Применимо для селекции вегетативно размножающихся растений
Кроме результатов, полученных от гибридизации, является еще широкая возможность изменить строение гибридов в ранней стадии их развития путем сращения их с молодыми сеянцами гибридов других видов и даже других родов и семейств, и таким образом под совместным влиянием работы листовой их системы можно создать не только новые сорта, т. е. разновидности, но и совершенно новые виды и роды растений. Здесь открывается поистине грандиозное поле создания новых организмов растительного царства.
Типы прививок растений. 1 — капулировка; 2 — прививка в прикладку; 3 — прививка за кору; 4 — окулировка; 5 — прививка в расщеп. (По Н. И. Кичунову, 1930)
Искусство прививки растений возникло в глубокой древности. Время его возникновения теряется в дали прошедших тысячелетий истории человеческой культуры. Возможно, что сама природа научила древнего человека этому искусству, когда он наблюдал, например, срастание двух пораненных ветвей соседних деревьев. В литературе указывается, что прививать растения впервые научились финикияне и китайцы. Финикияне распространили это свое достижение в области садоводства на запад — к древним грекам и рямлянам, а китайцы — в различные восточные страны. Однако при подобной постановке вопроса, как мне кажется, игнорируется существование других столь же древних (а вероятно — еще более древних) земледельческих народов, центров земледельческой (в широком смысле, т. е. включая и садоводство) культуры, в которых, возможно, как раз и возникло впервые искусство прививок.
К одному из наиболее древних подобных очагов относится, например, очаг, расположенный на территории советской Средней Азии и географически связанный с горными районами Западного Тянь-шаня и Западного Памиро-Алая (древняя Согдиана), откуда, как известно, даже китайцы позаимствовали ряд ценных культур (виноград, люцерну).
Однако, несмотря на весьма продолжительное время знакомства человека с прививкою растений и накопление большого количества относящихся сюда фактов, научная разработка этого вопроса началась в очень недавнее время, примерно с конца XVIII—начала XIX в. Более близко взаимовлияние прививаемых компонентов оставалось неизученным. Путаница и неразбериха, противоположность суждений заставили И. В. пересмотреть этот вопрос с самого начала, т. е. с изучения факта влияния подвоя на привой.
При разработке этого вопроса И. В. преодолел целый ряд трудностей и разрешил серию сложных вопросов.
Много опытов, долголетних и проверенных жизнью, с различными плодовыми породами провел великий экспериментатор, прежде чем он сформулировал свои выводы и решился их опубликовать.
В результате им была полностью показана неправильность способа акклиматизации, предложенного Греллем. При прививке старого культурного сорта на выносливый, морозостойкий подвой, как это рекомендовал Грелль, если и получались известные изменения привитого культурного сорта в сторону большей морозостойкости (под влиянием выносливого подвоя), то эти изменения оказывались временными, неустойчивыми, незакрепленными. При переносе черенков с прививка на другой подвой эта выносливость прививка (культурного сорта) исчезала. Вот почему, как разъяснял И. В., акклиматизация не может быть достигнута разнородными способами прививки взрослых южных сортов даже к выносливым подвоям.
Таким образом, И. В. полностью разъяснил сложнейший вопрос, почему тысячелетняя практика в садоводстве не приводила к выяснению взаимоотношения подвоя с привоем. Садоводы имели дело со старыми, устойчивыми в смысле наследственности сортами плодовых деревьев, мало податливыми к изменениям. А если в качестве подвоев и брались сеянцы (т. е. молодые растения) диких видов, то судьбою их, их изменениями никто не интересовался. Люди все внимание, естественно, обращали на плодоносящий привой, который, будучи старым, каким-либо известным культурным сортом, оставался вне видимого влияния молодого сеянца подвоя. Но сами оставшиеся без внимания сеянцы-подвои претерпевали изменения под влиянием старых сортов (привоев). И. В. указывал, например, на сильные отличия в строении корневых систем подвоев, их морфологии (окраски), причем эти отличия оказывались особенно значительными, когда подвои использовались в возрасте одного-двух лет, а привоями являлись старые культурные сорта; эта разница была слабее, когда подвои брались в более позднем возрасте (4—5 лет), и в особенности — когда к ним были привиты молодые гибридные сорта.
Но И. В. не остановился на уточнении и разработке явления влияния подвоя на привой. Основываясь на своих заключениях о соотносительной силе взаимовлияния обоих компонентов прививки, он поставил и обратный вопрос — о влиянии привоя на подвой.
Ранее китайская яблоня (Malus prunifolia) объединялась в одном роде с грушей и называлась Pirus prunifolia Willd. В настоящее время яблоня (Malus) и груша (Pirus) рассматриваются как отдельные роды.
Привитые черенки-менторы после получения ожидаемого эффекта удаляются вырезанием их из кроны дерева, как уже выполнившие свою роль, что и было указано выше на примере с Кандиль-китайкой. Если же желательна дальнейшая переделка гибрида, например в смысле улучшения качества его плодов, то черенки-менторы оставляются на более долгий срок привитыми на молодой гибридный сеянец, соответственно чему усиливается и их преобразующее влияние на последний.
Подобную операцию можно допустить лишь в случаях необходимости усиления некоторых качеств, например выносливости, молодого сеянца при подборе более подходящего подвоя или с последующим исправлением внесенных подвоем отрицательных свойств путем применения соответствующих менторов.
И. В. указывает, что способом ментора можно достичь изменения очень многих особенностей гибридных сортов, как например увеличения урожайности, крупности плодов, их способности сохраняться в свежем виде при длительном хранении, повышения сахаристости и т. д.
И. В. предупреждает, однако, что этот способ с успехом можно применять только к молодым и притом гибридным сеянцам, выращенным на своих корнях, а не к привитым на дички и не к старым, давно существующим сортам плодово-ягодных пород, о чем уже было дано разъяснение выше.
Приведем еще примеры применения метода ментора Мичуриным и — под его руководством — его учениками.
В 1888 г. из зерна вишни Владимирская ранняя (Cerasus vulgaris Mill.), оплодотворенной черешней Винклера белая (С. avium (L.) Moench), был получен гибрид — вишне-черешня Краса Севера, который в 1891 г. дал первые плоды белой окраски. В 1893 г. почки этого сорта с помощью окулировки были перенесены на сеянцы простой красной вишни. На побегах из этих почек в 1897 г. развились плоды уже розовой окраски. Таким образом, даже начавшие плодоносить растения могут поддаваться воздействию ментора.
Приведем еще пример управления пигментацией: при прививке черенков молодого гибридного сорта розы Слава света, с желтыми цветками, на однолетние сеянцы розы (Rosa canina L.) гибрид Слава света совершенно утерял желтую окраску своих цветков. Отметим здесь, что позднее (1947) учеником Мичурина — П. Н. Яковлевым — была подтверждена возможность управления признаком окраски при помощи метода ментора. Черенки гибрида сливы Окия с персиком Амсден с зелеными листьями были привиты на краснолистный ментор (слива Цистена).
Тройной гибрид — слива Окия (Okiya) — получен Гансеном в Америке от скрещивания американской песчаной вишни (Cerasus Besseyi Baill.) с гибридом дикой сливы (Prunus Munsoniana Wight. Hedr.) и с китайской сливой (Р. salicina Lindl.).
Помощью ментора можно изменить и время созревания плодов. В 1907 г. И. В. от скрещивания американского зимнего сорта культурной яблони Бельфлер желтый с нашей садовой Китайкой получил новый, первоклассный по своим качествам сорт Бельфлер-китайку. В 1914 г. последняя впервые принесла плоды, однако они оказались рано созревающими и сохранялись в свежем виде в течение очень короткого промежутка времени — не далее как до половины сентября. Тогда И. В. привил несколько черенков американского Бельфлера на нижние ветви Бельфлер-китайки. Со следующего же плодоношения созревание плодов стало несколько более поздним и увеличился срок сохранения плодов при лежке. Не удовлетворившись этим, И. В. в 1915 г. снова привил 6 черенков различных сортов яблонь (зимнего созревания плодов) к гибриду (Бельфлер-китайка) в качестве менторов в те же части кроны (повторное применение ментора). И вскоре Бельфлер-китайка стала приносить плоды позднего созревания, способные к долгой лежке. Наконец, в 1919 г. И. В. привил черенки этой своей воспитанницы в крону взрослого (20-летнего) дерева знаменитого крупноплодного сорта яблони Антоновка полуторафунтовая, чем было достигнуто укрупнение плодов Бельфлер-китайки.
В качестве замечательного примера изменения формы и других особенностей плода под влиянием ментора можно указать опыт И. В. по прививке гибридного сеянца яблони сорта Антоновка к отпрыску грушевого дерева. Антоновка в этих условиях принесла плоды… грушевидной формы (!), с ранним созреванием, грушевым вкусом и со свойственной плодам данной груши окраской.
Аналогичное воспитание И. В. применял и в других случаях. Так, в 1889 г. он получил Терн сладкий путем оплодотворения цветков четырехлетнего обыкновенного терна (Primus spinosa L.) пыльцой высококачественной сливы Ренклод зеленый (Р. domestica L.). Со всходов, появившихся из гибридного семени, в 1891 г. были взяты почки (глазки) и привиты на корневую шейку трехлетнего сеянца обыкновенного терна. Привитой сеянец стал уклоняться в сторону терна под влиянием корней дикого подвоя. При пересадке в 1899 г. он был посажен в землю так, что место прививки оказалось под землею и привой мог развить свои корни, на которые он и был затем полностью переведен. После этих операций Терн сладкий стал выносливым и высококачественным сортом.
Отсюда можно сделать общий вывод: чем больше листьев имеется у ментора и чем меньше их имеется у воспитываемого ментором гибрида, тем больше сказывается преобразующее влияние первого на последний. Это положение и было обосновано И. В. в его опытах.
Совершенно оригинальным применением метода ментора является получение таким путем подвоев желательного для селекционера типа. И. В. описывает случаи подобного рода применения им ментора. В 1900 г. на подвой — сеянец дикой лесной груши — он привил культурный сорт груши Сахарная. В 1918 г. это дерево пострадало от мороза и дало сильные отпрыски от корневой шейки подвоя. Один из них был оставлен для развития кроны и в 1922 г. принес плоды, в которых можно было ясно усмотреть длительное влияние привоя, усиленное влиянием листвы последнего (уцелевшей кроны груши Сахарной), а именно: плоды у дичка сделались желтыми и очень сладкими, хотя и остались более мелкими, круглыми и более рано созревающими, нежели плоды привоя. И. В. пишет, что этот дичок уже является идеальным подвоем для груш, так как он улучшен и не будет влиять ухудшающим образом на качество плодов привоя.
Можно сказать, что в сложном организме растения, составленного путем прививки из разных растений, всегда наблюдаются изменения в соединенных частях, происходит как бы борьба влияний соединенных прививкою компонентов. Особенно сильные изменения наблюдаются в случае соединения растений, принадлежащих различным видам и родам.
В настоящее время вегетативная гибридизация вошла в нашу действительность как один из перспективных, хотя и нуждающихся в дальнейшей разработке методов селекции. Весьма интересные исследования в этом отношении приводит акад. Н. В. Цицин (1954), разрабатывающий
Вышеуказанное взаимовлияние привоя и подвоя проявляется не безотносительно, а в тесной связи с целым рядом условий. И. В. установил следующие основные положения в этом вопросе.
Однако точный учет взаимовлияния подвоя и привоя (если вспомнить все разнообразные воздействия внешних факторов на формирование молодого гибридного организма) является до такой степени сложным делом, что не всегда получается ожидаемый результат. Здесь бывают и неудачи, и на этот счет И. В. предостерегает от излишней самоуверенности.
Выше мы останавливались на вопросах прививки более или менее близких по родству растений, относящихся к одному и тому же роду или хотя и к разным родам, но во всяком случае входящим в одно и то же семейство.
Однако в более новое время все эти высказывания стали считаться скорее досужим поэтическим вымыслом, нежели реальностью. Дарвин писал (1937), что никому еще не удалось привить одно к другому деревья, принадлежащие к совершенно разным семействам.
Как уже отмечалось, межсемейственные прививки считались крайне сомнительными, а некоторые авторы брали под сомнение даже и межродовые прививки, т. е. прививки представителей разных родов одного и того же семейства. На долю И. В. выпало пролить свет на один из самых сложных и запутанных вопросов биологии растений.
В приведенном опыте листья грушевого сеянца постепенно изменили свою окраску, сделались темнее, толще, покрылись глянцевитым налетом и осенью не опали, как это обычно бывает, а остались в живом виде на все последующие пять лет. Такой же удачный результат получился и при сращивании двухлетнего сеянца лимона с однолетним сеянцем Айвы северной (гибридом айвы, взятой с Кавказа, с Айвой нижневолжской).
Дальнейшие исследования в области межсемейственных прививок целиком подтвердили правильность выводов И. В. и его учеников о возможности подобного рода прививок и их практическом значении. Сошлемся хотя бы на опыты того же С. С. Берлянда, проведшего около 5000 межсемейственных прививок (60 видов, относящихся к 16 семействам). Им получено в результате этой работы 200 удачных прививок для 20 межсемейственных комбинаций. Согласно указанию И. В., прививки в данном случае производились в ранний период развития растений из проросших семян — в возрасте 8—10 (12—15) дней.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Это наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор. Теоретической основой селекции является генетика.
Для успешного решения задач, стоящих перед селекцией, академик Н.И. Вавилов особо выделял значение изучения сортового, видового и родового разнообразия культур; изучения наследственной изменчивости; влияния среды на развитие интересующих селекционера признаков; знаний закономерностей наследования признаков при гибридизации; особенностей селекционного процесса для само- или перекрестноопылителей; стратегии искусственного отбора.
Породы, сорта, штаммы — искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями: продуктивностью, морфологическими, физиологическими признаками.
Каждая порода животных, сорт растений, штамм микроорганизмов приспособлены к определенным условиям, поэтому в каждой зоне нашей страны имеются специализированные сортоиспытательные станции и племенные хозяйства для сравнения и проверки новых сортов и пород.
Для успешной работы селекционеру необходимо сортовое разнообразие исходного материала. Во Всесоюзном институте растениеводства Н.И. Вавиловым была собрана коллекция сортов культурных растений и их диких предков со всего земного шара, которая в настоящее время пополняется и является основой для работ по селекции любой культуры.
Центры происхождения культурных растений, выявленные Н.И. Вавиловым
Центры происхождения | Местоположение | Культивируемые растения |
---|---|---|
1. Южноазиатский тропический | Тропическая Индия, Индокитай, о-ва Юго-Восточной Азии | Рис, сахарный тростник, цитрусовые, баклажаны и др. (50% культурных растений) |
2. Восточноазиатский | Центральный и Восточный Китай, Япония, Корея, Тайвань | Соя, просо, гречиха, плодовые и овощные культуры — слива, вишня и др. (20% культурных растений) |
3. Юго-Западноазиатский | Малая Азия, Средняя Азия, Иран, Афганистан, Юго-Западная Индия | Пшеница, рожь, бобовые культуры, лен, конопля, репа, чеснок, виноград и др. (14% культурных растений) |
4. Средиземноморский | Страны по берегам Средиземного моря | Капуста, сахарная свекла, маслины, клевер (11% культурных растений) |
5. Абиссинский | Абиссинское нагорье Африки | Твердая пшеница, ячмень, бананы, кофейное дерево, сорго |
6. Центральноамериканский | Южная Мексика | Кукуруза, какао, тыква, табак, хлопчатник |
7. Южноамериканский | Западное побережье Южной Америки | Картофель, ананас, хинное дерево |
Наиболее богатыми по количеству культур являются древние центры цивилизации. Именно там наиболее ранняя культура земледелия, более длительное время проводятся искусственный отбор и селекция растений.
Классическими методами селекции растений были и остаются гибридизация и отбор. Различают две основные формы искусственного отбора: массовый и индивидуальный.
Массовый отбор
Массовый отбор применяют при селекции перекрестноопыляемых растений (рожь, кукуруза, подсолнечник). В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.
Индивидуальный отбор
Индивидуальный отбор применяют при селекции самоопыляемых растений (пшеница, ячмень, горох). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и называется чистой линией. Чистая линия — потомство одной гомозиготной самоопыленной особи. Так как постоянно происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.
Естественный отбор
Этот вид отбора играет в селекции определяющую роль. На любое растение в течение его жизни действует комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определенному температурному и водному режиму.
Инбридинг (инцухт)
В центре гетерозисная кукуруза, слева и справа родительские особи.
Р | ♀ AAbbCCdd | × | ♂ aaBBccDD |
F1 | AaBbCcDd |
Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования. Сверхдоминирование — вид взаимодействия аллельных генов, при котором гетерозиготы превосходят по своим характеристикам (по массе и продуктивности) соответствующие гомозиготы. Начиная со второго поколения гетерозис затухает, так как часть генов переходит в гомозиготное состояние.
Растения диплоидной (2n = 16) и тетраплоидной (2n = 32) гречихи.
Аа × Аа
АА 2 Аа аа
Перекрестное опыление самоопылителей дает возможность сочетать свойства различных сортов. Например, при селекции пшеницы поступают следующим образом. У цветков растения одного сорта удаляются пыльники, рядом в сосуде с водой ставится растение другого сорта, и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.
Метод получения полиплоидов. Полиплоидные растения обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.
Виды, у которых кратно умножен один и тот же геном, называются автополиплоидами. Классическим способом получения полиплоидов является обработка проростков колхицином. Это вещество блокирует образование микротрубочек веретена деления при митозе, в клетках удваивается набор хромосом, клетки становятся тетраплоидными.
Отдаленная гибридизация
Восстановление плодовитости капустно-редечного гибрида: 1 — капуста; 2 — редька; 3, 4 — капустно-редечный гибрид.
Отдаленная гибридизация — это скрещивание растений, относящихся к разным видам. Отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не могут конъюгировать) и, следовательно не образуются гаметы.
Использование соматических мутаций
Соматические мутации применяются для селекции вегетативно размножающихся растений. Это использовал в своей работе еще И.В. Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Кроме того, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.
Экспериментальный мутагенез
Основан на открытии воздействия различных излучений для получения мутаций и на использовании химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций. Сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.
Методы селекции растений, предложенные И.В. Мичуриным
С помощью метода ментора И.В. Мичурин добивался изменения свойств гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества, или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В. Мичурин указывал на возможность управления доминированием определенных признаков при развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие определенными внешними факторами. Например, если гибриды выращивать в открытом грунте, на бедных почвах повышается их морозостойкость.
Оборудование: таблицы по общей биологии, иллюстрирующие многообразие пород и сортов, основные методы и достижения селекции растений.
I. Проверка знаний
А. Устная проверка знаний
1. Ч.Дарвин о причинах многообразия пород и сортов.
2. Формы искусственного отбора и их характеристика.
3. Творческая роль искусственного отбора.
Б. Работа по карточкам
№1. Почему породу или сорт можно считать рукотворной популяцией, т.е. популяцией, созданной волей и усилиями людей?
№2. Покажите на примерах влияние отбора на направления породо- и сортообразования.
№3. Почему массовый отбор применяется для перекрестноопыляемых растений? Дает ли массовый отбор генетически однородный материал? Почему при массовом отборе необходим повторный отбор?
II. Изучение нового материалаВ селекции необходимо учитывать следующие особенности биологии растений:
– высокая плодовитость и многочисленность потомства;
– наличие самоопыляемых видов;
– способность размножаться вегетативными органами;
– возможность искусственного получения мутантных форм.
Эти особенности растений определяют выбор методов селекции.
2. Скрещивание как метод увеличения разнообразия материала для искусственного отбора
Основными методами селекции растений служат гибридизация и отбор. Обычно эти методы используют совместно. Гибридизация повышает разнообразие материала, с которым работает селекционер. Но сама по себе, чаще всего, она не может привести к целенаправленному изменению признаков у организмов, т.е. скрещивания без искусственного отбора являются малоэффективными. Скрещиванию предшествует тщательный отбор родительских пар. Для успешного поиска, подбора и использования исходного материала большое значение имеют учение Н.И. Вавилова о центрах происхождения культурных растений, его закон гомологических рядов в наследственной изменчивости, эколого-географические принципы систематики растений, а также созданная Н.И. Вавиловым, его последователями и учениками коллекция сельскохозяйственных растений.
Гибридизация может осуществляться по разным схемам. Различают скрещивания простые (парные) и сложные (ступенчатые, возвратные, или беккроссы).
Простым, или парным, называется скрещивание между двумя родительскими формами, производимое однократно. Разновидностью их являются так называемые взаимные (реципрокные) скрещивания. Напомним, что их суть состоит в том, что проводятся два скрещивания, причем отцовская форма первого скрещивания используется во втором скрещивании в качестве материнской, а материнская – соответственно в качестве отцовской. Применяются такие скрещивания в двух случаях: когда развитие наиболее ценного признака обусловлено цитоплазматической наследственностью (например, морозостойкость у некоторых сортов озимой пшеницы) или когда завязываемость семян у гибридов зависит от того, в качестве материнской или отцовской формы берется тот или иной сорт. Реципрокные скрещивания показывают, что иногда влияние цитоплазмы материнского сорта оказывается весьма существенным.
Так, в НИИ масличных культур им. В.С. Пустовойта (г. Краснодар) в результате реципрокных скрещиваний сортов подсолнечника 3519 и 6540 были получены межсортовые гибриды, которые значительно (в 2,5 раза) различались по степени поражения заразихой в зависимости от того, какой сорт был взят в качестве материнской, а какой – в качестве отцовской формы. Естественно, в селекционный процесс включили гибриды с большей устойчивостью к заразихе.
Сложными называют скрещивания, в которых используют более двух родительских форм или применяют повторное скрещивание гибридного потомства с одним из родителей. Различают ступенчатые и возвратные сложные скрещивания.
Сложная ступенчатая гибридизация – это система последовательных скрещиваний получаемых гибридов с новыми формами, а также гибридов между собой. Таким путем можно собрать в одном сорте лучшие качества многих исходных форм. Этот метод был впервые разработан и успешно применен известным советским селекционером А.П. Шехурдиным при создании сортов мягкой яровой пшеницы Лютесценс 53/12, Альбидум 43, Альбидум 24, Стекловидная, Саратовская 210, Саратовская 29 и др., а также ряда сортов твердой яровой пшеницы.
При возвратных скрещиваниях полученные гибриды скрещивают с родительской формой, признак которой хотят усилить. Если такие скрещивания повторяют многократно, их называют насыщающими, или поглотительными (беккросы). При этом гибрид насыщается генетическим материалом одного из родителей, а генетический материал другого родителя вытесняется (поглощается), и в геноме гибрида остается один или несколько генов, ответственных за какой-то ценный признак, например засухоустойчивость или устойчивость к одной из болезней. Как правило, в качестве доноров таких признаков используют местные дикорастущие формы, которые чаще всего низкопродуктивны, поэтому селекционерам и приходится прибегать к беккроссам.
В селекции растений находят применение следующие виды скрещиваний.
Инбридинг, или близкородственное скрещивание, используют как один из этапов повышения урожайности. Для этого проводят самоопыление перекрестноопыляемых растений, что ведет к повышению гомозиготности. Через 3–4 поколения возникают так называемые чистые линии – генетически однородное потомство, полученное индивидуальным отбором от одной особи или пары особей в ряду поколений. Многие аномальные признаки являются рецессивными. В чистых линиях они проявляются фенотипически. Это приводит к неблагоприятному эффекту, снижению жизнеспособности организмов, получившему название инбредная депрессия. Но, несмотря на неблагоприятное влияние самоопыления у перекрестноопыляемых растений, его часто и успешно применяют в селекции для получения чистых линий. Они необходимы для наследственного закрепления желательных, ценных признаков, а также для проведения межлинейного скрещивания. У самоопыляющихся растений не происходит накопления неблагоприятных рецессивных мутаций, т.к. они быстро переходят в гомозиготное состояние и устраняются естественным отбором.
Межлинейное скрещивание – перекрестное опыление между разными самоопыляющимися линиями, в результате которого в ряде случаев появляются высокоурожайные межлинейные гибриды. Например, для получения межлинейных гибридов кукурузы срывают метелки с выбранных растений и, когда появляются рыльца пестиков, опыляют их пыльцой этого же растения. Чтобы не произошло опыление пыльцой других растений, соцветия закрывают бумажными изоляторами. Так получают несколько чистых линий на протяжении ряда лет, а затем скрещивают чистые линии между собой и подбирают такие, потомство которых дает максимальную прибавку урожая.
Межсортовое скрещивание – скрещивание растений разных сортов между собой с целью проявления у гибридов комбинативной изменчивости. Это вид скрещивания наиболее распространен в селекции и лежит в основе получения многих высокоурожайных сортов. Его применяют и в отношении самоопыляемых видов, например пшеницы. У цветков растения одного сорта пшеницы удаляют пыльники, рядом в банке с водой ставится растение другого сорта, и оба растения накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.
Отдаленная гибридизация – скрещивание растений разных видов, а иногда и родов, способствующее получению новых форм. Обычно скрещивание происходит в пределах вида. Но иногда возможно получение гибридов от скрещивания растений разных видов одного рода и даже разных родов. Так, существуют гибриды ржи и пшеницы, пшеницы и дикого злака эгилопс. Однако отдаленные гибриды обычно бесплодны. Основные причины бесплодия:
– у отдаленных гибридов обычно невозможен нормальный ход созревания половых клеток;
– хромосомы обоих родительских видов растений настолько несхожи между собой, что они оказываются неспособными конъюгировать, в результате чего не происходит нормальной редукции их числа, нарушается процесс мейоза.
Эти нарушения оказываются еще более значительными, когда скрещивающиеся виды отличаются по числу хромосом (например, диплоидное число хромосом ржи 14, мягкой пшеницы – 42). Существует немало культурных растений, созданных в результате отдаленной гибридизации. Например, в результате многолетних работ академика Н.В. Цицина и его сотрудников получены ценные сорта зерновых на основе гибридизации пшеницы с многолетним сорным растением пыреем. В результате гибридизации пшеницы с рожью (эти гибриды обычно бесплодны) было получено новое культурное растение, названное тритикале (лат. triticum – пшеница, secale – рожь). Это растение очень перспективно как кормовая и зерновая культура, дающая высокие урожаи и стойкая к неблагоприятным воздействиям внешней среды.
3. Явление гибридной силы и его генетические основы
Проявление гетерозиса по продуктивности у гибрида (в центре), полученного от скрещивания двух различных линий кукурузы (по краям)
Еще в середине XVIII в. русский академик И.Кельрейтер обратил внимание на то, что в отдельных случаях при скрещивании растений гибриды первого поколения значительно мощнее родительских форм. Затем Ч.Дарвин сделал заключение, что гибридизация во многих случаях сопровождается более мощным развитием гибридных организмов. Более высокая жизнеспособность, продуктивность гибридов первого поколения по сравнению со скрещиваемыми родительскими формами получила название гетерозис. Гетерозис может возникать при скрещивании пород у животных, сортов и чистых линий у растений. Так, межсортовой гибрид Грушевской и Днепропетровской кукурузы дает 8–9% прибавки урожая, а межлинейный гибрид двух самоопыляемых линий этих же сортов – 25–30% прибавки к урожаю. Известны случаи гетерозиса и при отдаленных скрещиваниях видов и родов растений и животных.
Таким образом, явление гетерозиса как наследственное выражение эффектов гибридизации было известно давно. Однако его использование в селекционном процессе началось сравнительно недавно, в 1930-е гг. Открытие и понимание явления гетерозиса позволило определить новое направление селекционного процесса – создание высокопродуктивных гибридов растений и животных.
Новый период в изучении явления гетерозиса начинается в 20-е гг. XX в. с работ американских генетиков Дж.Шелла, Е.Иста, Р.Хелла, Д.Джонса. В результате проведенных ими работ у кукурузы путем самоопыления были получены инбредные линии, отличающиеся от исходных растений пониженной продуктивностью и жизнеспособностью, т.е. сильной инбредной депрессией. Но когда Шелл скрестил между собой чистые линии, то неожиданно для себя получил очень мощные гибриды первого поколения, значительно превосходящие по всем параметрам продуктивности как исходные линии, так и сорта, из которых путем самоопыления были получены эти линии. С этих работ и началось широкое использование гетерозиса в селекционном процессе.
Чем объясняется явление гетерозиса, т.е. мощность гибридов, с генетической точки зрения? Генетики предложили для его объяснения несколько гипотез. Наиболее распространенными являются следующие две.
Гипотеза доминирования разработана американским генетиком Д.Джонсом. В ее основе лежит представление о благоприятно действующих доминантных генах в гомозиготном или гетерозиготном состоянии. Если у скрещиваемых форм имеется всего по два доминантных благоприятно действующих гена (AAbbCCdd х aaBBccDD), то у гибpидa их четыре (AaBbCcDd), независимо от того, в гомозиготном или гетерозиготном состоянии они находятся. Это, по мнению сторонников этой гипотезы, и определяет гетерозис гибрида, т.е. его преимущества перед исходными формами.
Гипотеза сверхдоминирования предложена американскими генетиками Дж.Шеллом и Е.Истом. В ее основе лежит признание того, что гетерозиготное состояние по одному или многим генам дает преимущество перед гомозиготными состояниями по одному или многим генам. Схема, иллюстрирующая гипотезу сверхдоминирования по однoмy гену, довольно проста. Она свидетельствует о том, что гетерозиготное состояние по гену Аа имеет преимущества в синтезе контролируемого геном продукта перед гомозиготами по аллелям этого гена. Начиная со второго поколения гибридов, эффект гетерозиса затухает, т.к. часть генов переходит в гомозиготное состояние:
P – Аа х Аа;
F2 – АА; 2Аа; аа.
Имеется и ряд других гипотез гетерозиса. Наиболее интересную из них, гипотезу компенсационного комплекса генов, предложил отечественный генетик В.А. Струнников. Ее суть сводится к следующему. Пусть возникли мутации, сильно понижающие жизнеспособность и продуктивность. В результате отбора у гомозигот формируется компенсационный комплекс генов, в значительной степени нейтрализующий вредное действие мутаций. Если затем такую мутантную форму скрестить с нормальной (без мутаций) и тем самым перевести мутации в гетерозиготное состояние, т.е. нейтрализовать их действие нормальным аллелем, то сложившийся по отношению к мутациям компенсационный комплекс обеспечит гетерозис.
Таким образом, несмотря на то, что генетические основы гетерозиса до конца еще не выяснены, несомненно одно: положительную роль у гибридов играет высокая гетерозиготность, приводящая к проявлению повышенной физиологической активности.
4. Преодоление бесплодия межвидовых гибридов растений
Капустно-редечный гибрид (рафанобрассика)
Таким образом, полученный капустно-редечный гибрид, названный рафанобрассикой, стал плодовитым. Гибрид не расщеплялся на родительские формы, т.к. хромосомы редьки и капусты всегда оказывались вместе. Это созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки состояли из двух половинок, из которых одна напоминала стручок капусты, другая – редьки. Отдаленная гибридизация в сочетании с удвоением числа хромосом (полиплоидия) привела к восстановлению плодовитости.
Г.Д. Карпеченко удалось впервые четко продемонстрировать взаимосвязь отдаленной гибридизации и полиплоидии в получении плодовитых форм. Это имеет огромное значение как для эволюции, так и для селекции.
5. Использование в селекции растений соматических мутаций
Использование соматических мутаций применимо для селекции вегетативно размножающихся растений. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию или сохранить и размножить любую гетерозиготную форму, обладающую хозяйственно полезными признаками. Например, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур. При половом размножении свойства сортов, состоящих из гетерозиготных особей, не сохраняются, и происходит их расщепление.
6. Искусственный отбор в селекции растений
Как уже было нами сказано, гибридизация эффективна в селекции лишь в сочетании с отбором. В селекции растений применяют как массовый, так и индивидуальный отбор.
При проведении массового отбора из большого числа особей выбирают группу растений с лучшими фенотипами, генотипы которых неизвестны. Массовый отбор проводится среди перекрестноопыляемых растений. Совместное выращивание отобранных растений способствует их свободному скрещиванию, что ведет к гетерозиготности особей. Массовый отбор проводят многократно в ряду последующих поколений. К нему прибегают в том случае, когда требуется относительно быстро улучшить тот или иной сорт. Но наличие модификационной изменчивости снижает ценность сортов, выведенных массовым отбором.
Индивидуальный отбор в селекции растений используют как способ сохранения для размножения лучших растений. Их выращивают изолированно друг от друга с целью выявления у потомства ценных признаков через сравнение с исходными формами и между собой. Как нам уже известно, чаще всего объектом индивидуального отбора выступают самоопыляющиеся растения, и его результатом являются чистые линии.
7. Роль естественного отбора в селекции растений
Естественный отбор в селекции играет определяющую роль. На любое растение в течение всей его жизни действует целый комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определенному температурному, водному режиму. Поэтому благодаря естественному отбору у особей формируются приспособления к среде обитания. Не может быть культурных растений, одинаково продуктивных в любой местности. Под влиянием естественного отбора происходит районирование сортов.
8. Индуцированный мутагенез, полиплоидия и их использование в селекции растений
Исходный сорт Новосибирская 7 (слева), мутантный сорт Новосибирская 67 (справа)
Индуцированный мутагенез основан на воздействии различных излучений и химических мутагенов на организм для получения мутаций. Мутагены позволяют получить широкий спектр разнообразных мутаций. Из 1 тыс. искусственно полученных мутаций 1–2 тыс. оказываются полезными. Но в этом случае необходим жесткий индивидуальный отбор мутантных форм и дальнейшая работа с ними.
Методы мутагенеза успешно применяют в селекции растений. Сейчас в мире создано более 1 тыс. сортов, ведущих родословную от отдельных мутантных растений, полученных в результате искусственного мутагенеза. Известный сорт яровой пшеницы Новосибирская 67 был получен в Институте цитологии и генетики СО РАН после обработки семян исходного материала сорта Новосибирская 7 рентгеновскими лучами. Этот сорт обладает короткой и прочной соломиной, что предохраняет растения от полегания в период уборки урожая.
В селекции растений находит широкое применение и метод получения полиплоидных форм. Полиплоидия является разновидностью геномной мутации и заключается в кратном по сравнению с гаплоидным увеличении набора хромосом. Полиплоидные формы можно получить, обрабатывая колхицином семена в период их прорастания.
III. Закрепление знаний
Обобщающая беседа по ходу изучения нового материала.
IV. Домашнее задание
Изучить параграф учебника (особенности биологии растений, учитываемые в селекции, основные методы селекции растений и их характеристика).
Учение Н. И. Вавилова о центрах происхождения и многообразия культурных растений
Селекция — наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор. Теоретической основой селекции является генетика.
Для успешного решения задач, стоящих перед селекцией, академик Н.И.Вавилов особо выделял значение:
Изучения сортового, видового и родового разнообразия интересующей нас культуры;
Влияния среды на развитие интересующих селекционера признаков;
Изучения наследственной изменчивости;
Знаний закономерностей наследования признаков при гибридизации;
Особенностей селекционного процесса для само- или перекрестноопылителей;
Стратегии искусственного отбора.
Породы, сорта, штаммы — искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями: продуктивностью, морфологическими, физиологическими признаками.
Каждая порода животных, сорт растений, штамм микроорганизмов приспособлены к определенным условиям, поэтому в каждой зоне нашей страны имеются специализированные сортоиспытательные станции и племенные хозяйства для сравнения и проверки новых сортов и пород.
Для успешной работы селекционеру необходимо сортовое разнообразие исходного материала, с этой целью Н.И.Вавиловым была собрана коллекция сортов культурных растений и их диких предков со всего земного шара. К 1940 году во Всесоюзном институте растениеводства насчитывалось 300 тыс. образцов. Но с позиций лысенковщины, занявшей в то время руководящие позиции в биологической науке России и считавшей, что определяющую роль в создании новых форм играет окружающая среда, эта коллекция была не нужна. Работы по пополнению коллекции были прекращены. В настоящее время коллекция пополняется и является основой для работ по селекции любой культуры.
Н.И.Вавилов установил центры происхождения культурных растений, где находится наибольшее видовое и сортовое многообразие культурных растений.
Центры происхождения культурных растений (по Н.И.Вавилову).
1. Южноазиатский тропический
Тропическая Индия, Индокитай, о-ва Юго-Восточной Азии
Центральный и Восточный Китай, Япония, Корея, Тайвань
Малая Азия, Средняя Азия, Иран, Афганистан, Юго-Западная Индия
Страны по берегам Средиземного моря
Абиссинское нагорье Африки
Западное побережье Южной Америки
Рис, сахарный тростник, цитрусовые, баклажаны и др. (50% культурных растений)
Соя, просо, гречиха, плодовые и овощные культуры — слива, вишня и др. (20% культурных растений)
Пшеница, рожь, бобовые культуры, лен, конопля, репа, чеснок, виноград и др. (14% культурных растений)
Капуста, сахарная свекла, маслины, клевер (11% культурных растений)
Твердая пшеница, ячмень, кофейное дерево, бананы, сорго
Кукуруза, какао, тыква, табак, хлопчатник
Наиболее богатыми по количеству культур являются древние центры цивилизации, именно там наиболее ранняя культура земледелия, более длительное время проводится искусственный отбор и селекция растений.
Основные методы селекции растений
Классическими методами селекции растений были и остаются гибридизация и отбор. Различают две основные формы искусственного отбора: массовый и индивидуальный.
1. Массовый отбор применяют при селекции перекрестноопыляемых растений, таких, как рожь, кукуруза, подсолнечник. При этом выделяют группу растений, обладающих ценными признаками. В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя даже от одного материнского растения обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.
2. Индивидуальный отбор эффективен для самоопыляемых растений (пшеницы, ячменя, гороха). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и называется чистой линией. Чистая линия — потомство одной гомозиготной самоопыленной особи. У любой особи тысячи генов, и так как происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.
Рис. 339. В центре гетерозисная кукуруза, слева и справа чистые линии родительских форм. |
3. Инбридинг используют при самоопылении перекрестноопыляемых растений, например, для получения чистых линий кукурузы. При этом подбирают такие растения, гибриды которых дают максимальный эффект гетерозиса — жизненной силы, образуют початки более крупные, чем початки родительских форм. От них получают чистые линии — на протяжении ряда лет, производят принудительное самоопыление — срывают метелки с выбранных растений и, когда появляются рыльца пестиков, их опыляют пыльцой этого же растения. Изоляторами предохраняют соцветия от попадания чужой пыльцы. У гибридов многие рецессивные неблагоприятные гены при этом переходят в гомозиготное состояние, и это приводит к снижению их жизнеспособности, к депрессии. Затем скрещивают чистые линии между собой для получения гибридных семян, дающих эффект гетерозиса.
Эффект гетерозиса объясняется двумя основными гипотезами. Гипотеза доминирования предполагает, что эффект гетерозиса зависит от количества доминантных генов в гомозиготном или гетерозиготном состоянии. Чем больше в генотипе генов в доминантном состоянии — тем больший эффект гетерозиса, и первое гибридное поколение дает прибавку урожая до 30% (рис. 339).
Р ААbbCCdd x aaBBccDD F1 AaBbCcDd
Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования: иногда гетерозиготное состояние по одному или нескольким генам дает гибриду превосходство над родительскими формами по массе и продуктивности.
Но начиная со второго поколения эффект гетерозиса затухает, так как часть генов переходит в гомозиготное состояние.
Рис. 340. Растения диплоидной (2n = 16) и тетраплоидной (2n = 32) гречихи.
4. Перекрестное опыление самоопылителей дает возможность сочетать свойства различных сортов. Рассмотрим, как это практически выполняется при создании новых сортов пшеницы. У цветков растения одного сорта удаляются пыльники, рядом в банке с водой ставится растение другого сорта, и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.
5. Очень перспективен метод получения полиплоидов, у растений полиплоиды обладают большей массой вегетативных органов, имеют более крупные плоды и семена . Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.
Виды, у которых кратно умножен один и тот же геном, называются аутополиплоидами. Классическим способом получения полиплоидов является обработка проростков колхицином. Это вещество блокирует образование микротрубочек веретена деления при митозе, в клетках удваивается набор хромосом, клетки становится тетраплоидными (рис. 340).
6. Отдаленная гибридизация — скрещивание растений, относящихся к разным видам. Но отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не конъюгируют), и не образуются гаметы.
В 1924 году советский ученый Г.Д.Карпеченко получил плодовитый межродовой гибрид. Он скрестил редьку (2n = 18 редечных хромосом) и капусту (2n = 18 капустных хромосом). У гибрида в диплоидном наборе было 18 хромосом: 9 редечных и 9 капустных, но при мейозе редечные и капустные хромосомы не конъюгировали, гибрид был стерильным.
С помощью колхицина Г.Д.Карпеченко удалось удвоить хромосомный набор гибрида, полиплоид стал иметь 36 хромосом, при мейозе редечные (9 + 9) хромосомы конъюгировали с редечными, капустные (9 + 9) с капустными.
Плодовитость была восстановлена. Таким способом были получены пшенично-ржаные гибриды (тритикале), (рис. 341) пшенично-пырейные гибриды и др. Виды, у которых произошло объединение разных геномов в одном организме, а затем их кратное увеличение, называются аллополиплоидами.
Рис. 341. Восстановление плодовитости капустно-редечного гибрида. |
7. Использование соматических мутаций применимо для селекции вегетативно размножающихся растений, что использовал в своей работе еще И.В.Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Кроме того, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.
8. Экспериментальный мутагенез основан на открытии воздействия различных излучений для получения мутаций и на использование химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций, сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.
Многие методы селекции растений были предложены И.В.Мичуриным. С помощью метода ментора И.В.Мичурин добивался изменения свойств гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества; или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В.Мичурин указывал на возможность управления доминированием определенных признаков при развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие определенными внешними факторами. Например, если гибриды выращивать в открытом грунте, на бедных почвах, повышается их морозостойкость.
Основные методы селекции животных
Создание пород домашних животных началось вслед за их приручением и одомашниванием, которое началось 10-12 тыс. лет назад. Содержание в неволе снижает действие стабилизирующей формы естественного отбора. Различные формы искусственного отбора (сначала бессознательный, а затем методический) приводят к созданию всего многообразия пород домашних животных.
В селекции животных, по сравнению с селекцией растений, есть ряд особенностей. Во-первых, для животных характерно в основном половое размножение, поэтому любая порода является сложной гетерозиготной системой. Оценка качеств самцов, которые внешне у них не проявляются (яйценоскость, жирномолочность), оцениваются по потомству и родословной. Во-вторых, у них часто поздняя половозрелость, смена поколений происходит через несколько лет. В-третьих, потомство немногочисленное.
Основными методами селекции животных являются гибридизация и отбор. Различают те же методы скрещивания — близкородственное скрещивание, инбридинг, и неродственное — аутбридинг. Инбридинг, как и у растений, приводит к депрессии. Отбор у животных проводится по экстерьеру (определенным параметрам внешнего строения), т.к. именно он является критерием породы.
1. Внутрипородное разведение направлено на сохранение и улучшение породы. Практически выражается в отборе лучших производителей, выбраковке особей, не отвечающих требованиям породы. В племенных хозяйствах ведутся племенные книги, отражающие родословную, экстерьер и продуктивность животных за много поколений.
2. Межпородное скрещивание используют для создания новой породы. При этом часто проводят близкородственное скрещивание, родителей скрещивают с потомством, братьев с сестрами, это помогает получить большее число особей, обладающих нужными свойствами. Инбридинг сопровождается жестким постоянным отбором, обычно получают несколько линий, затем производят скрещивание разных линий.
Хорошим примером может служить выведенная академиком М.Ф.Ивановым порода свиней — украинская белая степная. При создании этой породы использовались свиноматки местных украинских свиней с небольшой массой и невысоким качеством мяса и сала, но хорошо приспособленных к местным условиям. Самцами-производителями были хряки белой английской породы. Гибридное потомство вновь было скрещено с английскими хряками, в нескольких поколениях применялся инбридинг, были получены чистые линии, при скрещивании которых получены родоначальники новой породы, которые по качеству мяса и массе не отличались от английской породы, по выносливости — от украинских свиней.
3. Использование эффекта гетерозиса. Часто при межпородном скрещивании в первом поколении проявляется эффект гетерозиса, гетерозисные животные отличаются скороспелостью и повышенной мясной продуктивностью. Например, при скрещивании двух мясных пород кур получают гетерозисных бройлерных кур, при скрещивании беркширской и дюрокджерсейской пород свиней получают скороспелых свиней с большой массой и хорошим качеством мяса и сала.
4. Испытание по потомству проводят для подбора самцов, у которых не проявляются некоторые качества (молочность и жирномолочность быков, яйценоскость петухов). Для этого производителей-самцов скрещивают с несколькими самками, оценивают продуктивность и другие качества дочерей, сравнивая их с материнскими и со среднепородными.
5. Искусственное осеменение используют для получения потомства от лучших самцов производителей, тем более что половые клетки можно хранить при температуре жидкого азота любое время.
6. С помощью гормональной суперовуляции и трансплантации у выдающихся коров можно забирать десятки эмбрионов в год, а затем имплантировать их в других коров, эмбрионы так же хранятся при температуре жидкого азота. Это дает возможность увеличить в несколько раз число потомков от выдающихся производителей.
7. Отдаленная гибридизация, межвидовое скрещивание, известно с древних времен. Чаще всего межвидовые гибриды стерильны, у них нарушается мейоз, что приводит к нарушению гаметогенеза. С глубокой древности человек использует гибрид кобылицы с ослом — мула, который отличается выносливостью и долгожительством. Но иногда гаметогенез у отдаленных гибридов протекает нормально, что позволило получить новые ценные породы животных. Примером являются архаромериносы, которые, как и архары, могут пастись высоко в горах, а, как мериносы, дают хорошую шерсть. Получены плодовитые гибриды от скрещивания местного крупного рогатого скота с яками и зебу. При скрещивании белуги и стерляди получен плодовитый гибрид — бестер, хорька и норки — хонорик, продуктивен гибрид между карпом и карасем.
Селекция микроорганизмов. Биотехнология
Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и всех других организмов (1 мутация на 1 млн. особей по каждому гену), но очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену.
В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое.
Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.
Биотехнология — использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.
Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.
Генная инженерия
|
Рис. 342. Образование рекомбинантных плазмид. |
Второй путь — синтез гена искусственным путем. Для этого используются иРНК, с помощью фермента обратная транскриптаза на иРНК синтезируется ДНК.
Методы хромосомной инженерии.
Очень перспективен метод гаплоидов, основанный на выращивании гаплоидных растений с последующим удвоением хромосом. Например, выращивают из пыльцевых зерен кукурузы гаплоидные растения, содержащие 10 хромосом, затем хромосомы удваивают и получают диплоидные (10 пар хромосом), полностью гомозиготные растения всего за 2 — 3 года вместо 6 — 8 летнего инбридинга. Сюда же можно отнести и получение полиплоидных растений в результате кратного увеличения хромосом.
Методы клеточной инженерии.
Выращивание клеточных культур. Метод связан с культивированием отдельных клеток в питательных средах, где они образуют клеточные культуры. Оказалось, что клетки растений и животных, помещенных в питательную среду, содержащую все необходимые для жизнедеятельности вещества, способны делиться. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение. Это дает возможность с помощью клеточных культур получать ценные вещества. Например, культура клеток женьшеня нарабатывает биологически активные вещества. С другой стороны, можно размножить эти растения в пробирках, помещая клетки в определенные питательные среды. Так можно размножать редкие и ценные растения. Это позволяет создавать безвирусные сорта картофеля и других растений.
Клонирование. Интересен метод пересадки ядер соматических клеток в яйцеклетки. Таким способом возможно клонирование животных, получение генетических копий от одного организма. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.
Создание химерных животных. Возможно слияние эмбрионов на ранних стадиях, таким способом были получены химерные мыши при слиянии эмбрионов белых и черных мышей, химерное животное овца-коза.
Читайте также: