При организации какой виртуальной памяти программист должен знать о том что используется эта техника
Виртуальная память — метод управления памятью, которая реализуется с использованием аппаратного и программного обеспечения компьютера. Она отображает используемые программами виртуальные адреса в физические адреса в памяти компьютера. Основная память представляется в виде непрерывного адресного пространства или набора смежных непрерывных сегментов. Операционная система осуществляет управление виртуальными адресными пространствами и соотнесением оперативной памяти с виртуальной. Программное обеспечение в операционной системе может расширить эти возможности, чтобы обеспечить виртуальное адресное пространство, которое может превысить объем оперативной памяти и таким образом иметь больше памяти, чем есть в компьютере. Виртуальная память позволяет модифицировать ресурсы памяти, сделать объём оперативной памяти намного больше, для того чтобы пользователь, поместив туда как можно больше программ, реально сэкономил время и повысил эффективность своего труда. “Открытие” виртуальной памяти внесло огромную контрибуцию в развитие современных технологий, облегчило работу как профессионального программиста, так и обычного пользователя, обеспечивая процесс более эффективного решения задач на ЭВМ [1] .
Содержание
Преимущества виртуальной памяти
К основным преимуществам виртуальной памяти относят:
- избавление программиста от необходимости управлять общим пространством памяти,
- повышение безопасность использования программ за счет выделения памяти,
- возможность иметь в распоряжении больше памяти, чем это может быть физически доступно на компьютере.
Свойства виртуальной памяти
Виртуальная память делает программирование приложений проще:
- скрывая фрагментацию физической памяти;
- устраняя необходимость в программе для обработки наложений в явном виде;
- когда каждый процесс запускается в своем собственном выделенном адресном пространстве, нет необходимости переместить код программы или получить доступ к памяти с относительной адресацией.
Виртуализация памяти может рассматриваться как обобщение понятия виртуальной памяти.
Почти все реализации виртуальной памяти делят виртуальное адресное пространство на страницы, блоки смежных адресов виртуальной памяти.
При работе машины с виртуальной памятью, используются методы страничной и сегментной организации памяти.
Страничная организация памяти
При страничной организации все ресурсы памяти, как оперативной, так и внешней представляются для пользователя единым целым. Пользователь работает с общим адресным пространством и не задумывается какая память при этом используется: оперативная или внешняя, а эта общая память носит название виртуальной (моделируемой). Виртуальная память разбивается на страницы, которые содержат определённое фиксированное количество ячеек памяти. При этом одна страница математической памяти не может быть больше или меньше других, все страницы должны быть одинаковы по количеству ячеек. Типичные размеры страниц 256, 512, 1024, 2048 Байт и более (числа кратные 256).
Преимущества виртуальной памяти со страничной организацией
- Достаточно большой объём прямо адресуемой памяти. Объем памяти может исчисляться сотнями мегабайт (и даже гигабайтами). Размер виртуальной памяти целиком зависит от объёма накопителя на [жестком] магнитном диске. Созданный SWAP файл размещается на диске и эмулирует оперативную память. При этом пользователь не задумывается о том куда будет помещен “кусок” его программы с которой он только что отработал.
- Программы пользователя могут размещаться в любых свободных страницах [2] .
- Повышает уровень мультипрограммной работы. С организацией виртуальной памяти со страничной организацией пользователь получил реальную возможность загружать в память большее количество программ для того чтобы машина обрабатывала программы сразу (в действительности процессор устанавливает приоритет для каждой программы, находящейся в памяти, и далее в соответствии с приоритетом выделяет определённое количество времени на реализацию каждой программы или команды.
Недостатки виртуальной памяти со страничной организацией
- Основным недостатком виртуальной памяти является то количество времени, которое машина тратит на обращение к внешней памяти. Извлечь необходимую информацию из ячеек оперативной памяти не представляет особого труда и больших затрат времени. Совсем иначе обстоит дело с диском: для того чтобы найти необходимую информацию, нужно сначала “раскрутить” диск, потом найти необходимую дорожку, в дорожке найти сектор, кластер, далее считать побитовую информацию в ОП. Все это требует времени и, порой если при методе случайного удаления страниц*, процессору понадобятся сразу несколько страниц, хранящихся во внешней памяти, большого времени. К сожалению, этот недостаток принадлежит к виду “неисправимых”.
- Наличие сверхоперативной памяти (СОП).
Сегментно-страничная организация виртуальной памяти
Данный метод организации виртуальной памяти направлен на сочетание достоинств страничного и сегментного методов управления памятью. В такой комбинированной системе адресное пространство пользователя разбивается на ряд сегментов по усмотрению программиста. Каждый сегмент в свою очередь разбивается на страницы фиксированного размера, равные странице физической памяти. С точки зрения программиста, логический адрес в этом случае состоит из номера сегмента и смещения в нем. Каждый сегмент представляет собой последовательность адресов от нуля до определённого максимального значения. Отличие сегмента от страницы состоит в том, что длинна сегмента может изменяться в процессе работы. Сегменты, как и любая структура виртуальной памяти, могут размещаться как в оперативной памяти, так и во внешней памяти (магнитных носителях). Виртуальная память с сегментно-страничной организацией функционирует подобно виртуальной памяти со страничной организацией: если требующийся на данный момент сегмент отсутствует в оперативной памяти, то при надобности работы с ним, он предварительно перемещается в ОП. Сегментно-страничная организация памяти требует более сложной аппаратурно-программной организации.
Таблицы страниц
Таблицы страниц используются для перевода виртуальных адресов в физические адреса, используемые аппаратными средствами для обработки инструкций; такое аппаратное обеспечение, который обрабатывает этот конкретный перевод часто называют блоком управления памятью. Каждая запись в таблице страниц держит флажок, указывающий, находится ли соответствующая страница в оперативной памяти или нет. Если она находится в оперативной памяти, запись в таблице страниц будет содержать реальный адрес памяти, где хранится страница [3] . Системы могут иметь как одну таблицу страниц для всей системы, так и отдельные таблицы страниц для каждого приложения и сегмента, деревья таблиц страниц для больших сегментов или некоторой их комбинации. Если есть только одна таблица страниц, различные приложения, работающие одновременно используют различные части одного диапазона виртуальных адресов. При наличии нескольких страниц или сегментов таблицы, есть несколько виртуальных адресных пространств и параллельных приложений с помощью отдельных таблиц страниц для перенаправления на другие реальные адреса.
Менеджер виртуальной памяти
Эта часть операционной системы создает и управляет таблицами страниц. Если оборудование выдает ошибку, Менеджер виртуальной памяти получает доступ к вторичному хранилищу, возвращает страницу, которая имеет виртуальный адрес, который привел к неисправности страницы, обновляет таблицы страниц, чтобы отразить физическое местоположение виртуального адреса и указывает механизм перевода для перезапуска запрос.
Когда вся физическая память уже используется, Менеджер виртуальной памяти должен освободить страницы в основном хранилище для хранения выгруженной страницы. Используется один из множества алгоритмов замещения наименее используемых страниц, чтобы освободить их.
Закрепленные страницы
Операционные системы имеют области памяти, которые никогда не применялись для вторичного хранения. Некоторые из них могут быть закреплены на короткие периоды времени, другие - длительных периодов времени, либо же постоянно.
Привет, Хабрахабр!
В предыдущей статье я рассказал про vfork() и пообещал рассказать о реализации вызова fork() как с поддержкой MMU, так и без неё (последняя, само собой, со значительными ограничениями). Но прежде, чем перейти к подробностям, будет логичнее начать с устройства виртуальной памяти.
Конечно, многие слышали про MMU, страничные таблицы и TLB. К сожалению, материалы на эту тему обычно рассматривают аппаратную сторону этого механизма, упоминая механизмы ОС только в общих чертах. Я же хочу разобрать конкретную программную реализацию в проекте Embox. Это лишь один из возможных подходов, и он достаточно лёгок для понимания. Кроме того, это не музейный экспонат, и при желании можно залезть “под капот” ОС и попробовать что-нибудь поменять.
Любая программная система имеет логическую модель памяти. Самая простая из них — совпадающая с физической, когда все программы имеют прямой доступ ко всему адресному пространству.
При таком подходе программы имеют доступ ко всему адресному пространству, не только могут “мешать” друг другу, но и способны привести к сбою работы всей системы — для этого достаточно, например, затереть кусок памяти, в котором располагается код ОС. Кроме того, иногда физической памяти может просто не хватить для того, чтобы все нужные процессы могли работать одновременно. Виртуальная память — один из механизмов, позволяющих решить эти проблемы. В данной статье рассматривается работа с этим механизмом со стороны операционной системы на примере ОС Embox. Все функции и типы данных, упомянутые в статье, вы можете найти в исходном коде нашего проекта.
Будет приведён ряд листингов, и некоторые из них слишком громоздки для размещения в статье в оригинальном виде, поэтому по возможности они будут сокращены и адаптированы. Также в тексте будут возникать отсылки к функциям и структурам, не имеющим прямого отношения к тематике статьи. Для них будет дано краткое описание, а более полную информацию о реализации можно найти на вики проекта.
- Расширение реального адресного пространства. Часть виртуальной памяти может быть вытеснена на жёсткий диск, и это позволяет программам использовать больше оперативной памяти, чем есть на самом деле.
- Создание изолированных адресных пространств для различных процессов, что повышает безопасность системы, а также решает проблему привязанности программы к определённым адресам памяти.
- Задание различных свойств для разных участков участков памяти. Например, может существовать неизменяемый участок памяти, видный нескольким процессам.
Аппаратная поддержка
Обращение к памяти хорошо описанно в этой хабростатье. Происходит оно следующим образом:
Процессор подаёт на вход MMU виртуальный адрес
Если MMU выключено или если виртуальный адрес попал в нетранслируемую область, то физический адрес просто приравнивается к виртуальному
Если MMU включено и виртуальный адрес попал в транслируемую область, производится трансляция адреса, то есть замена номера виртуальной страницы на номер соответствующей ей физической страницы (смещение внутри страницы одинаковое):
Если запись с нужным номером виртуальной страницы есть в TLB [Translation Lookaside Buffer], то номер физической страницы берётся из нее же
Если нужной записи в TLB нет, то приходится искать ее в таблицах страниц, которые операционная система размещает в нетранслируемой области ОЗУ (чтобы не было промаха TLB при обработке предыдущего промаха). Поиск может быть реализован как аппаратно, так и программно — через обработчик исключения, называемого страничной ошибкой (page fault). Найденная запись добавляется в TLB, после чего команда, вызвавшая промах TLB, выполняется снова.
Таким образом, при обращении программы к тому или иному участку памяти трансляция адресов производится аппаратно. Программная часть работы с MMU — формирование таблиц страниц и работа с ними, распределение участков памяти, установка тех или иных флагов для страниц, а также обработка page fault, ошибки, которая происходит при отсутствии страницы в отображении.
В тексте статьи в основном будет рассматриваться трёхуровневая модель памяти, но это не является принципиальным ограничением: для получения модели с бóльшим количеством уровней можно действовать аналогичным образом, а особенности работы с меньшим количеством уровней (как, например, в архитектуре x86 — там всего два уровня) будут рассмотрены отдельно.
Программная поддержка
- Выделение физических страниц из некоторого зарезервированного участка памяти
- Внесение соответствующих изменений в таблицы виртуальной памяти
- Сопоставление участков виртуальной памяти с процессами, выделившими их
- Проецирование региона физической памяти на виртуальный адрес
Виртуальный адрес
Page Global Directory (далее — PGD) — таблица (здесь и далее — то же самое, что директория) самого высокого уровня, каждая запись в ней — ссылка на Page Middle Directory (PMD), записи которой, в свою очередь, ссылаются на таблицу Page Table Entry (PTE). Записи в PTE ссылаются на реальные физические адреса, а также хранят флаги состояния страницы.
То есть, при трёхуровневой иерархии памяти виртуальный адрес будет выглядеть так:
Значения полей PGD, PMD и PTE — это индексы в соответствующих таблицах (то есть сдвиги от начала этих таблиц), а offset — это смещение адреса от начала страницы.
В зависимости от архитектуры и режима страничной адресации, количество битов, выделяемых для каждого из полей, может отличаться. Кроме того, сама страничная иерархия может иметь число уровней, отличное от трёх: например, на x86 нет PMD.
Для обеспечения переносимости мы задали границы этих полей с помощью констант: MMU_PGD_SHIFT, MMU_PMD_SHIFT, MMU_PTE_SHIFT, которые в приведённой выше схеме равны 24, 18 и 12 соответственно их определение дано в заголовочном файле src/include/hal/mmu.h. В дальнейшем будет рассматриваться именно этот пример.
На основании сдвигов PGD, PMD и PTE вычисляются соответствующие маски адресов.
Эти макросы даны в том же заголовочном файле.
Для работы с виртуальной таблицами виртуальной памяти в некоторой области памяти хранятся указатели на все PGD. При этом каждая задача хранит в себе контекст struct mmu_context, который, по сути, является индексом в этой таблице. Таким образом, к каждой задаче относится одна таблица PGD, которую можно определить с помощью mmu_get_root(ctx).
Размер страницы
В реальных (то есть не в учебных) системах используются страницы от 512 байт до 64 килобайт. Чаще всего размер страницы определяется архитектурой и является фиксированным для всей системы, например — 4 KiB.
С одной стороны, при меньшем размере страницы память меньше фрагментируется. Ведь наименьшая единица виртуальной памяти, которая может быть выделена процессу — это одна страница, а программам очень редко требуется целое число страниц. А значит, в последней странице, которую запросил процесс, скорее всего останется неиспользуемая память, которая, тем не менее, будет выделена, а значит — использована неэффективно.
С другой стороны, чем меньше размер страницы, тем больше размер страничных таблиц. Более того, при отгрузке на HDD и при чтении страниц с HDD быстрее получится записать несколько больших страниц, чем много маленьких такого же суммарного размера.
Отдельного внимания заслуживают так называемые большие страницы: huge pages и large pages [вики] .
Платформа | Размер обычной страницы | Размер страницы максимально возможного размера |
x86 | 4KB | 4MB |
x86_64 | 4KB | 1GB |
IA-64 | 4KB | 256MB |
PPC | 4KB | 16GB |
SPARC | 8KB | 2GB |
ARMv7 | 4KB | 16MB |
Действительно, при использовании таких страниц накладные расходы памяти повышаются. Тем не менее, прирост производительности программ в некоторых случаях может доходить до 10% [ссылка] , что объясняется меньшим размером страничных директорий и более эффективной работой TLB.
В дальнейшем речь пойдёт о страницах обычного размера.
Устройство Page Table Entry
В реализации проекта Embox тип mmu_pte_t — это указатель.
Каждая запись PTE должна ссылаться на некоторую физическую страницу, а каждая физическая страница должна быть адресована какой-то записью PTE. Таким образом, в mmu_pte_t незанятыми остаются MMU_PTE_SHIFT бит, которые можно использовать для сохранения состояния страницы. Конкретный адрес бита, отвечающего за тот или иной флаг, как и набор флагов в целом, зависит от архитектуры.
- MMU_PAGE_WRITABLE — Можно ли менять страницу
- MMU_PAGE_SUPERVISOR — Пространство супер-пользователя/пользователя
- MMU_PAGE_CACHEABLE — Нужно ли кэшировать
- MMU_PAGE_PRESENT — Используется ли данная запись директории
Можно установить сразу несколько флагов:
Здесь vmem_page_flags_t — 32-битное значение, и соответствующие флаги берутся из первых MMU_PTE_SHIFT бит.
Трансляция виртуального адреса в физический
Как уже писалось выше, при обращении к памяти трансляция адресов производится аппаратно, однако, явный доступ к физическим адресам может быть полезен в ряде случаев. Принцип поиска нужного участка памяти, конечно, такой же, как и в MMU.
Для того, чтобы получить из виртуального адреса физический, необходимо пройти по цепочке таблиц PGD, PMD и PTE. Функция vmem_translate() и производит эти шаги.
Сначала проверяется, есть ли в PGD указатель на директорию PMD. Если это так, то вычисляется адрес PMD, а затем аналогичным образом находится PTE. После выделения физического адреса страницы из PTE необходимо добавить смещение, и после этого будет получен искомый физический адрес.
Пояснения к коду функции.
mmu_paddr_t — это физический адрес страницы, назначение mmu_ctx_t уже обсуждалось выше в разделе “Виртуальный адрес”.
С помощью функции vmem_get_idx_from_vaddr() находятся сдвиги в таблицах PGD, PMD и PTE.
Работа с Page Table Entry
Для работы с записей в таблице страниц, а так же с самими таблицами, есть ряд функций:
Эти функции возвращают 1, если у соответствующей структуры установлен бит MMU_PAGE_PRESENT
Page Fault
Page fault — это исключение, возникающее при обращении к странице, которая не загружена в физическую память — или потому, что она была вытеснена, или потому, что не была выделена.
В операционных системах общего назначения при обработке этого исключения происходит поиск нужной странице на внешнем носителе (жёстком диске, к примеру).
В нашей системе все страницы, к которым процесс имеет доступ, считаются присутствующими в оперативной памяти. Так, например, соответствующие сегменты .text, .data, .bss; куча; и так далее отображаются в таблицы при инициализации процесса. Данные, связанные с потоками (например, стэк), отображаются в таблицы процесса при создании потоков.
Выталкивание страниц во внешнюю память и их чтение в случае page fault не реализовано. С одной стороны, это лишает возможности использовать больше физической памяти, чем имеется на самом деле, а с другой — не является актуальной проблемой для встраиваемых систем. Нет никаких ограничений, делающих невозможной реализацию данного механизма, и при желании читатель может попробовать себя в этом деле :)
Для виртуальных страниц и для физических страниц, которые могут быть использованы при работе с виртуальной памятью, статически резервируется некоторое место в оперативной памяти. Тогда при выделении новых страниц и директорий они будут браться именно из этого места.
Исключением является набор указателей на PGD для каждого процесса (MMU-контексты процессов): этот массив хранится отдельно и используется при создании и разрушении процесса.
Выделение страниц
Итак, выделить физическую страницу можно с помощью vmem_alloc_page
Функция page_alloc() ищет участок памяти из N незанятых страниц и возвращает физический адрес начала этого участка, помечая его как занятый. В приведённом коде virt_page_allocator ссылается на участок памяти, резервированной для выделения физических страниц, а 1 — количество необходимых страниц.
Выделение таблиц
Тип таблицы (PGD, PMD, PTE) не имеет значения при аллокации. Более того, выделение таблиц производится также с помощью функции page_alloc(), только с другим аллокатором (virt_table_allocator).
После добавления страниц в соответствующие таблицы нужно уметь сопоставлять участки памяти с процессами, к которым они относятся. У нас в системе процесс представлен структурой task, содержащей всю необходимую информацию для работы ОС с процессом. Все физически доступные участки адресного пространства процесса записываются в специальный репозиторий: task_mmap. Он представляет из себя список дескрипторов этих участков (регионов), которые могут быть отображены на виртуальную память, если включена соответствующая поддержка.
brk — это самый большой из всех физических адресов репозитория, данное значение необходимо для ряда системных вызовов, которые не будут рассматриваться в данной статье.
ctx — это контекст задачи, использование которого обсуждалось в разделе “Виртуальный адрес”.
struct dlist_head — это указатель на начало двусвязного списка, организация которого аналогична организации Linux Linked List.
За каждый выделенный участок памяти отвечает структура marea
Поля данной структуры имеют говорящие имена: адреса начала и конца данного участка памяти, флаги региона памяти. Поле mmap_link нужно для поддержания двусвязного списка, о котором говорилось выше.
Ранее уже рассказывалось о том, как происходит выделение физических страниц, какие данные о виртуальной памяти относятся к задаче, и теперь всё готово для того, чтобы говорить о непосредственном отображении виртуальных участков памяти на физические.
Отображение виртуальных участков памяти на физическую память подразумевает внесение соответствующих изменений в иерархию страничных директорий.
Подразумевается, что некоторый участок физической памяти уже выделен. Для того, чтобы выделить соответствующие виртуальные страницы и привязать их к физическим, используется функция vmem_map_region()
В качестве параметров передаётся контекст задачи, адрес начала физического участка памяти, а также адрес начала виртуального участка. Переменная flags содержит флаги, которые будут установлены у соответствующих записей в PTE.
Основную работу на себя берёт do_map_region(). Она возвращает 0 при удачном выполнении и код ошибки — в ином случае. Если во время маппирования произошла ошибка, то часть страниц, которые успели выделиться, нужно откатить сделанные изменения с помощью функции vmem_unmap_region(), которая будет рассмотрена позднее.
Рассмотрим функцию do_map_region() подробнее.
Макросы GET_PTE и GET_PMD нужны для лучшей читаемости кода. Они делают следующее: если в таблице памяти нужный нам указатель не ссылается на существующую запись, нужно выделить её, если нет — то просто перейти по указателю к следующей записи.
В самом начале необходимо проверить, выровнены ли под размер страницы размер региона, физический и виртуальный адреса. После этого определяется PGD, соответствующая указанному контексту, и извлекаются сдвиги из виртуального адреса (более подробно это уже обсуждалось выше).
Затем последовательно перебираются виртуальные адреса, и в соответствующих записях PTE к ним привязывается нужный физический адрес. Если в таблицах отсутствуют какие-то записи, то они будут автоматически сгенерированы при вызове вышеупомянутых макросов GET_PTE и GET_PMD.
После того, как участок виртуальной памяти был отображён на физическую, рано или поздно её придётся освободить: либо в случае ошибки, либо в случае завершения работы процесса.
Изменения, которые при этом необходимо внести в структуру страничной иерархии памяти, производятся с помощью функции vmem_unmap_region().
Все параметры функции, кроме последнего, должны быть уже знакомы. free_pages отвечает за то, должны ли быть удалены страничные записи из таблиц.
try_free_pte, try_free_pmd, try_free_pgd — это вспомогательные функции. При удалении очередной страницы может выясниться, что директория, её содержащая, могла стать пустой, а значит, её нужно удалить из памяти.
Исходный код функций try_free_pte, try_free_pmd, try_free_pgd
нужны как раз для случая двухуровневой иерархии памяти.
Конечно, данной статьи не достаточно, чтобы с нуля организовать работу с MMU, но, я надеюсь, она хоть немного поможет погрузиться в OSDev тем, кому он кажется слишком сложным.
Виртуальная память- схема адресации памяти компьютера, при которой память представляется программному обеспечению непрерывной и однородной, в то время как в реальности для фактического хранения данных используются отдельные (разрывные) области различных видов памяти, включая кратковременную (оперативную) и долговременную (жёсткие диски, твёрдотельные накопители).
Страничный способ организации виртуальной памяти:
Способ разрывного размещения задач в памяти при котором все фрагменты задачи одинакового размера кратного степени двойки называется страничным, а фрагменты страницами. В этом случае память разбивается на физические страницы (кадры, фреймы). А программа разбивается на виртуальные страницы. Часть виртуальных страниц размещается в ОЗУ, а часть во внешней памяти. Место на жестком диске, где размещаются виртуальные страницы называют файлом подкачки или страничным файлом (SWAP-файл).
Физический адрес ячейки памяти определяется парой (Pp, i), а виртуальный (Pv, i). Pv – номер виртуальной страницы, Pp – номер физической страницы, а I – номер ячейки (индекс) внутри страницы. Для отображения виртуального адресного пространства на физическую память для каждой задачи необходимо иметь таблицы страниц для трансляции адресных пространств. Для описания каждой страницы диспетчер памяти операционной системы заводит соответствующий дескриптор. По номеру виртуальной страницы в таблице дескрипторов текущей задачи находится соответствующий элемент (дескриптор). Если бит присутствия равен единице, то данная страница находится в ОЗУ и в дескрипторе находится номер физической страницы, отведенной под данную виртуальную страницу.
Основным достоинством страничной организации является минимально возможная фрагментация, поскольку на каждую задачу может приходится по одной незаполненной странице.
1) Накладные расходы, т.е. таблицы страниц нужно размещать в памяти и их нужно обрабатывать.
2) Программы разбиваются на страницы случайно без учета логических взаимосвязей имеющихся в коде программы. Поэтому межстраничные переходы осуществляются чаще нежели межсегментные и трудно организовать разделение программных модулей между выполняющимися программами.
Сигментно- страничная организация виртуальной памяти:
Виртуальная память каждой программы делится на части, называемые сегментами, с независимой адресацией байтов внутри каждой части. При этом к виртуальному адресу добавляются дополнительные разряды левее номера страницы. Эти разряды определят номер сегмента.
Виртуальная память в МП 386+:
При организации виртуальной памяти используется три вида адресов:
· Логический адрес ЛА ∈ ВАП.
· Физический адрес ФА ∈ ФАП.
· Линейный адрес – представляет собой объединение базового адреса сегмента и смещения в пределах сегмента.
Любое описание сегмента состоит из двух частей: программно- доступной, называемой селектором сегмента и размещаемой в одном из сегментных регистров, и скрытой, называемой дескриптором сегмента и находящейся в одной из специальных структур в ОП, называемых таблицами дескрипторов. Считается, что дескриптор после выборки размещается в скрытой части регистра сегментов, находящейся в памяти.
Основные поля сегмента размещены в различных частях дескриптора: 32-битная база сегмента размещена в трех частях и определяет его место внутри 4-Гбайтного линейного адресного пространства, 20-битная граница сегмента размещена в двух частях и определяет его длину, остальные биты дескриптора образуют поле атрибутов. Длина сегмента, в зависимости от бита дробности (G), задается либо в байтах, либо в страницах:
· 1, страница (С = 4Кб) 220 * 215 = 232 (4Гб).
Бит D задает тип данных, размещенных в сегменте:
· D = 0 – 16-битные данные,
· D = 1 – 32-битные данные.
AVL – бит, предоставляемый в распоряжение пользователя (available). Бит P – бит присутствия: 0 – на диске, 1 – в оперативной памяти Биты DPL – уровень привилегий дескриптора (Descriptor Privilege Level), обеспечивающий защиту доступа. При доступе к сегменту запрашиваемый уровень привилегий RPL или текущий уровень привилегий CPL (соответствует уровню привилегий дескриптора кода выполняемой сейчас программы) должны быть больше DPL (в логическом смысле; для сравнения их числовых значений отношение должно быть меньше). Бит S – бит режима сегмента: пользовательский или системный (User / Supervisor). Биты типа говорят, является сегмент программой или данными и определяют режим доступа. Бит А – бит обращения к сегменту, устанавливается при обращении к сегменту и через некоторое время сбрасывается операционной системой (обеспечивает дисциплины замещения сегментов).
Общепринятая в настоящее время концепция виртуальной памяти появилась достаточно давно. Она позволила решить целый ряд актуальных вопросов организации вычислений. Прежде всего к числу таких вопросов относится обеспечение надежного функционирования мультипрограммных систем.
В любой момент времени компьютер выполняет множество процессов или задач, каждая из которых располагает своим адресным пространством. Было бы слишком накладно отдавать всю физическую память какой-то одной задаче тем более, что многие задачи реально используют только небольшую часть своего адресного пространства. Поэтому необходим механизм разделения небольшой физической памяти между различными задачами. Виртуальная память является одним из способов реализации такой возможности. Она делит физическую память на блоки и распределяет их между различными задачами. При этом она предусматривает также некоторую схему защиты, которая ограничивает задачу теми блоками, которые ей принадлежат. Большинство типов виртуальной памяти сокращают также время начального запуска программы на процессоре, поскольку не весь программный код и данные требуются ей в физической памяти, чтобы начать выполнение.
Другой вопрос, тесно связанный с реализацией концепции виртуальной памяти, касается организации вычислений на компьютере задач очень большого объема. Если программа становилась слишком большой для физической памяти, часть ее необходимо было хранить во внешней памяти (на диске) и задача приспособить ее для решения на компьютере ложилась на программиста. Программисты делили программы на части и затем определяли те из них, которые можно было бы выполнять независимо, организуя оверлейные структуры, которые загружались в основную память и выгружались из нее под управлением программы пользователя. Программист должен был следить за тем, чтобы программа не обращалась вне отведенного ей пространства физической памяти. Виртуальная память освободила программистов от этого бремени. Она автоматически управляет двумя уровнями иерархии памяти: основной памятью и внешней (дисковой) памятью.
Кроме того, виртуальная память упрощает также загрузку программ, обеспечивая механизм автоматического перемещения программ, позволяющий выполнять одну и ту же программу в произвольном месте физической памяти.
Системы виртуальной памяти можно разделить на два класса: системы с фиксированным размером блоков, называемых страницами, и системы с переменным размером блоков, называемых сегментами. Ниже рассмотрены оба типа организации виртуальной памяти.
Страничная организация памяти
В системах со страничной организацией основная и внешняя память (главным образом дисковое пространство) делятся на блоки или страницы фиксированной длины. Каждому пользователю предоставляется некоторая часть адресного пространства, которая может превышать основную память компьютера и которая ограничена только возможностями адресации, заложенными в системе команд. Эта часть адресного пространства называется виртуальной памятью пользователя. Каждое слово в виртуальной памяти пользователя определяется виртуальным адресом, состоящим из двух частей: старшие разряды адреса рассматриваются как номер страницы, а младшие - как номер слова (или байта) внутри страницы.
Управление различными уровнями памяти осуществляется программами ядра операционной системы, которые следят за распределением страниц и оптимизируют обмены между этими уровнями. При страничной организации памяти смежные виртуальные страницы не обязательно должны размещаться на смежных страницах основной физической памяти. Для указания соответствия между виртуальными страницами и страницами основной памяти операционная система должна сформировать таблицу страниц для каждой программы и разместить ее в основной памяти машины. При этом каждой странице программы, независимо от того находится ли она в основной памяти или нет, ставится в соответствие некоторый элемент таблицы страниц. Каждый элемент таблицы страниц содержит номер физической страницы основной памяти и специальный индикатор. Единичное состояние этого индикатора свидетельствует о наличии этой страницы в основной памяти. Нулевое состояние индикатора означает отсутствие страницы в оперативной памяти.
Для увеличения эффективности такого типа схем в процессорах используется специальная полностью ассоциативная кэш-память, которая также называется буфером преобразования адресов (TLB traнсlation-lookaside buffer). Хотя наличие TLB не меняет принципа построения схемы страничной организации, с точки зрения защиты памяти, необходимо предусмотреть возможность очистки его при переключении с одной программы на другую.
Поиск в таблицах страниц, расположенных в основной памяти, и загрузка TLB может осуществляться либо программным способом, либо специальными аппаратными средствами. В последнем случае для того, чтобы предотвратить возможность обращения пользовательской программы к таблицам страниц, с которыми она не связана, предусмотрены специальные меры. С этой целью в процессоре предусматривается дополнительный регистр защиты, содержащий описатель (дескриптор) таблицы страниц или базово-граничную пару. База определяет адрес начала таблицы страниц в основной памяти, а граница - длину таблицы страниц соответствующей программы. Загрузка этого регистра защиты разрешена только в привилегированном режиме. Для каждой программы операционная система хранит дескриптор таблицы страниц и устанавливает его в регистр защиты процессора перед запуском соответствующей программы.
Отметим некоторые особенности, присущие простым схемам со страничной организацией памяти. Наиболее важной из них является то, что все программы, которые должны непосредственно связываться друг с другом без вмешательства операционной системы, должны использовать общее пространство виртуальных адресов. Это относится и к самой операционной системе, которая, вообще говоря, должна работать в режиме динамического распределения памяти. Поэтому в некоторых системах пространство виртуальных адресов пользователя укорачивается на размер общих процедур, к которым программы пользователей желают иметь доступ. Общим процедурам должен быть отведен определенный объем пространства виртуальных адресов всех пользователей, чтобы они имели постоянное место в таблицах страниц всех пользователей. В этом случае для обеспечения целостности, секретности и взаимной изоляции выполняющихся программ должны быть предусмотрены различные режимы доступа к страницам, которые реализуются с помощью специальных индикаторов доступа в элементах таблиц страниц.
Следствием такого использования является значительный рост таблиц страниц каждого пользователя. Одно из решений проблемы сокращения длины таблиц основано на введении многоуровневой организации таблиц. Частным случаем многоуровневой организации таблиц является сегментация при страничной организации памяти. Необходимость увеличения адресного пространства пользователя объясняется желанием избежать необходимости перемещения частей программ и данных в пределах адресного пространства, которые обычно приводят к проблемам переименования и серьезным затруднениям в разделении общей информации между многими задачами.
Сегментация памяти
Другой подход к организации памяти опирается на тот факт, что программы обычно разделяются на отдельные области-сегменты. Каждый сегмент представляет собой отдельную логическую единицу информации, содержащую совокупность данных или программ и расположенную в адресном пространстве пользователя. Сегменты создаются пользователями, которые могут обращаться к ним по символическому имени. В каждом сегменте устанавливается своя собственная нумерация слов, начиная с нуля.
Обычно в подобных системах обмен информацией между пользователями строится на базе сегментов. Поэтому сегменты являются отдельными логическими единицами информации, которые необходимо защищать, и именно на этом уровне вводятся различные режимы доступа к сегментам. Можно выделить два основных типа сегментов: программные сегменты и сегменты данных (сегменты стека являются частным случаем сегментов данных). Поскольку общие программы должны обладать свойством повторной входимости, то из программных сегментов допускается только выборка команд и чтение констант. Запись в программные сегменты может рассматриваться как незаконная и запрещаться системой. Выборка команд из сегментов данных также может считаться незаконной и любой сегмент данных может быть защищен от обращений по записи или по чтению.
Для реализации сегментации было предложено несколько схем, которые отличаются деталями реализации, но основаны на одних и тех же принципах.
В системах с сегментацией памяти каждое слово в адресном пространстве пользователя определяется виртуальным адресом, состоящим из двух частей: старшие разряды адреса рассматриваются как номер сегмента, а младшие - как номер слова внутри сегмента. Наряду с сегментацией может также использоваться страничная организация памяти. В этом случае виртуальный адрес слова состоит из трех частей: старшие разряды адреса определяют номер сегмента, средние - номер страницы внутри сегмента, а младшие - номер слова внутри страницы.
Как и в случае страничной организации, необходимо обеспечить преобразование виртуального адреса в реальный физический адрес основной памяти. С этой целью для каждого пользователя операционная система должна сформировать таблицу сегментов. Каждый элемент таблицы сегментов содержит описатель (дескриптор) сегмента (поля базы, границы и индикаторов режима доступа). При отсутствии страничной организации поле базы определяет адрес начала сегмента в основной памяти, а граница - длину сегмента. При наличии страничной организации поле базы определяет адрес начала таблицы страниц данного сегмента, а граница - число страниц в сегменте. Поле индикаторов режима доступа представляет собой некоторую комбинацию признаков блокировки чтения, записи и выполнения.
Таблицы сегментов различных пользователей операционная система хранит в основной памяти. Для определения расположения таблицы сегментов выполняющейся программы используется специальный регистр защиты, который загружается операционной системой перед началом ее выполнения. Этот регистр содержит дескриптор таблицы сегментов (базу и границу), причем база содержит адрес начала таблицы сегментов выполняющейся программы, а граница - длину этой таблицы сегментов. Разряды номера сегмента виртуального адреса используются в качестве индекса для поиска в таблице сегментов. Таким образом, наличие базово-граничных пар в дескрипторе таблицы сегментов и элементах таблицы сегментов предотвращает возможность обращения программы пользователя к таблицам сегментов и страниц, с которыми она не связана. Наличие в элементах таблицы сегментов индикаторов режима доступа позволяет осуществить необходимый режим доступа к сегменту со стороны данной программы. Для повышения эффективности схемы используется ассоциативная кэш-память.
Отметим, что в описанной схеме сегментации таблица сегментов с индикаторами доступа предоставляет всем программам, являющимся частями некоторой задачи, одинаковые возможности доступа, т. е. она определяет единственную область (домен) защиты. Однако для создания защищенных подсистем в рамках одной задачи для того, чтобы изменять возможности доступа, когда точка выполнения переходит через различные программы, управляющие ее решением, необходимо связать с каждой задачей множество доменов защиты. Реализация защищенных подсистем требует разработки некоторых специальных аппаратных средств. Рассмотрение таких систем, которые включают в себя кольцевые схемы защиты, а также различного рода мандатные схемы защиты, выходит за рамки данного обзора.
Читайте также: