит автоматически, при этом в качестве предпочтительной ТД выбирается та, сигнал которой лучше.
1. Стандарты WI-FI
1.1 Действующие стандарты Wi-Fi:
- IEEE 802.11a;
- IEEE 802.11b;
- IEEE 802.11g;
- IEEE 802.11n (Wi-Fi 4 – принятое упрощенное название);
- IEEE 802.11ac (Wi-Fi 5);
- IEEE 802.11ax (Wi-Fi 6, сертификация Wi-Fi Alliance вышла 16.09.2019).
Современные беспроводные сети строятся с использованием стандартов Wi-Fi 4 и Wi-Fi 5. При этом при использовании Wi-Fi 4 обеспечивается обратная совместимость с 802.11b и 802.11g, что позволяет использовать старые устройства для доступа в сеть. 802.11a имеет совместимость с Wi-Fi 5 и может пригодиться для подключения очень старого ноутбука к беспроводной сети.
Последнее время производители оборудования для построения беспроводных сетей отказываются от поддержки 802.11a. IEEE 802.11ac поддерживается не всеми клиентскими устройствами, включая современные смартфоны.
В таблице приведены основные характеристики стандартов Wi-Fi:
1.2. Фактическая полезная нагрузка
Существенная разница между скоростью подключения и фактической полезной нагрузкой обусловлена большим объемом служебной информации,полудуплексной природой Wi-Fi, потерями пакетов при передаче и как следствие затратами на повторную отправку, а также зависит от количества подключенных абонентов. Производители оборудования идут на хитрость и везде указывают скорость подключения.
Кроме того скорость Wi-Fi сети снижается пропорционально снижению уровня сигнала по мере удаления от точки доступа. Так даже на расстоянии более 50 метров скорость может снизиться до нескольких Мбит/с, а при наличии препятствий в виде толстых стен или железобетонных перекрытий уровень сигнала, а вместе с ним и скорость, могут снизиться до минимальных значений (1-2 Мбит/с) уже на расстоянии 10-15 метров. При еще большем снижении уровня сигнала, как правило, происходит разрыв связи.
2. MIMO/MU-MIMO
Как видно из таблицы выше существенный скачок скорости произошел с выходом стандарта Wi-Fi 4. Этого удалось добиться за счет применения технологии MIMO, которая обеспечивает поддержку приема и передачи с использованием нескольких антенн. (В MIMO как раз фишка в том, что передается несколько независимых уникальных потоков, которые формируются на отдельных радиотрактах. А несколько антенн – это всего лишь технология разнесенного приема-передачи, где при передаче один и тот же поток излучается с нескольких антенн, что повышает SNR на приемнике). Точка доступа с поддержкой Wi-Fi 4 может иметь по четыре передающих и принимающих антенны (MIMO 4x4). Чаще встречаются схемы MIMO 3x2 и MIMO 2x2. Клиентские устройства обычно используются MIMO 2x2 или MIMO 2x1.
Таким образом, ТД с MIMO 4x4 может обеспечить скорость до 600 Мбит/с.
Очередное повышение пропускной способности произошло с выходом стандарта Wi-Fi 5. В нем используется технология MU-MIMO, в которой может использоваться до 8 приемников и передатчиков (на точке доступа) и позволяет передавать данные нескольким пользователям в один момент времени, а также увеличена ширина канала (до 160 МГц).
Принцип работы MIMO и MU-MIMO показан на рисунке:
Технология MU-MIMO не завоевала рынок Wi-Fi и вот почему:
- Мало MU-MIMO клиентов. То есть почти нет клиентов, поддерживающих явное формирование диаграммы направленности, которое является обязательным требованием для MU-MIMO;
- MU-MIMO работает эффективно только при существенном разнесении клиентов в пространстве. В современных высокоплотных сетях обеспечить данное условие невозможно;
- Для MU-MIMO необходимо формировать диаграмму направленности при передаче. Это осуществляется с помощью предварительного обмена специальными кадрами. Если необходимо передать небольшой объем данных, то формирование луча может занять больше времени, нежели непосредственная передача данных.
Клиентские устройства Wi-Fi 5 могут поддерживать MIMO 4x4, но чаще всего встречаются схемы MIMO 3x2 и MIMO 2x2 и даже MIMO 2x1.
Стоит учитывать, что ноутбуки, поддерживающие MIMO 4x4, относятся к топовому сегменту, а смартфонов поддерживающих данную конфигурацию на момент написания статьи найти и вовсе не удалось.
Таким образом, максимальная фактическая полезная нагрузка канала связи может достигать 4500 Мбит/с для точки доступа и до 2250 Мбит/с для абонента (для конфигурации 4x4).
При этом, большинство устройств будут передавать данные с более низкой скоростью, примерно пропорциональной количеству антенн и ширине канала.
С учетом вышесказанного в большинстве случаев переплачивать за вот таких «крабов» смысла нет:
3. Диапазоны частот Wi-Fi
Важным отличием Wi-Fi диапазонов является радиус действия. В идеальных условиях радиус действия диапазона 5 ГГц меньше, чем у 2,4 ГГц. Серьезной помехой для более высокочастотного диапазона будет даже листва деревьев, дождь или туман, в то время как низкие частоты менее чувствительны к таким преградам. Поэтому в обычных условиях (дом/квартира) радиус действия примерно в 2 раза больше в пользу диапазона 2,4 ГГц. При этом стандарт 802.11ac, работающий в диапазоне 5 Ггц, поддерживает большую скорость передачи.
Зачастую современное оборудование для построения БЛВС (беспроводная локальная вычислительная сеть) поддерживает оба диапазона. При этом оно стоит в 1,5-2 раза дороже, чем аналогичное с поддержкой только 2,4 ГГц.
Некоторые материалы очень сильно поглощают и/или отражают сигнал, поэтому может сложиться такая ситуация с образованием «мертвых зон»:
4. Выбор диапазона для беспроводной сети
В квартирах диапазон 2,4 ГГц может быть зашумлен соседскими ТД. В загородном доме данная проблема отсутствует (но могут быть исключения в виде соседей, которые выкрутили мощность передатчика точки доступа на максимум), поэтому для организации беспроводной сети предпочтительнее использовать диапазон 2,4 ГГц. Это обеспечит большую зону покрытия и позволит обойтись меньшим количеством ТД. При этом за счет использования ТД с технологией MIMO можно обеспечить полезную скорость сети до 200 Мбит/с на точке доступа и 50-100 Мбит/с для клиентских устройств, чего будет достаточно в 95-99% случаев. Кроме этого стоит помнить, что диапазон 5 ГГц может не поддерживаться некоторыми клиентскими устройствами.
Эффективное расстояние сигнала для диапазона 2,4 ГГц при отсутствии препятствий и сильных помех составляет примерно 100 метров. При определении необходимого количества ТД учитывать данные о затухании сигнала из таблицы:
Например, при прохождении через 2 деревянные стены эффективный прием будет возможен на расстоянии около 9 метров (первое прохождение: 100*30%=30 метров, второе прохождение: 30*30%=9 метров).
По мере снижения уровня сигнала будет снижаться и скорость передачи.
Эффективное расстояние не является главным фактором при проектировании Wi-Fi сети. Существует проблема "скрытой станции" которая проявляется в том, что одно или несколько клиентских устройств могут слышать точку доступа, но не слышать другие клиентские устройства. Из-за особенности полудуплексного доступа к радиосреде (CSMA/CA) это приводит к увеличению количества повторно передаваемых пакетов, как следствие снижение пропускной способности сети. Если клиент слышит точку доступа через стену, то это не значит, то он слышит других клиентов, а это, как мы выяснили, снизит пропускную способность сети.
У всего Enterprise оборудования, которое я видел, есть функционал роуминга из 5 ГГц в 2.4 ГГц. То есть, когда клиент начинает слышать точку доступа хуже -70 dBm в 5 ГГц, он “роумится” на точку, которую слышно лучше и при этом она имеет тот же SSID, даже если она в 2.4 ГГц. Таким образом, нет необходимости держать два SSID под 2.4 и 5 ГГц, это раз. И два – роуминг из 5 ГГц в 2.4 ГГц это вообще не фокус, а обыденность.
!ПРИМЕЧАНИЕ: Если вы планируете использовать Wi-Fi сеть для создания системы видеонаблюдения, следует учесть, что большинство современных моделей беспроводных видеокамер поддерживают только 802.11n. При этом даже при использовании MIMO 4x4 на одну точку доступа можно подключить не более 4 видеокамер. И даже в таком случае возможны подвисания и потеря связи. На самом деле очень много зависит от самих камер видеонаблюдения, какой поток информации они транслируют, сколько мегапикселей матрицы и пр. В этих вопросах лучше проконсультироваться со специалистами.
Для видеонаблюдения лучше всего организовать проводное соединение. Беспроводные камеры можно применить, когда возможность протянуть кабель отсутствует (например, чтобы не портить ремонт).
5. Определение зоны покрытия сети
Перед покупкой оборудования для организации беспроводной сети с бесшовным роумингом нужно определить необходимую зону покрытия. Это может быть дом (часть дома) и двор (его часть) и т.д.
Для более точного определения зоны покрытия нужно понять, где и для чего будет использоваться беспроводная сеть: управление системой «Умный дом», взаимодействие внутри домашней локальный сети, выход в Интернет и т.д.
6. Диаграмма направленности
Важной характеристикой ТД является диаграмма направленности антенны:
- всенаправленная;
- секторная;
- направленная.
7.1 Всенаправленная ТД
Сигнал всенаправленной ТД распространяется равномерно во все стороны:
7.2 Секторная ТД
Диаграмма направленности секторной ТД выглядит следующим образом (сигнал распространяется в определенных направлениях):
7.3 Направленная ТД
ТД с узконаправленной антенной используются для передачи сигнала на расстояния от нескольких сотен метров до нескольких километров в прямой видимости, когда организация альтернативных каналов связи невозможна. При этом в дождь или туман связь будет пропадать. Диаграмма направленности ТД с направленной антенной выглядит так:
Точки доступа делятся на внутренние (для эксплуатации внутри помещений) и внешние (для эксплуатации вне помещений). Внешние точки доступа имеют более широкий температурный диапазон, а также лучше защищены от воздействия окружающей среды.
Зная типы ТД, особенности распространения и ослабления сигнала можно без проблем рассчитать необходимое количество точек доступа с учетом планировки дома и необходимой зоны действия сигнала. При этом рекомендуется располагать точки доступа на каждом этаже, а также установить ТД недалеко от межэтажного проема, т.к. перекрытие очень сильно снижает уровень сигнала.
7. WI-FI контроллер
При бесшовном роуминге во всей области действия Wi-Fi создается сеть с единым названием (идентификатором) и организуется централизованное управление точками доступа. Это обеспечивается посредством контроллера беспроводной сети (Wi-Fi контроллера). Обобщенная схема организации такого подключения выглядит так:
В качестве контролера может выступать специальное устройство или программа. У некоторых производителей в качестве контроллера может выступать одна из точек доступа, которой назначается данная роль.
Wi-Fi контроллер может устанавливаться на персональный компьютер, откуда и осуществляется управление оборудованием. При использовании в качестве контроллера специального устройства или одной из точек доступа управление осуществляется посредством веб-интерфейса (как правило) или специального ПО (консоли).
Кроме очевидных функций по созданию сети контроллер обеспечивает мониторинг радиосреды в зоне покрытия, что позволяет обнаруживать помехи и осуществлять необходимые корректировки в автоматическом режиме (смену каналов точек доступа, подстройку мощности сигнала и т.д.).
Точки доступа соединяются между собой через коммутатор стандартным сетевым кабелем (витая пара), как показано на схеме выше. При этом питание точек доступа осуществляется от самого коммутатора с использованием технологии PoE (коммутатор также должен поддерживать PoE). Применимые модели коммутаторов лучше уточнить у производителя выбранного Wi-Fi оборудования. Стоит учитывать, что длина сетевого кабеля для работы PoE ограничена и зависит от выбранного оборудования. Как правило, она указывается в характеристиках ТД и составляет порядка 60-100 метров.
Если по каким то причинам не получается запитать ТД доступа напрямую от коммутатора с поддержкой PoE или между коммутатором и ТД слишком большое расстояние, может использоваться промежуточный коммутатора или PoE-инжектор (идет в комплекте с некоторыми ТД). Схема использования PoE-инжектора:
Как правило, все современные Wi-Fi сети устроены по одному принципу: при помощи беспроводного Маршрутизатора (Роутера ) данные передаются между устройствами по беспроводным сетям с помощью радиосигнала стандарта IEEE 802.11 через один единственный канал, предоставляемый провайдером. Оснащенное сетевыми wi-fi-адаптерами оборудование соединяется между собой через эти коммутационные устройства: маршрутизаторы, коммутаторы (хабы или свитчи), точки доступа или модемы. Для устройств сети не оснащенных wi-fi, предусмотрены беспроводные модули внутренние или внешние подключаемые через USB.
КОРПОРАТИВНЫЕ WIFI СЕТИ
Создавая офисную Wi-Fi сеть лучше воспользоваться услугами специалиста, так как для бесперебойной, корректной и безопасной работы беспроводной локальной сети необходимы проведение топологических расчетов, создание планов покрытия Wi-Fi сигналами, правильная установка и главное — профессиональная настройка оборудования.
Так как большинство современных зданий имеют железобетонные или кирпичные стены, металлические конструкции, wifi сигнал серьезно ослабевает, и обеспечить надежное покрытие всей сети и доступ из любой части офиса к Интернету бывает весьма затруднительно. Тут нужно точно рассчитать углы отражения сигнала для уверенного приема его всеми узлами сети, выбрать оптимальное расположение точек доступа, маршрутизаторов и при необходимости дополнительных коммутаторов.
Также важно предусмотреть возможное расширение сети, и обеспечить универсальную коммутацию устройств и передачи данных, то есть возможность подключения различных устройств (ПК , нетбука, планшета, телефона, принтера, сканера и др.). Учитывая все необходимые требования можно приступать к выбору оборудования.
РОУТЕР WI-FI
Роутер Wi-Fi ( «маршрутизатор») служит для беспроводной передачи данных между разными узлами, объединенными в единую сеть (ПК , беспроводные принтеры и другие Wi-Fi-устройства), и обеспечивает доступ к одному каналу Интернет всех внутренних ресурсов. Каждый из узлов локальной сети автоматически получает за роутером свой внутренний IP адрес от DHCP сервера роутера (Dynamic Host Configuration Protocol). Получаемый от провайдера Интернет роутер-WiFi раздает через WiFi адаптер.
Внутренние порты роутера
Свитч и коммутатор для увеличения внутренних портов и расширения кабельной сети
Внешние порты роутера
Интернет канал от провайдера приходит в роутер по интерфейсу WAN (Wide Area Network) или ГВС (Глобальная Вычислительная Сеть), который обычно представлен одним или двумя портами: RJ-45 (разъем для сетевого кабеля) и.или RJ-11 (телефонный разъем). В первом случае WiFi роутер получает Интернет через сетевой кабель по технологии PPPoE FTTx, во втором Интернет идет через телефонную линию, по технологии ADSL (xDSL ).
Резервные порты
В некоторых роутерах предусмотрен резервный порт WAN для подключения второго канала в Интернет, необходимого для постоянного доступа в Интернет, например, в случае перерыва в работе одного из провайдеров.
Бывают еще и сотовые WiFi роутеры, немного похожие по виду на сотовые телефоны. Такой роутер получает Интернет через сотовую сеть GSM. И в случае проблем с основной линией провайдера можно также применить модуль 3G/4G, позволяющий обеспечить выход в сеть.
Модули для IP-телефонии
Встречаются модели роутеров, которые дополнительно оснащены VoiP модулем, который превращает роутер еще и в средство для использования IP телефонии . Такие роутеры с поддержкой VoiP могут иметь внутренний порт с разъемом RJ-11 для подключения телефонного аппарата непосредственно к маршрутизатору.
USB порты
При наличии в роутере портов USB можно подключить сетевой принтер и внешнее хранилище данных при необходимости файл-сервера (сетевого хранилища (NAS)).
КАК ВЫБРАТЬ WI-FI-РОУТЕР ДЛЯ ОФИСА, ЧТО НЕОБХОДИМО УЧИТЫВАТЬ
1. Защищенность локальной сети
Наличие в роутере Firewall — основных протоколов безопасности — позволяет защитить сеть Wi-Fi от несанкционированного использования и интернет-угроз с помощью шифрования: WEP (Wired Equivalent Privacy) и WPA (Wi -Fi Protected Access)и т.д.
Чтобы ограничить или предотвратить обращение из общей сети (снаружи ) к устройствам в вашей локальной сети необходимо наличие NAT (Network Address Translation).
Роутер должен поддерживать протокол шифрования WPA2 и использование фильтрации по MAC адресу. Использование фильтрации по MAC адресу позволяет предотвратить доступ к Вашей сети компьютеров с определенным MAC адресом.
2. Площадь помещений, количество рабочих мест.
Для больших площадей нужно учитывать мощность передатчика роутера, число антенн и радиус покрытия роутера. Для более качественной передачи сигнала лучше выбирать двухполосный роутер, который поддерживает частоты 2.4 GHz и 5 GHz. Такой роутер будет лучше принимать сигнал и работать быстрее.
3. Провайдер.
Нужно точно знать, какой протокол предоставляется провайдером (PPTP , PPPoE или L2TP). Например, протокол L2TP может не поддерживаться некоторыми роутерами.
4. Офисный Wi-Fi роутер лучше приобретать комбинированный, объединяющий в себе маршрутизатор, модуль для беспроводной связи, точку доступа и другие дополнительные модули для эффективной работы в сети.
5. Количество портов
При создании комбинированной сети с проводными подключениями у роутера должно быть большее количество портов, к которым можно подключить сетевые кабели. Если портов недостаточно, то можно использовать свитч с нужным количеством портов.
6. Стандарты WI-FI
Стандарт WI-FI влияют на скорость передачи сигнала и совместимость с другими стандартами связи. Современные беспроводные стандарты классифицируются на 802.11a, 802.1g и 802.11b, 802.11n. Например, стандарт 802.11n обеспечивает самую высокую скорость по беспроводному каналу в обе стороны – около 300мбит. Кроме того этот стандарт совместим и с остальными стандартами. А стандарт 802.11g может обеспечить скорость до 54мбит.
В 2012 году появился стандарт 802.11ac , он работает на частоте 5 ГГц, которая в отличие от 2,4-гигагерцевой менее загружена, обеспечивает в 3 раза более высокую скорость и более широкий радиус действия.
7.Возможности роутера
При больших нагрузках, закачках большого количества данных следует подбирать роутер с оперативной памятью более 64 Мб, а частота процессора должна быть более 400 Мб.
БЕСПРОВОДНАЯ ТОЧКА ДОСТУПА
При построении расширенной Wi-Fi сети для средних и больших компаний необходимо обеспечить достаточной пропускной способностью WiFi сети всех сотрудников. Для этого в офисе, состоящем из нескольких помещений, создается распределенная сеть из нескольких беспроводных точек доступа. При этом у сотрудников офиса остается возможность перемещаться из зоны действия одной точки доступа к другой. В случае распределенной Wi-Fi сети между зонами действия различных точек доступа осуществляется роуминг.
Такие точки доступа служат для расширения сети, в которой уже есть проводной коммутатор (switch ) или маршрутизатор без поддержки Wi-Fi. Они обеспечивают беспроводную связь с узлами сети, увеличивают зону покрытия Wi-Fi и усиливают сигнал, когда мощности одного лишь беспроводного роутера недостаточно. Так же точки доступа можно использовать д ля организации беспроводных мостов , позволяющих соединять между собой с помощью радиосигнала отдельные устройства, сегменты сети или целые сети в тех местах, где прокладка кабелей нежелательна или затруднительна. Так если на предприятии уже имеетя действующая инфраструктура, то можно просто дополнить ее беспроводными сегментами — используя в качестве моста между проводным и беспроводными секторами сети точки доступа, которые подключаются непосредственно к портам проводного коммутатора или маршрутизатора.
Точка доступа работает по принципу сетевого роутера — присваивает подключаемому устройству IP адрес, передает ему сетевые настройки и далее обеспечивает передачу сетевых пакетов от этого устройства к другим устройствам сети (маршрутизацию ).
В отличие от роутера, беспроводная точка доступа не имеет внешнего сетевого интерфейса WAN и оснащается в большинстве случаев только одним портом LAN для подключения к роутеру или коммутатору.
БЕСПРОВОДНОЙ КОНТРОЛЛЕР ДЛЯ КОРПОРАТИВНЫХ WIFI СЕТЕЙ
Эффективность крупной корпоративной WiFi сети во многом зависит и от программного контроллера. Контроллер позволяет управлять программно-конфигурируемыми сетями (SDN ) с большим количеством Wi-Fi точек доступа и подходит для беспроводных сетей практически любого масштаба. Централизованное управление сегментами сети осуществляется при помощи динамического управления частотно-мощностными ресурсами точек доступа.
Наличие в контроллере единого интерфейса предоставляет администратору все необходимые данные о функционировании точек доступа, информацию о клиентах, их активности, трафике, а так же дает возможность гибкой настройки сетей, изменения прав доступа пользователей и т.д. Также он обеспечивает географическую безопасность и возможность активно противодействовать внешним угрозам.
Кстати, в 2014 году российская компания «Элтекс » представила новинку — программный контроллер для Wi-Fi сетей SoftWLC. Уникальная разработка рассчитана на крупные организации, корпоративных клиентов, сервис-провайдеров и Enterprise-клиентов.
Возможности беспроводного Контроллер SoftWLC включают в себя:
SoftWLC осуществляет:
- Автообнаружение, автообновление и автоконфигурирование точек доступа
- Массовые операции с группами точек доступа
- Сбор и графическое представление статистики о параметрах сети
- Гибкая распределенная система прав и доступа к управлению устройствами
- Интеграция со встроенным WEB-порталом
- Кастомизация WEB страниц под конкретного оператора
- Интеграция с SMS GW
- Интеграция с OSS
МОНТАЖ WI-FI СЕТИ
При организации локальной Wi-Fi сети в офисе роутер обеспечивающий доступ в Интернет (маршрутизатор ) лучше всего установить отдельным устройством или сервером, подключив его к общей Wi-Fi сети. А еще лучше — кабелем к одной из wifi точек доступа.
Обычно к месту установки точек доступа подводится кабель «витая пара» (U /UTP) и электрический кабель с розеткой. Но можно использовать вариант подключения устройств только по витой паре — с помощью технологии POE (Power Over Ethernet) что дословно можно перевести как «Электричество по витой паре». Power over Ethernet, или PoE — технология, позволяющая передавать удалённому устройству вместе с данными и электрическую энергию через стандартную витую пару в сети Ethernet. Эта технология специально разработана для беспроводных точек доступа, IP-телефонии, Web-камер, сетевых концентраторов и других устройств, к которым нежелательно или невозможно проводить отдельный электрический кабель. Передача сигнала осуществляется с помощью IP-инжекторов — специальных устройств, конвертирующих сильные токи в слабые и обратно. Инжекторы могут быть как внешние, так и уже встроенные в сами устройства.
Закреплять роутер нужно как можно выше во избежания пересечения радиоволн от приборов работающих на частоте 2,4 ГГц, он не должен располагаться прямо за компьютером или другим прибором, который имеет сильное излучение или препятствует радиоволнам за счет металлического корпуса.
НАСТРОЙКА WI-FI СЕТИ
Далее производится настройка точек доступа, где они устанавливаются в режим bridge, синхронизируются друг с другом в рамках одной сети. Если этого не сделать — то устройства в офисе будут воспринимать их как разные беспроводные сети и периодически цепляться то к одной сети то к другой.
Чтобы избежать ручной настройки каждой из точек доступа, можно заранее установить беспроводной контроллер и подключать к нему новые устройства беспроводного доступа по мере надобности. В таком случае управление точками доступа осуществляется централизованно. Если в локальную сеть планируется подключать и проводные устройства, то необходима точка доступа с функциональностью маршрутизатора(Wireless Router).
В целях безопасности и снижения нагрузки на сеть роутер лучше настроить так, чтобы часть компьютеров имело статический IP адрес, а временные — подключались динамически посредством DHCP. Пути к сетевым папкам, принтерам и серверам также лучше всего задавать по IP адресу MAC (Media Access Control). Для этого после подключения роутера и настройки беспроводных соединений на компьютерах-клиентах, нажмите в пункте меню «Advanced » на вкладку «Wireless Settings» и выберите «Setup Access List». Здесь можно увидеть список всех подключенных устройств. Чтобы узнать MAC адрес wi-fi узлов сети в командной строке нужно набрать « ipconfig /all », далее компьютеры для которых вы хотите открыть свободный доступ, и нажмите на «Add » (Добавить ). Теперь поставьте галочку напротив «Turn Access Control On» и щелкните no«Apply » — выбранные устройства подключены к локальной wi-fi сети.
Перезапустите Wi-Fi роутер через веб интерфейс и попробуйте настроить на вашем устройстве сеть, используя следующие настройки:
IP – из диапазона свободных адресов
Mask – 255.255.255.0
Getway – 192.168. (0 -1).1
В настройках авторизации сети укажите использование WEP шифрования и тип Аутентификации по WPA-PSK и TKIP. Введите ваш пароль от сети и подключайтесь.
Читайте также: