Посадка самолета по приборам
Автор: Дмитрий Просько Дата: 06.02.2005 23:20
Курсо-глиссадная система (в дальнейшем будем называть ее КГС, как это принято в России) является наиболее распространенной системой захода на посадку на крупных и оживленных аэродромах. Кроме того, она является наиболее точной, если конечно не считать MLS - Microwave Landing System, которая до сих пор не получила такого же широкого распространения. Сейчас мы попытаемся разобраться, как работает эта система и как научить ею пользоваться. Конечно, эта статья не претендует на наиболее полное и единственно верное руководство :), но в качестве учебного пособия на начальном этапе она вам очень поможет.
Состав и принцип работы КГС
Все, что мы видим на приборах при посадке - это 2 перекрещивающихся планки, обозначающие положение самолета относительно траектории захода на посадку. Давайте попытаемся понять, за счет чего они перемещаются, и почему пилотажно-навигационный комплекс самолета получает очень точную информацию о положении самолета.
Итак, из чего состоит КГС:
- Курсовой маяк, который обеспечивает наведение самолета в горизонтально плоскости - по курсу. маяк, обеспечивающий наведение в вертикальной плоскости - по глиссаде.
- Маркеры, сигнализирующие момент пролета определенных точек на траектории захода. Обычно маркеры устанавливаются на ДПРМ и БПРМ.
- Приемные устройства на борту самолета, обеспечивающие прием и обработку сигнала.
Курсовой и глиссадный маяки устанавливаются возле ВПП. Курсовой маяк - в противоположном торце ВПП по осевой линии, глиссадный маяк сбоку от ВПП на удалении точки приземления от порога ВПП.
Теперь о том, как работают эти маяки. Возьмем за основу курсовой маяк и несколько упрощенно рассмотрим его работу. При работе маяк формирует 2 разночастотных сигнала, которые схематично можно показать как 2 лепестка, направленные вдоль траектории захода на посадку.
В случае, если самолет находится точно на пересечении этих двух лепестков, мощность обоих сигналов одинакова, соответственно разность их мощностей равна нулю, и индикаторы прибора выдают 0. Мы на курсе. Если самолет отклонился влево или вправо, то один сигнал начинает преобладать над другим. И чем дальше от линии курса, тем больше это преобладание. В результате этого за счет разницы в мощности сигнала приемник самолета точно устанавливает, насколько далеко мы от линии курса.
Глиссадный маяк работает точно по такому же принципу, только в вертикальной плоскости.
Читаем показания приборов
Итак, мы вошли в зону действия КГС. Планки на ПНП отшкалили, значит пора нам сориентироваться, где мы находимся и как нам надо пилотировать самолет, чтобы точно вписаться в траекторию захода.
В зависимости от того, какой прибор у нас установлен, индикация может меняться, но основной принцип остается неизменным - планки (стрелки, индексы) показывают нам положение траектории захода относительно нашего места. На том приборе, что мы сейчас рассмотрим, наше положение относительно курса показывает вертикальная планка, а положение относительно глиссады - треугольный индекс в правой части прибора.
Сами планки как бы показывают нам, где именно находится наша траектория. Если курсовая планка слева, то линия курса тоже находится слева, а значит, нам надо довернуть влево. То же и по глиссаде - если глиссадный индекс внизу, то мы идем выше, и нам надо увеличить вертикальную скорость, чтобы "догнать" глиссаду.
Теперь давайте пройдемся по разным положениям самолета и посмотрим на индикацию прибора в положениях, указанных на общем рисунке.
1. Мы на линии курса и еще не подошли к точке входа в глиссаду. Все как положено - курсовая планка точно в центре, глиссадный индекс вверху. Линия глиссады проходит над нами и устремляется в никуда под углом в среднем 2 градуса 40 минут относительно горизонта. Кстати, угол наклона глиссады (УНГ) на разных аэродромах разный. Это зависит от рельефа местности и от других условий. К примеру, на горных аэродромах УНГ может составлять до 4-5 градусов.
2. Мы находимся в точке входа в глиссаду (ТВГ). Это точка, образованная пересечением глиссады с высотой круга. Средняя величина удаления ТВГ составляет примерно 12 км. Естественно, чем выше высота круга и чем меньше УНГ, тем дальше от порога ВПП находится ТВГ.
3. Мы находимся левее и выше. Надо довернуть вправо и увеличить скорость снижения.
4. Мы находимся левее и ниже. Приберем вертикальную и довернем вправо.
5. Мы находимся правее и выше. Довернем влево и увеличим вертикальную.
6. Мы правее и ниже. Догадайтесь, что нужно сделать :)
Ну в общем-то это все, что хотелось вам сообщить :)
Напоследок хочу сделать одно весьма важное дополнение.
Учтите, что чем ближе мы находимся к ВПП, тем меньше должны быть эволюции самолета, потому что прибор становится очень чувствительным. К примеру, если мы находимся на удалении 10 км от порога ВПП, положение курсовой планки на второй точке шкалы может означать боковое отклонение в 400 метров или более (это к примеру). Чтобы довернуть, нам понадобится изменить курс на 4-5 градусов или более. Если же мы находимся на удалении 2 км, то такое положение планки означает, что отклонения превысили предельно допустимые, и единственное, что нам остается, это уходить на второй круг. Чем ближе самолет к порогу ВПП, тем ближе к центру должна быть курсовая планка. В идеале конечно точно в центре :) И соответственно, чем мы ближе, тем меньше должны быть эволюции самолета. Нет смысла закладывать 30-градусный крен в районе ближнего привода. Во-первых, это опасно на такой высоте, во-вторых вы просто не успеете довернуть, учитывая инерцию самолета.
То же самое касается и глиссады. Если мы находимся ниже глиссады, то на большом удалении нам иногда приходится уменьшать вертикальную до нуля, а на маленьком удалении это было бы неверно опять же из-за опасности перелета и, соответственно, выкатывания за ВПП.
Наверное, многих авиапассажиров интересовал вопрос, как пилоты так метко сажают самолет на взлетно-посадочную полосу? Ведь приземлиться необходимо в определенную точку, не только не смещаясь в сторону, но и в нужное время.
В данной статье пойдет речь о наиболее популярной в крупных аэропортах системе захода на посадку, называемой КГС (курсоглиссадная система) или на английском, ILS (Instrument Landing System). Данная система является точной системой захода.
Немного о терминах. Курсом называется направление движения самолета. А глиссадой траекторией — траектория снижения самолета на взлетно-посадочную полосу.
Система автопосадки КГС упрощенно работает следующим образом: на земле устанавливаются специальные излучатели радиоволн (маяки), которые излучают в сторону самолета по два пучка радиоволн горизонтально (курсовой маяк) и вертикально (глиссадный маяк). На пересечении двух пучков сила радиоволн этих пучков одинаковая. Бортовое оборудование самолета определяет силу радиоволн и отклонение самолета от посадочного курса.
Далее, в зависимости от оборудования самолета и режима посадки, выбранного пилотом, прибор может просто отображать на приборной панели это отклонение, и пилотам требуется направлять самолет в нужную сторону с необходимым снижением, либо автопилот сам будет направлять самолет по заданной траектории посадки.
В одном аэропорту могут рядом находится несколько взлетно-посадочных полос. Для каждой из них радиоволны КГС будут передаваться на разной частоте. Курсовой маяк кроме основных радиоволн передает специальный код азбукой Морзе. Это позволяет пилоту удостовериться, что система настроена на правильную КГC. Частоты системы и код имеются в полетной документации у пилотов.
При этом все равно существует вероятность захвата ложного сигнала. Для дополнительного контроля используются дальний и ближний маяки. Это оборудование, установленное на определенном удалении от взлетно-посадочной полосы. Оно излучает радиосигнал частотой 75 МГц узким пучком вверх. При пролете над этими маяками в самолете загорается специальная индикация и раздается звуковой сигнал. Дальний радиомаяк располагается на расстоянии 4км от взлетно-посадочной полосы. В зависимости от схемы посадки самолет пролетает эту точку на высоте около 220 метров. В этой точке пилоты должны проконтролировать работу КГС, текущую высоту полёта и продолжить снижение. Ближний радиомаяк располагается на расстоянии 1км от взлетно-посадочной полосы. В большинстве случаев — это точка принятия решения командиром о посадке. Если в данной точке пилоты не видят полосу, они обязаны уйти на второй круг.
За работой курсоглиссадной системы следит специальное оборудование и, при возникновении неполадок, отключает её. При этом у пилотов в самолете появляется индикация о неработающей системе.
Бортовое оборудование, работающее с системой, использует милливольтные напряжения, поэтому любые устройства пассажиров самолета, которые могут создать радиоизлучение, напрямую угрожают жизни их самих и окружающих их пассажиров.
Те, кто живет в районе аэропортов, знают: чаще всего взлетающие лайнеры взмывают вверх по крутой траектории, будто бы стараясь как можно скорее уйти от земли. И действительно – чем ближе земля, тем меньше возможности среагировать на чрезвычайную ситуацию и принять решение. Посадка – другое дело.
Современный реактивный пассажирский лайнер предназначен для полетов на высотах примерно 9−12 тысяч метров. Именно там, в сильно разреженном воздухе, он может двигаться в наиболее экономичном режиме и демонстрировать свои оптимальные скоростные и аэродинамические характеристики. Промежуток от завершения набора высоты до начала снижения называется полетом на крейсерском эшелоне. Первым этапом подготовки к посадке будет снижение с эшелона, или, иными словами, следование по маршруту прибытия. Конечный пункт этого маршрута — так называемая контрольная точка начального этапа захода на посадку. По-английски она называется Initial Approach Fix (IAF).
А 380 совершает посадку на полосу, покрытую водой. Испытания показали, что самолет способен садиться при боковом ветре с порывами до 74 км/ч (20 м/с). Хотя согласно требованиям FAA и EASA устройства реверсивного торможения не являются обязательными, конструкторы компании Airbus решили оснастить ими два двигателя, находящиеся ближе к фюзеляжу. Это дало возможность получить дополнительную тормозную систему, снизив при этом эксплуатационные расходы и уменьшив время подготовки к следующему полету.
Шасси, закрылки и экономика
21 сентября 2001 года самолет Ил-86, принадлежавший одной из российских авиакомпаний, произвел посадку в аэропорту Дубаи (ОАЭ), не выпустив шасси. Дело закончилось пожаром в двух двигателях и списанием лайнера — к счастью, никто не пострадал. Не было и речи о технической неисправности, просто шасси. забыли выпустить.
Современные лайнеры по сравнению с воздушными судами прошлых поколений буквально набиты электроникой. В них реализована система электродистанционного управления fly-by-wire (буквально «лети по проводу). Это означает, что рули и механизацию приводят в движение исполнительные устройства, получающие команды в виде цифровых сигналов. Даже если самолет летит не в автоматическом режиме, движения штурвала не передаются рулям непосредственно, а записываются в виде цифрового кода и отправляются в компьютер, который мгновенно переработает данные и отдаст команду исполнительному устройству. Для того, чтобы повысить надежность автоматических систем в самолете установлено два идентичных компьютерных устройства (FMC, Flight Management Computer), которые постоянно обмениваются информацией, проверяя друг друга. В FMC вводится полетное задание с указанием координат точек, через которые будет пролегать траектория полета. По этой траектории электроника может вести самолет без участия человека. Зато рули и механизация (закрылки, предкрылки, интерцепторы) современных лайнеров мало чем отличаются от этих же устройств в моделях, выпущенных десятилетия назад. 1. Закрылки. 2. Интерцепторы (спойлеры). 3. Предкрылки. 4. Элероны. 5. Руль направления. 6. Стабилизаторы. 7. Руль высоты.
К подоплеке этого авиапроисшествия имеет отношение экономика. Подход к аэродрому и заход на посадку связаны с постепенным уменьшением скорости воздушного судна. Поскольку величина подъемной силы крыла находится в прямой зависимости и от скорости, и от площади крыла, для поддержания подъемной силы, достаточной для удержания машины от сваливания в штопор, требуется площадь крыла увеличить. С этой целью используются элементы механизации — закрылки и предкрылки. Закрылки и предкрылки выполняют ту же роль, что и перья, которые веером распускают птицы, перед тем как опуститься на землю. При достижении скорости начала выпуска механизации КВС дает команду на выпуск закрылков и практически одновременно — на увеличение режима работы двигателей для предотвращения критической потери скорости из-за роста лобового сопротивления. Чем на больший угол отклонены закрылки/предкрылки, тем больший режим необходим двигателям. Поэтому чем ближе к полосе происходит окончательный выпуск механизации (закрылки/предкрылки и шасси), тем меньше будет сожжено топлива.
Экипаж злополучного Ил-86 тоже воспользовался новой методикой и выпустил закрылки до шасси. Ничего не знавшая о новых веяниях в пилотировании автоматика Ил-86 тут же включила речевую и световую сигнализацию, которая требовала от экипажа выпустить шасси. Чтобы сигнализация не нервировала пилотов, ее просто отключили, как выключают спросонья надоевший будильник. Теперь напомнить экипажу, что шасси все-таки надо выпустить, было некому. Сегодня, правда, уже появились экземпляры самолетов Ту-154 и Ил-86 с доработанной сигнализацией, которые летают по методике захода на посадку с поздним выпуском механизации.
По фактической погоде
Курсо-глиссадная система состоит из двух частей: пары курсовых и пары глиссадных радиомаяков. Два курсовых радиомаяка находятся за ВПП и излучают вдоль нее направленный радиосигнал на разных частотах под небольшими углами. На осевой линии ВПП интенсивность обоих сигналов одинакова. Левее и правее этой прямой сигнал одного из маяков сильнее другого. Сравнивая интенсивность сигналов, радионавигационная система самолета определяет, с какой стороны и как далеко он находится от осевой линии. Два глиссадных маяка стоят в районе зоны приземления действуют аналогичным образом, только в вертикальной плоскости.
С другой стороны, в принятии решений КВС жестко ограничен существующим регламентом процедуры посадки, и в пределах этого регламента (кроме экстренных ситуаций вроде пожара на борту) у экипажа нет никакой свободы принятия решений. Существует жесткая классификация типов захода на посадку. Для каждого из них прописаны отдельные параметры, определяющие возможность или невозможность такой посадки в данных условиях.
Безопасная жесткость
24 августа 2001 года экипаж аэробуса А330, совершавшего рейс из Торонто в Лиссабон, обнаружил утечку топлива в одном из баков. Дело происходило в небе над Атлантикой. Командир корабля Робер Пиш принял решение уйти на запасной аэродром, расположенный на одном из Азорских островов. Однако по пути загорелись и вышли из строя оба двигателя, а до аэродрома оставалось еще около 200 километров. Отвергнув идею посадки на воду, как не дающую практически никаких шансов на спасение, Пиш решил дотянуть до суши в планирующем режиме. И ему это удалось! Посадка получилась жесткой – лопнули почти все пневматики – но катастрофы не произошло. Лишь 11 человек получили небольшие травмы.
Отечественные летчики, особенно эксплуатирующие лайнеры советских типов (Ту-154, Ил-86), часто завершают выравнивание процедурой выдерживания, то есть какое-то время продолжают полет над полосой на высоте около метра, добиваясь мягкого касания. Конечно, посадки с выдерживанием нравятся пассажирам больше, да и многие пилоты, особенно с большим опытом работы в отечественной авиации, считают именно такой стиль признаком высокого мастерства.
Однако сегодняшние мировые тенденции авиаконструирования и пилотирования отдают предпочтение посадке с перегрузкой 1,4−1,5 g. Во-первых, такие посадки безопаснее, так как приземление с выдерживанием содержит в себе угрозу выкатывания за пределы полосы. В этом случае практически неизбежно применение реверса, что создает дополнительный шум и увеличивает расход топлива. Во-вторых, сама конструкция современных пассажирских самолетов предусматривает касание с повышенной перегрузкой, так как от определенного значения физического воздействия на стойки шасси (обжатие) зависит срабатывание автоматики, например задействование спойлеров и колесных тормозов. В воздушных судах старых типов этого не требуется, так как спойлеры включаются там автоматически после включения реверса. А реверс включается экипажем.
Есть еще одна причина различия стиля посадки, скажем, на близких по классу Ту-154 и А 320. Взлетные полосы в СССР зачастую отличались невысокой грузонапряженностью, а потому в советской авиации старались избегать слишком сильного давления на покрытие. На тележках задних стоек Ту-154 по шесть колес — такая конструкция способствовала распределению веса машины на большую площадь при посадке. А вот у А 320 на стойках всего по два колеса, и он изначально рассчитан на посадку с большей перегрузкой на более прочные полосы.
Островок Сен-Мартен в Карибском бассейне, поделенный между Францией и Нидерландами, получил известность не столько из-за своих отелей и пляжей, сколько благодаря посадкам гражданских лайнеров. В этот тропический рай со всех уголков мира летят тяжелые широкофюзеляжные самолеты типа Боинг-747 или А-340. Такие машины нуждаются в длинном пробеге после посадки, однако в аэропорту Принцессы Юлианы полоса слишком коротка – всего 2130 метров – торец ее отделен от моря лишь узкой полоской земли с пляжем. Чтобы избежать выкатывания, пилоты аэробусов целятся в самый торец полосы, пролетая в 10-20 метрах над головами отдыхающих на пляже. Именно так проложена траектория глиссады. Фотографии и видеоролики с посадками на о. Сен-Мартен давно обошли интернет, причем многие поначалу не поверили в подлинность этих съемок.
Неприятности у самой земли
И все-таки по-настоящему жесткие посадки, а также прочие неприятности на финальном отрезке полета случаются. Как правило, к авиапроисшествиям приводит не один, а несколько факторов, среди которых и ошибки пилотирования, и отказ техники, и, конечно же, стихия.
Большую опасность представляет так называемый сдвиг ветра, то есть резкое изменение силы ветра с высотой, особенно когда это происходит в пределах 100 м над землей. Предположим, самолет приближается к полосе с приборной скоростью 250 км/ч при нулевом ветре. Но, спустившись чуть ниже, самолет вдруг наталкивается на попутный ветер, имеющий скорость 50 км/ч. Давление набегающего воздуха упадет, и скорость самолета составит 200 км/ч. Подъемная сила также резко снизится, зато вырастет вертикальная скорость. Чтобы компенсировать потерю подъемной силы, экипажу потребуется добавить режим двигателя и увеличить скорость. Однако самолет обладает огромной инертной массой, и мгновенно набрать достаточную скорость он просто не успеет. Если нет запаса по высоте, жесткой посадки избежать не удастся. Если же лайнер натолкнется на резкий порыв встречного ветра, подъемная сила, наоборот, увеличится, и тогда появится опасность позднего приземления и выкатывания за пределы полосы. К выкатываниям также приводит посадка на мокрую и обледеневшую полосу.
Курсо-глиссадная система (ILS)
Садиться визуально при хорошей видимости легко и приятно, но, к сожалению, погода не всегда это позволяет. Авиаторы начали искать решение проблемы.
Уже в 1929 началось тестирование радионавигационной системы, позволяющей заходить на посадку при помощи приборов вне видимости взлетно-посадочной полосы, а в 1941 году использование такой системы было разрешено американской авиационной администрацией в шести аэродромах страны.
Первая посадка по приборам пассажирского лайнера выполняющего регулярный рейс была произведена 26 января 1938 года. Boeing 747, выполняющий рейс из Вашингтона в Питтсбург совершил посадку в пургу, используя для этого только курсо-глиссадную систему.
Курсо-глиссадная система (КГС) предназначена для посадки в условиях отсутствия видимости полосы. По-английски эта система называется Instrument Landing System, сокращенно ILS. ILS состоит из двух основных независимых частей: курсовых (localizer) и глиссадных (glideslope) радиомаяков.
Курсовой радиомаяк, как следует из названия, позволяет контролировать положение самолета по курсу. Курсовой радиомаяк находится с противоположного торца полосы и состоит из двух направленных передатчиков, ориентированных вдоль полосы под незначительно различающимися углами, передающими сигнал, смодулированный на разных частотах. По середине полосы интенсивность обоих сигналов максимальная, в то время как слева и справа от полосы интенсивность одного из передатчиков выше. Принимающая аппаратура сравнивает оба сигнала и исходя из их интенсивности вычисляет, на сколько левее или правее от осевой линии находится самолет.
Курсовой посадочный радиомаяк сокращенно обозначают LOC в Америке, или LLZ в Европе. Несущая частота обычно находится в пределах от 108.000 МГц до 111.975 МГц. Современные курсовые маяки обычно являются высоконаправленными. Более старые радиомаяки таковыми не являлись, и их сигналы можно было поймать на обратном курсе. Это позволяло сделать неточный заход на противоположный конец полосы, если он не был оборудован собственной ILS. Большим минусом такого захода является то, что прибор будет показывать отклонение от курса в противоположном направлении, что сильно усложняет заход.
Глиссадный радиомаяк (glideslope или glidepath, сокращенно GP) работает аналогичным образом. Он устанавливается сбоку от полосы в зоне приземления:
Несущая частота глиссадного радиомаяка обычно находится в пределах от 329.15 до 335 МГц. К счастью, пилоту не надо вводить отдельно частоту глиссадного маяка, прибор настраивается на нее автоматически.
Угол наклона глиссады (УНГ) может меняться в зависимости от окружающей местности. Стандартный угол наклона глиссады за рубежом равен трем градусам. В России стандартным считается угол 2 градуса 40 минут.
Помимо основных компонент, в ILS может входить ряд дополнительных. Такими компонентами являются маркерные радиомаяки. Они представляют собой радиомаяки, излучающие узконаправленный сигнал вверх на частоте 75 МГц. Когда самолет проходит над таким радиомаяком, аппаратура принимает его и зажигает соответствующий индикатор. Пилот, глядя на индикатор, должен принять соответствующее маяку решение.
Маркерные маяки бывают трех видов:
1. Дальний маркерный маяк (Outer Marker, OM). Как правило расположен на удалении 7.2 км от порога ВПП, но это расстояние может изменяться. При проходе над маяком в кабине загорается и мигает буква O. В этот момент пилот должен принять решение о заходе по ILS.
2. Ближний маркерный маяк (Middle Marker, MM). Расположен примерно в километре от порога ВПП, в кабине обозначен индикатором с буквой M. При заходе по ILS категории I, если в этот момент нет видимости земли, пилот должен начать уход на второй круг.
3. Внутренний маркерный маяк (Inner Marker, IM). Расположен обычно примерно в 30 метрах от порога ВПП, при проходе загорается бука I. Во время захода по ILS категории II, если в момент прохода маяка нет видимости земли, следует немедленно начать уход на второй круг.
На практике не все маркерные маяки могут быть установлены одновременно. Внутренний маяк очень часто отсутствует. Часто маркерные маяки совмещают с приводными радиостанциями.
Совместно с ILS может работать всенаправленный дальномерный радиомаяк, или РМД (по- английски DME, Distance Measuring Equipment). Если DME установлен, аппаратура DME в кабине самолета показывает удаление до торца полосы. Иногда DME может использоваться вместо маркерных радиомаяков. В таких случаях на схемах посадки может быть написано что для посадки по ILS использование DME является обязательным.
ILS делятся на категории, которые определяют минимум погоды, при которых ими можно пользоваться. Существуют три категории ILS, обозначающиеся римскими цифрами. Третья категория в свою очередь делится на три подтипа, обозначающиеся латинскими буквами. В таблице ниже перечислены особенности всех категория ILS:
Читайте также: