Посадка шкива на вал со шпонкой
Посадки шкивов на валы и натяжные устройства клиноременных передач также аналогичны плоскоременным. Однако для клиноременных передач натяжные устройства в целях компенсации вытяжки ремня и возможности свободного надевания нового должны предусматривать возможность увеличения межцентрового расстояния А на 3 0 % и уменьшения на 1 5 % от расчетной длины ремня. Кроме того, для клиноременных передач угол обхвата имеет значительно меньшее значение, поэтому натяжной ролик обычно располагается с внутренней стороны ремня. Такой ролик называется оттяжным. Он не изгибает ремень в противоположную сторону, что способствует повышению долговечности передачи. [1]
Посадки шкивов на валы и натяжные устройства клиноременных передач также аналогичны плоскоременным. Однако для клиноременных передач по ГОСТ 1284 - 68 натяжные устройства в целях компенсации вытяжки ремня и возможности свободного надевания новых должны предусматривать возможность увеличения межцентрового расстояния А на 3 0 % и уменьшения на 1 5 % от расчетной длины ремня. [2]
Посадка шкивов с помощью клиновых шпонок несколько отличается ст описанного способа. [3]
Посадка шкива на шейку вала производится от зазора 0 02 мм до натяга 0 03 мм. Крепление шкива выполняется болтом с шайбой, ввинченным в резьбовое отверстие вала. [4]
Для посадки шкивов следует применять специальные винтовые приспособления, например, винтовые скобы ( рис. 17) или винты с планками на трех опорах, которыми нажимают в торец ступицы шкива. [5]
После посадки шкивов проверяют правильность их взаимного расположения. При этом за базовый следует принимать тот шкив, положение которого регулировать труднее. [6]
Проверка посадки шкива на валу ( при ременной передаче), состояния соединительных муфт, посадки ротора на валу и правильности направления его вращения и соответствия кожуху ( правый и левый) и наличия необходимых зазоров. [7]
Проверить посадку шкива на вал, предварительно отогнув стопорную шайбу, и отвинтить гайку. [8]
При посадке шкива на клиновую шпонку дополнительного крепления не требуется. [9]
При посадке шкивов на концы вала делают взаимную пригонку шпонок и пазов по валу и ступице, а затем, очистив и смазав машинным маслом посадочные места, осуществляют посадку. Посадка производится после установки и закрепления вала в подшипниках. [10]
При посадке шкива непосредственно на вал давление ремня на шкив, которое для плоского ремня примерно втрое больше окружного усилия, полностью передается валу и его подшипникам. В материале вала возникают напряжения изгиба, он деформируется; если на нем сидят зубчатые колеса, они при этом МОГУТ перекоситься настолько, что правильность зацепления их с сопряженными колесами заметно нарушится. При таком креплении шкива нередко возникают поперечные колебания вала, особенно при высоких числах оборотов шкива, неполной уравновешенности вала вместе с сидящими ни нем деталями и применении не цельных ремней. Эти явления в особенности нежелательны для шпинделей станков, на которых выполняются чистовые и отделочные операции. Поэтому в современных моделях станков часто прибегают к разгрузке шпиндели ( или другого вала, который должен быть связан со шкивом) от давления ремня. Для этого приводной шкив монтируется на отдельных опорах, не связанных со шпинделем или ведомым валом, с которым он соединяется шпонками, шлицами, муфтой или каким-либо другим способом, обеспечивающим передачу необходимого крутящего момента. Примеры иких конструкций приведены на фиг. [11]
Выбираем шпонку для посадки шкива клиноременной передачи . [12]
При проектировании клиноремен-ных передач посадка шкивов на вал выполняется со шпоночным соединением. [14]
Длина призменного или клинового ключа составляет 6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, 50, 56, 63, 70, 80, 90, 100, 110, 125, 140, 160, 180, 200, 220, 250, 280, 320, 360, 400, 450 и 500. Длина касательной клавиши На 10-15% длиннее, чем длина втулки или детали, прикрепленной к валу. 2. Размеры стыка с ключом (мм). 6. Размеры швов с использованием тангенциальных ключей (мм). Продолжение стола. 6 Один час измерений ключа. Размеры шпоночного паза; Продолжение стола. 6. 3 4 ключевых размера. Размер канавки для губки. Улучшенные касательные ключи.
Показателем технологичности является показатель качества продукции, ее выпуска и применения для достижения минимальных затрат при производстве, эксплуатации и ремонте до заданного значения условий труда. Людмила Фирмаль
Продолжение стола. 6. Ключевые соединения подразделяются на не стрессовые (призменные и сегментные ключи) и стрессовые (электронные клинья и касательные). Dubbo). Напряженные соединения передают не только крутящий момент (вращательное движение), но и осевые силы. Строго применяется Тангенсный ключ машиностроения состоит из двух клиньев 1: 100), вбивается в паз, образованный угловым выступом вала и втулкой детали. Эти ключи используются только для парной установки Угол между шпонками а = 120 ° (рис. 1, г).
В таблице показано поле допуска и предельное отклонение размеров ключа и шпоночного паза кровати. 7, и параметры шероховатости Поверхность — в таблице. 8. В качестве номинального размера шпоночного паза выберите размер b, равный ширине шпонки, ширине шпоночного паза на валу и ширине канавки втулки. Предусмотрено три типа соединений (рис. 2): 1-свободный для посадки с гарантированным зазором, обеспечивающим надёжную работу Облегчает соединение с направляющими клавишами и соединение из термообработанных деталей. — нормальный получить.
- Соединения в непрерывных и массовых условиях. Layout. Крайнее отклонение Соединение с помощью призмы или клинового ключа. Продолжение стола. 7. Связь с тангенциальным ключом. Ограничивает отклонение угла клинового ключа. Примечания: 1. Кронштейн окружает размеры расширенной касательной клавиши. 2. Тип подключения. 8. Параметры, связанные с шероховатостью поверхности элемента Ключевое соединение (более микрона) По словам От допусков по размеру. Примечания: 1.
Для поверхностей с неопределёнными периферическими отклонениями 20 микрон. 2. Рекомендуется, чтобы параметр шероховатости шпонки был равен 6,3 микрона. Производство; III — Плотный, чтобы получить фиксированное соединение с запрессовкой деталей во время сборки в одиночных и зерновых условиях Обеспечивает надёжную работу соединения не только на производстве, но и при обратных нагрузках. Пример 1. Выберите посадку для нормального соединения, используя клавиши размера (мм) шириной b = 6, высотой A = 6 n, длиной I- 10.
Типичный технологический процесс, который является общим для группы компонентов, имеет единый технологический план основной операции, однотипное оборудование и оснастку. Людмила Фирмаль
В соединительном чертеже измерьте размер с использованием поля допуска. Для подключения типа 11 из таблицы. Запишите в таблицу поля допусков, канавок и валов в соответствии с размером втулки, как показано на рисунке 7. Глава 12 и Глава 13 2 — Переписка Вертикальное отклонение. Ключевое соединение— Продукты с шпоночными канавками (отверстия втулок и валы) в основном контролируются с использованием экстремальных и сложных калибров. Например Диаметр вала (отверстие гильзы) контролируется PR, а не калибром (заглушка), а глубиной канавки вала (в гильзе) а) б) г) Рисунок 3.
Датчики для контроля деталей с помощью шпоночных пазов: 4) Соответствующий PR и НЕ диаметр канавки (рис. 3, а). Качество сборки шпоночного паза зависит от деформации и смещения шпоночного паза на валу и втулке. Симметрия шпоночного паза относительно осевой плоскости обусловлена сложностью путевого указателя (заглушка (рис. 3, в) и Призма (рис. 3, а). Вместо размера 4 и 2 вы можете контролировать размер (H-4) и (I + 4). Максимальное отклонение показано в таблице. 9. 9. Предельный размер отклонения.
Образовательный сайт для студентов и школьников
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Таблица предельных отклонений при размерах от 1 до 500 мм.
Краткая характеристика и примеры применения посадок
Посадки с зазором. Скользящие посадки (сочетание отверстия Н с валом h) применяют главным образом в неподвижных соединениях при необходимости частой разборки (сменные детали), если требуется легко передвигать или поворачивать детали одну относительно другой при настройке или регулировании, для центрирования неподвижно скрепляемых деталей.
Посадку Н6/h5 применяют для особо точного центрирования, например, для пиноли в корпусе бабки станка.
Посадку Н7/h6 применяют: а) для сменных зубчатых колес в станках; б) в соединениях с короткими рабочими ходами, например, для хвостовиков пружинных клапанов в направляющих втулках (применима также посадка Н7/g6); в) для соединения деталей, которые должны легко передвигаться при затяжке; г) для точного направления при возвратно-поступательных перемещениях (поршневой шток в направляющих втулках насосов высокого давления); д) для центрирования корпусов под подшипники качения в оборудовании и различных машинах.
Посадку Н8/h7 используют для центрирующих поверхностей при пониженных требованиях к соосности.
Посадки H8/h8; H9/h8; Н9/h9 применяют для неподвижно закрепляемых деталей при невысоких требованиях к точности механизмов, небольших нагрузках и необходимости обеспечить легкую сборку (зубчатые колеса, муфты, шкивы и другие детали, соединяющиеся с валом на шпонке; корпуса подшипников качения, центрирование фланцевых соединений), а также в подвижных соединениях при медленных пли редких поступательных и вращательных перемещениях (перемещающиеся зубчатые колеса, зубчатые торцовые муфты).
Посадку Н11/h11 используют для относительно грубо центрированных неподвижных соединений (центрирование фланцевых крышек, фиксация накладных кондукторов), для неответственных шарниров.
Посадка H7/g6 характеризуется минимальной по сравнению с остальными величиной гарантированного зазора. Применяют в подвижных соединениях для обеспечения герметичности (например, золотник во втулке пневматической сверлильной машины), точного направления пли при коротких ходах (клапаны в клапанной коробке). Другие примеры применения: соединение шатунной головки с шейкой коленчатого вала, посадка клапанных коромысел в механизме распределения двигателя, сменные кондукторные втулки, для установки изделий на пальцах приспособлений. В особо точных .механизмах применяют посадки H6/g5 и даже Н5/g4.
Посадку Н7/f7 применяют в подшипниках скольжения при умеренных и постоянных скоростях и нагрузках, в том числе в коробках скоростей, центробежных насосах; для вращающихся свободно на валах зубчатых колес, а также колес, включаемых муфтами; для направления толкателей в двигателях внутреннего сгорания. Более точную посадку этого типа - H6/f6 используют для точных подшипников, золотниковых пар гидравлических передач легковых автомобилей.
Посадки H8/f8; H8/f9; Н9/f9 применяют для подшипников скольжения при нескольких или разнесенных опорах, для других подвижных соединений и центрирования при относительно невысоких требованиях к соосности (крупные подшипники в тяжелом машиностроении, посадки сцепных муфт, поршней в цилиндрах паровых машин, направление поршневых и золотниковых штоков в сальниках, центрирование крышек цилиндров).
Посадки Н7/е7; Н7/е8; Д8/е8 и Н8/е9 применяют в подшипниках при высо-~ кой частоте вращения (в электродвигателях, в механизме передач двигателя внутреннего сгорания), при разнесенных опорах или большой длине сопряжения, например, для блока зубчатых колес в станках. Посадки H8/d9; H9/d9 применяют, например, для поршней в цилиндрах паровых машин и компрессоров, в соединениях клапанных коробок с корпусом компрессора (для их демонтажа необходим большой зазор из-за образования нагара и значительной температуры). Более точные посадки этого типа Н7/d8; H8/d8 применяют -для крупных подшипников при высокой частоте вращения.
Из числа грубых посадок с зазором в 10-12 квалитетов наиболее предпочтительной является посадка Н11/d11, применяемая для подвижных соединений, работающих в условиях пыли и грязи (узлы сельскохозяйственных машин, железнодорожных вагонов), в шарнирных соединениях тяг, рычагов и т. п., для центрирования крышек паровых цилиндров с уплотнением стыка кольцевыми прокладками.
Переходные посадки. Предназначены для неподвижных соединений деталей, подвергающихся при ремонтах пли по условиям эксплуатации сборке и разборке. Взаимная неподвижность деталей обеспечивается шпонками, штифтами, нажимными винтами и т. п. Менее тугие посадки назначают при необходимости в частых разборках соединения, при неудобствах разборки и возможности повреждения соседних деталей; более тугие - если требуется высокая точность центрирования, при ударных нагрузках и вибрациях.
Посадка Н7/п6 (типа глухой) дает наиболее прочные соединения. Примеры применения: а) для зубчатых колес, муфт, кривошипов и других деталей при больших нагрузках, ударах или вибрациях в соединениях, разбираемых обычно только при капитальном ремонте; б) посадка установочных колец на валах малых и средних электромашин; в) посадка кондукторных втулок, установочных пальцев, штифтов. В приборостроении используется для передачи небольших нагрузок без дополнительного крепления (посадки осей, втулок, шкивов и др.)- Сборка производится под прессом.
Посадка H7/m6 (типа тугой) несколько слабее посадки типа глухой.(меньше натяги, повышается вероятность получения зазора), ее применяют при необходимости изредка разбирать соединение. С предельными отклонениями по /m6 выполняют посадочные места под подшипники качения в тяжелом машиностроении, цилиндрические штифты, но поле допуска тб не вошло в число предпочтительных, так как перекрывается соседними полями n6 и k6.
Посадка H7/k6 (типа напряженной) в среднем дает незначительный зазор (1-5 мкм) и обеспечивает хорошее центрирование, не требуя значительных усилий для сборки и разборки. Применяется чаще других переходных посадок: для посадки шкивов, зубчатых колес, муфт, маховиков (на шпонках), для втулок подшипников и вращающихся на валах зубчатых колес и др.
Посадка H7/j6 (типа плотной) имеет большие средние зазоры, чем предыдущая, и применяется взамен ее при необходимости облегчить сборку.
Более точные или грубые переходные посадки имеют примерно тот же характер, что и описанные одноименные посадки, и используются со ответственно при высоких или пониженных требованиях к точности центрирования.
Посадки с натягом. Выбор посадки производится из условия, чтобы при наименьшем натяге была обеспечена прочность соединения и передача нагрузки, а при наибольшем натяге - прочность деталей. Для применения поса док с натягом, особенно в массовом производстве, рекомендуется предварительная опытная проверка.
Посадку H7/р6 применяют при сравнительно небольших нагрузках (например, посадка на вал уплотнительного кольца, фиксирующего положение внутреннего кольца подшипника у крановых и тяговых двигателей).
Посадки H7/г6; H7/sб; H8/s7 используют в соединениях без крепежных деталей при небольших нагрузках (например, втулка в головке шатуна пневматиче- ского двигателя) и с крепежными деталями при больших нагрузках (посадка на шпонке зубчатых колес и муфт в прокатных станах, нефтебуровом оборудовании и др.).
Посадки Н7/u7 и Н8/u8 применяют в соединениях без крепежных деталей при значительных нагрузках, в том числе знакопеременных (например, соединение пальца с эксцентриком в режущем аппарате уборочных сельскохозяйственных машин); с крепежными деталями при очень больших нагрузках (посадка крупных муфт в приводах прокатных станов), при небольших нагрузках, но малой длине сопряжения (седло клапана в головке блока цилиндров грузового автомобиля, втулка в рычаге очистки зерноуборочного комбайна).
Посадки Н8/х8 и Н8/z8 характеризуются относительно большими натягами и допусками натяга, применяются в тяжелонагруженных соединениях или при материалах с относительно небольшим модулем упругости.
Посадки, с натягом высокой точности Hб/p5; H6/г5; Н6/s5 применяют относительно редко и в соединениях, особо чувствительных к колебаниям натягов, например, посадка двухступенчатой втулки на вал якоря тягового электродвигателя.
Допуски несопрягаемых размеров. Для несопрягаемых размеров допуски назначают по табл. 1 в зависимости от функциональных требований. Поля допусков обычно располагают в плюс для отверстий (обозначают буквой Н и номером квалитета, например, H3, H9, H14), в минус для валов (обозначают буквой h и номером квалитета, например, h3, h9, h14) и симметрично относительно нулевой линии (плюс-минус половина допуска обозначают, например, ± IТЗ /2; ± IТ9 /2; ± IT14 / 2. Симметричные поля допусков для отверстии могут быть обозначены буквами J5 (например,Js3, Js9, Js14), а для валов - буквами j (например, Js3; Js9; Js14).
Допуски по 12-17 квалитетам характеризуют несопрягаемые или сопрягаемые размеры относительно низкой точности.
Многократно повторяющиеся предельные отклонения в этих квадитетах разрешается не указывать у размеров, а оговаривать общей записью.
Шпоночное соединение - один из видов соединений вала со втулкой с использованием дополнительного конструктивного элемента (шпонки), предназначенной для предотвращения их взаимного поворота. Чаще всего шпонка используется для передачи крутящего момента в соединениях вращающегося вала с зубчатым колесом или со шкивом, но возможны и другие решения, например - защита вала от проворачивания относительно неподвижного корпуса.
Более подробно о видах шпоночных соединений здесь.
В отличие от соединений с натягом, которые обеспечивают взаимную неподвижность деталей без дополнительных конструктивных элементов, шпоночные соединения – разъемные. Они позволяют осуществлять разборку и повторную сборку конструкции с обеспечением того же эффекта, что и при первичной сборке.
По форме шпонки разделяются на призматические, сегментные, клиновые и тангенциальные. Призматические шпонки дают возможность получать как подвижные, так и неподвижные соединения. Сегментные шпонки и клиновые шпонки, как правило, служат для образования неподвижных соединений. Форма и размеры сечений шпонок и пазов стандартизованы и выбираются в зависимости от диаметра вала, а вид шпоночного соединения определяется условиями работы соединения.
Рис. 1. Виды исполнений призматических шпонок (вид сверху)
Шпоночное соединение включает в себя минимум три посадки: вал-втулка (центрирующее сопряжение) шпонка-паз вала и шпонка-паз втулки.
Точность центрирования деталей в шпоночном соединении обеспечивается посадкой втулки на вал. Это обычное гладкое цилиндрическое сопряжение, которое можно назначить с очень малыми зазорами или натягами, следовательно – предпочтительны переходные посадки.
Возможно еще одно сопряжение – по длине шпонки, если призматическую шпонку с закругленными торцами закладывают в глухой паз на валу.
Глубина паза у вала под шпонку задается размером l , (предпочтительно) или d-t1 , глубина паза у отверстия под шпонку - размером t2 или D+t2 (рис. 2).
Рис. 2. Параметры шпоночного соединения
Размеры шпонок изготавливаются: по ширине b шпонки (рис. 2) с полем допуска h9 , по высоте h шпонки с полем допуска h11 (при высоте шпонки 2 . 6 мм - по B9 ), по длине l шпонки с полем допуска h14 .
Такое назначение полей допусков на размеры призматических шпонок делает возможным их централизованное изготовление независимо от посадок.
Все виды шпоночных соединений образуются в системе вала. Вид соединения выбирается в зависимости от его функционального назначения с учетом технологии сборки. Для предпочтительного применения стандартом предусмотрено три вида соединения (рис. 3):
- Свободное - соединение с гарантированным зазором для возможности перемещения втулки вдоль вала со шпонкой. Соединение подвижное. Для ширины паза на валу задается поле допуска Н9 , для ширины паза втулки - Z10 .
- Нормальное - соединение с переходной посадкой, с большей вероятностью в получении зазора, не требующее частых разборок. Соединение неподвижное. Для ширины паза на валу задается поле допуска N9 , для ширины паза втулки - J9 .
- Плотное - соединение с переходной посадкой, с приблизительно равной вероятностью получения зазоров и натягов, применяющееся при редких разборках и реверсивных нагрузках. Соединение неподвижное. Для ширины паза вала и втулки задается одно поле допуска H9 .
Стандартом установлены поля допусков по ширине шпонки и шпоночных пазов b для свободного, нормального и плотного соединений.
Длина пазов вала и отверстия под шпонку изготавливается с полем допуска Z15 , глубина пазов вала и отверстия - с полем допуска Z12 .
К местам установок шпонок предъявляются дополнительные требования по расположению поверхностей.
Допуски и посадки шлицевых соединений
Основные параметры шлицевых соединений
Шлицевые соединения, как и шпоночные, предназначены для передачи крутящих моментов в соединениях шкивов, муфт, зубчатых колес и других деталей с валами.
В отличие от шпоночных соединений, шлицевые соединения, кроме передачи крутящих моментов, осуществляют еще и центрирование сопрягаемых деталей. Шлицевые соединения могут передавать большие крутящие моменты, чем шпоночные, и имеют меньшие перекосы и смещения пазов и зубьев.
Более подробно о видах шлицевых соединений здесь.
В зависимости от профиля зубьев шлицевые соединения делят на соединения с прямобочным, эвольвентным и треугольным профилем зубьев.
Шлицевые соединения с прямобочным профилем зубьев применяются для подвижных и неподвижных соединений. К основным параметрам относятся:
- D – наружный диаметр;
- d – внутренний диаметр;
- b – ширина зуба.
По ГОСТ 1139-80* в зависимости от передаваемого крутящего момента установлено три типа соединений – легкой, средней и тяжелой серии.
В шлицевых соединениях с прямобочным профилем зуба применяют три способа относительного центрирования вала и втулки (рис. 3):
Рис. 3. Способы относительного центрирования шлицевых соединений
Центрирование по наружному и внутреннему диаметрам обеспечивает хорошую соосность деталей при взаимном перемещении. Но центрирование по наружному диаметру, кроме того, применяют и для неподвижных соединений, поскольку в них отсутствует износ от осевых перемещений.
Центрирование по D рекомендуется при повышенных требованиях к соосности элементов соединения, когда твердость втулки не слишком высока и допускает обработку чистовой протяжкой, а вал обрабатывается фрезерованием и шлифуется по наружному диаметру D .
Применяется такое центрирование в подвижных и неподвижных соединениях.
Центрирование по внутреннему диаметру d применяется в тех же случаях, что и центрирование по D , но при твердости втулки, не позволяющей обрабатывать ее протяжкой. Такое центрирование является наименее экономичным.
Центрирование по боковым сторонам зубьев b используют, когда не требуется высокой точности центрирования, при передаче значительных крутящих моментов.
Способ центрирования по боковым поверхностям зубьев b целесообразно, также, применять при передаче знакопеременных нагрузок больших крутящих моментов, а также реверсивном движении.
Этот метод способствует более равномерному распределению нагрузки между зубьями, но не обеспечивает высокой точности центрирования. Применяется реже, так как при этом требует точной обработки шлицевого вала и впадин шлицевой втулки, которая может быть обеспечена у вала шлифованием зубьев, а у втулки только протягиванием отверстия. Применяется, если нужна высокая прочность, а точность центрирования не имеет существенного значения, - например карданные сочленения.
Выбор допусков и посадок шлицевых соединений
В основу построения допусков и посадок шлицевых соединений положена система, обеспечивающая сокращение дорогостоящего инструмента для обработки шлицевых отверстий - протяжек. Поэтому посадки шлицевых соединений с прямобочным профилем зуба строятся по системе отверстия (рис. 4).
Рис. 4. Поля допусков шлицевых соединений
Отклонение размеров профиля отверстия и вала отсчитываются от номинальных размеров диаметров D и d и ширины зуба b .
Для обеспечения собираемости шлицевых деталей предусматриваются гарантированные зазоры между боковыми сторонами зубьев и впадин, а также между не центрируемыми поверхностями. Эти зазоры компенсируют погрешности профиля и расположения шлицев вала и впадин втулки.
Поля допусков шлицевых соединений с прямобочным профилем располагаются в зависимости от центрирующего элемента.
Прямобочные шлицевые соединения, как правило, контролируются комплексными проходными калибрами. При этом поэлементный контроль осуществляется непроходными калибрами или измерительными приборами.
В спорных случаях контроль с применением комплексного калибра является решающим.
При использовании комплексных калибров отверстие считается годным, если комплексный калибр-пробка проходит, а диаметры и ширина паза не выходят за установленные верхние пределы; вал считается годным, если комплексный калибр-кольцо проходит, а диаметры и толщина зуба не выходят за установленный нижний предел.
Обозначение на чертежах прямобочных шлицевых соединений валов и втулок должно содержать:
- букву, соответствующую поверхности центрирования;
- число зубьев и номинальные размеры d , D и b соединения, вала и втулки;
- символы полей допусков или посадок диаметров, а также размера b , помещенные после соответствующих размеров.
В обозначении можно не указывать допуски нецентрирующих диаметров.
Допуски и посадки эвольвентных шлицевых соединений
Для повышения долговечности соединений, улучшения центрирования и упрощения фрезерования (применения метода обката одной червячной фрезой при нарезании шлицев одного модуля, но разных чисел зубьев и диаметров) используются шлицевые соединения с эвольвентным профилем зуба.
Однако при закаленных валах и втулках шлицевание зубьев с эвольвентным профилем невыгодно. Кроме того, стоимость протяжки при чистовой обработке выше, чем для зубьев с прямобочным профилем.
Основными преимуществами эвольвентных шлицевых соединений по сравнению с прямобочными являются:
- более равномерное распределение нагрузки на зубе;
- высокая прочность;
- возможность обеспечения повышенной точности, обусловленная высокой точностью червячной модульной фрезы.
На эти соединения распространяется ГОСТ 6033-80, устанавливающий исходный контур; угол наклона профиля зуба - 30°; форму зуба; номинальные диаметры D = 4. 500 мм; модули т = 0,5. 10 мм; число зубьев z = 64. 82; номинальные размеры элементов и измерительные величины по боковым поверхностям зубьев, а также допуски и посадки.
В шлицевых эвольвентных соединениях втулку относительно вала центрируют по:
- боковым поверхностям зубьев - этот способ получил наибольшее распространение, так как достигается хорошая соосность (в отличие от прямобочных соединений);
- наружному диаметру - этот способ используется, когда необходима высокая точность вращения деталей, сидящих на шлицевом валу;
- внутреннему диаметру - этот способ центрирования используется редко из-за технологических трудностей, в том числе из-за малых опорных площадок по впадинам зубьев.
- номинальный исходный диаметр соединения D ;
- диаметр окружности впадин втулки Df
- диаметр окружности вершин зубьев втулки Da
- модуль m ;
- толщина шлица вала s и ширина впадины втулки е (как правило, s = е);
- диаметр окружности вершин зубьев вала da ;
- диаметр окружности впадин вала df
- смещение исходного контура шлицев хm .
Допуски и посадки при центрировании по боковым поверхностям зубьев эвольвентных соединений имеют особенность, состоящую в том, что на сопрягаемые размеры толщины зубьев вала s и ширины втулки е установлены два вида допусков:
- допуск Тs = Те собственно размеров s и е ;
- суммарный допуск Т , включающий в себя как отклонения размеров s и e , так и отклонение формы и расположения поверхностей профиля зубьев вала и впадин втулки.
Введение таких допусков связано с особенностями контроля шлицевых соединений комплексными калибрами. Величина этих допусков определяется числами - степенями точности, а их расположение относительно номинального размера ( s = е ) на дуге делительной окружности - основными отклонениями.
Контроль размеров шлицевых соединений
Для контроля размеров шлицевой втулки и шлицевого вала применяют поэлементные и шлицевые комплексные калибры. Калибры для контроля внутреннего диаметра втулки и наружного диаметра вала не отличаются от гладких калибров-пробок и калибров-скоб.
Для контроля наружного диаметра D и толщины b зуба вала применяют специальные предельные калибры: листовые двусторонние пробки, неполные пробки, пазовые калибры, калибры-скобы и калибры - скобы для контроля толщины зубьев. Широко применяются комплексные шлицевые калибры, которыми контролируют не только размеры шлицевых валов и втулок, но и отклонения формы и расположения поверхностей.
Читайте также: