Помещения ибп чем тушить
Аккумуляторные батареи должны быть размещены правильно, т. е. полностью изолированно от газа, воды и искр. Причина этого – факторы риска:
- выделение батареями водорода, образующего в воздухе горючую смесь;
- едкость серной кислоты, которая входи в состав свинцово-кислотных аккумуляторных батарей;
- токсичность серной кислоты и свинца, которые есть в составе многих аккумуляторов.
Если в помещениях, где хранятся аккумуляторные батареи, возникнет пожар, он будет проходить очень бурно, со взрывами и выделением токсичных, ядовитых паров, поэтому пожарная безопасность аккумуляторных так важна.
Пожарная безопасность аккумуляторных помещений
Необходимую безопасность аккумуляторных определяют по специальной инструкции, разработанной на основе:
- Технического регламента 123-Ф3;
- ППР РФ 390;
- ВППБ № 01-04-98;
- ПУЭ;
- ПТЭЭП.
Согласно инструкции, на всех аккумуляторных должны выполняться следующие правила:
- На дверях должны находиться надписи: «Аккумуляторная», «Огнеопасно», «С огнем не входить», «Курить запрещено» либо соответствующие запрещающие знаки.
- Помещения для хранения, зарядки, ремонта аккумуляторов должны быть обособлены друг от друга негорючими перегородками.
- Необходим постоянный контроль исправности уплотнителей и устройств для самозакрывания тамбур-шлюзов.
- Приточно-вытяжная вентиляция должна иметь возможность блокировки, чтобы прекратить зарядный ток при отключении вентиляции.
- Проводка выполняется в специально обработанных шинах, клеммы должны быть медными либо освинцованными.
- Если аккумуляторы нужно присоединить либо отключить, зарядный ток должен быть отключен.
- Ремонт аккумуляторов должен осуществляться в помещениях, отдельных от тех, где они хранятся.
- Аккумуляторные для хранения кислотных АКБ окрашивают кислотноупорной краской, щелочных – битумной.
- Стекла в окнах аккумуляторных делают матовыми либо окрашивают в белый цвет специальной краской.
- При необходимости провести паяльные работы в зарядном помещении, зарядку батарей прекращают и проветривают помещение не меньше 20-ти минут.
- На дверях должен быть замок.
- Запрещено в аккумуляторных:
- курение;
- хранение кислот или щелочей;
- хранение спецодежды;
- установка в одном помещении аккумуляторов кислотных и щелочных.
Невыполнение пунктов инструкции – это прямой путь к дисциплинарной, административной или даже уголовной ответственности.
Ответственность за соответствие аккумуляторной всем требованиям ПБ несет назначенный приказом руководителя начальник энерговодоснабжения.
Противопожарное оснащение аккумуляторных
Для обеспечения готовности к тушению возгорания и препятствованию развития пожара, в аккумуляторных предусматривают:
- пожарную сигнализацию,
- ручные или
- автономные средства пожаротушения.
В помещениях всегда должны быть в наличии:
- подручные средства – емкость с песком, лопата, топор и пр.;
- углекислотные ОТ;
- порошковые ОТ.
Эффективными и надежными средствами являются самосрабатывающие устройства, основанные на улавливании чувствительным сенсором повышения температуры. Превышение критического уровня – сигнал к самораспылению порошка и ликвидации возгорания.
Для точного определения количества и типа огнетушителей необходимо произвести расчет, в ходе которого узнать категорию помещения по взрыво- и пожароопасности. Далее аккумуляторную оснащают средствами ПТ согласно ПУЭ.
После публикации статьи «ИБП и батарейный массив: куда ставить? Да подожди ты» было много комментариев по поводу опасности Li-Ion решений для серверных и ЦОД. Поэтому сегодня попробуем разобраться, в чём отличия промышленных решений на литии для ИБП от батарейки в вашем гаджете, как отличаются условия эксплуатации батарей в серверной, почему в телефоне Li-Ion батарея служит не более 2-3 лет, а в ЦОДе эта цифра возрастёт до 10 и более лет. Почему риски возгорания лития в ЦОД/серверной минимальны.
Да, аварии на батареях ИБП возможны вне зависимости от типа накопителей энергии, а вот миф «пожароопасности» промышленных решений на литии не соответствует действительности.
Ведь многие видели тот ролик с возгоранием телефона c литиевым аккумулятором в движущейся по шоссе машине? Итак, посмотрим, разберёмся, сравним…
Здесь видим типичный случай неконтролируемого самонагрева, теплового разгона батареи телефона, приведшего к такому инциденту. Вы скажете: ВОТ! Это всего лишь телефон, в серверную поставит такое только сумасшедший!
Уверен, изучив данный материал, читатель изменит свою точку зрения по этому вопросу.
Текущая ситуация на рынке ЦОД
Ни для кого не секрет, что строительство ЦОД – это долгосрочное капиталовложение. Цена только инженерного оборудования может составлять 50% от стоимости всех капитальных затрат. Горизонт окупаемости – примерно 10-15 лет. Закономерно возникает желание снизить полную стоимость владения на всём жизненном цикле ЦОД, а попутно ещё и уплотнить инженерное оборудование, максимально освободив площади под полезную нагрузку.
Оптимальное решение – промышленные ИБП новой итерации на базе Li-Ion аккумуляторов, которые уже давно избавились от «детских болезней» в виде пожароопасности, некорректных алгоритмов заряда-разряда, обросли массой защитных механизмов.
С увеличением мощностей вычислительного и сетевого оборудования растёт спрос на ИБП. Одновременно увеличиваются требования ко времени автономной работы от аккумуляторных батарей в случае проблем с централизованным электроснабжением и/или сбоями при запуске резервного источника питания в случае применения/наличия ДГУ.
Основных причин, на наш взгляд, тут две:
- Стремительный рост объёмов обрабатываемой и передаваемой информации
Например, новый пассажирский самолёт Boeing
787 Dreamliner за один полёт генерирует более 500 гигабайт информации, которую
нужно сохранить и обработать. - Рост динамики потребления электрической энергии. Несмотря на общий тренд снижения энергопотребления ИТ-оборудования, снижения удельного потребления энергии электронными компонентами.
Кроме облаков к точкам роста игроки причисляют развитие ЦОД-мощностей в регионах: они являются единственным сегментом, где сохраняется запас для развития бизнеса. По данным IKS-Consulting, в 2016 году на регионы пришлось только 10% всех предлагаемых на рынке ресурсов, в то время как столица и Московская область заняли 73% рынка, а Санкт-Петербург и Ленинградская область – 17%. В регионах продолжает сохраняться дефицит на ресурсы дата-центров с высокой степенью отказоустойчивости.
К 2025 году, согласно прогнозам, общий объём данных в мире увеличится в 10 раз по сравнению с 2016 годом.
Всё-таки, насколько безопасен литий для ИБП серверной или ЦОД?
Недостаток: высокая стоимость Li-Ion решений.
Цена литий-ионных АКБ всё ещё остаётся высокой по сравнению со стандартными решениями. По оценкам компании SE начальные расходы для мощных ИБП свыше 100 кВА для Li-Ion решений будут выше в 1,5 раза, но в конечном итоге экономия на владении составит 30-50%. Если провести сравнения с военно-промышленным комплексом других стран, то вот новость о запуске в эксплуатацию японской подводной лодки с Li-Ion батареями. Довольно часто в подобных решениях применяют литий-железо-фосфатные батареи (на фото- LFP) ввиду относительной дешевизны и большей безопасности.
В статье упоминается, что на новые батареи для субмарины потрачено $100 млн., попробуем пересчитать в другие величины.4,2 тысячи тонн-подводное водоизмещение японской субмарины. Надводное водоизмещение- 2,95 тысяч тонн. Как правило 20-25% массы лодки составляют аккумуляторы. Отсюда берем примерно 740 тонн — свинцово-кислотные аккумуляторы. Далее: масса литий составляет примерно 1/3 от свинцово-кислотных батарей -> 246 тонн лития. По 70кВт*ч/кг для Li-Ion получаем примерно порядка 17 МВт*ч мощности батарейного массива. И разница в массе батарей — примерно 495 тонн… Здесь мы не берем в расчет серебряно-цинковые аккумуляторы, в составе которых на одну подводную лодку нужно 14,5 тонн серебра, а по стоимости они превышают свинцово-кислотные батареи в 4 раза. Напомню Li-Ion батареи сейчас дороже VRLA всего в 1,5- 2 раза в зависимости от мощности решения.
А что японцы? Они слишком поздно вспомнили что «облегчение лодки » на 700 тонн влечет за собой изменение ее мореходных качеств, остойчивости… Вероятно им пришлось добавлять вооружений на борт, чтобы вернуть проектные значения развесовки лодки.
Литиево-ионные аккумуляторы также весят меньше, чем свинцово-кислотные аккумуляторы, поэтому проект подводной лодки типа Soryu пришлось несколько переработать для сохранения балластировки и остойчивости.
В Японии созданы и доведены до эксплуатационного состояния два типа литиево-ионных аккумуляторных батарей: литий-никель-кобальт-алюминий-оксидная (NCA) производства компании GS Yuasa и литий-титанатная (LTO) производства корпорации Toshiba. Японский флот будет использовать батареи типа NCA, при этом, согласно Кобаяси, Австралии для использования на подводных лодках на основе типа Soryu в недавнем тендере были предложены батареи типа LTO.
Зная трепетное отношение к безопасности в стране Восходящего Солнца, можно предположить, что вопросы безопасности лития у них решены, протестированы и сертифицированы.
Риск: пожароопасность.
Вот тут и разберёмся с целью публикации, так как мнения о безопасности данных решений существуют диаметрально противоположные. Но это всё лирика, а что у нас с конкретными промышленными решениями?
Вопросы безопасности мы уже рассматривали в нашей cтатье, но ещё раз остановимся на этом вопросе. Обратимся к рисунку, где рассматривался уровень защиты модуля и ячейки LMO/NMC аккумулятора производства Samsung SDI и используемой в составе ИБП Schneider Electric.
Химические процессы были рассмотрены в статье пользователя LadyN Как взрываются литий-ионные аккумуляторы. Попробуем разобраться в возможных рисках в нашем конкретном случае и сопоставить с многоуровневой защитой в ячейках Samsung SDI, являющихся составной частью готовой Li-Ion стойки Type G в составе комплексного решения на базе Galaxy VM.
Начнём с общего случая блок-схемы рисков и причин возгорания литий-ионной ячейки.
Под спойлером можно изучить теоретические вопросы рисков возгорания литий-ионных аккумуляторов и физику процессовИсходная блок-схема рисков и причин возгорания (Safety Hazard) литий-ионной ячейки из научной статьи 2018 года.
Поскольку в зависимости от химической структуры литий-ионной ячейки имеются отличия в характеристиках теплового разгона ячейки, здесь остановимся на изложенном в статье процессе в литий-никель-кобальт-алюминиевой ячейке (на базе LiNiCoAIO2) или NCA.
Процесс развития аварии в ячейке можно разделить на три стадии:
- стадия 1 (Onset). Нормальная работа ячейки, когда градиент нарастания температуры не превышает 0,2 гр.С в минуту, а сама температура ячейки не превышает 130-200 гр.С в зависимости от химической структуры ячейки;
- стадия 2, разогрев (Acceleration). На этом этапе температура повышается, градиент роста температуры стремительно увеличивается, происходит активное выделение тепловой энергии. В общем случае этот процесс сопровождается выделением газов. Избыточное газовыделение должно быть компенсировано срабатыванием предохранительного клапана;
Температура теплового разгона зависит от размера ячейки, конструкции ячейки и материала. Температура теплового разгона может варьироваться от 130 до 200 градусов цельсия. Время теплового разгона может быть разным и составлять минуты, часы или даже дни.
А что у нас с ячейками типа LMO/NMC в литий-ионных ИБП?
– Для предотвращения соприкосновения анода с электролитом используется керамический слой в составе ячейки (SFL). Блокировка перемещения ионов лития происходит при 130 гр.С.
– В дополнение к защитному вентиляционному клапану, применяется система защиты от перезаряда (Over Charge Device,OSD), работающая в паре с внутренним предохранителем и отключающая повреждённую ячейку, не давая довести процесс теплового разгона до опасных значений. Причём срабатывание внутренней системы OSD будет раньше, при достижении давления 3,5кгс/см2, то есть, вполовину меньше, чем давление срабатывания защитного клапана ячейки.
К слову сказать, предохранитель ячейки сработает при токах свыше 2500 А за время не более 2 секунд. Предположим, градиент температуры достиг показания 10 гр.С/мин. За 10 секунд ячейка успеет добавить к своей температуре около 1,7 градуса, находясь в режиме разгона.
– Трёхслойный сепаратор в ячейке в режиме перезаряда обеспечит блокирование перехода ионов лития на анод ячейки. Температура блокирования составляет 250 гр.С.
Теперь посмотрим, что у нас с температурой ячейки; сопоставим, на каких этапах происходит срабатывание разных видов защит на уровне ячейки.
— система OSD – 3,5+-0,1 кгс/cм2 <= внешнее давление
Дополнительная защита от сверхотоков.
— защитный клапан 7,0+-1,0 кгс/cм2 <= внешнее давление
— предохранитель внутри ячейки 2 секунда при 2500А (режим токов перегрузки over current)
Рассмотрим эффект уровня заряда ячейки в контексте рисков появления теплового разгона. Рассмотрим таблицу соответствия температуры ячейки от параметра SOC (State of Charge, степень заряда аккумулятора).
Степень заряда аккумулятора измеряется в процентах и показывает, какая часть полного заряда ещё остаётся запасённой в аккумуляторе. В данном случае мы рассматриваем режим перезаряда аккумулятора. Можно сделать вывод, что в зависимости от химического состава литиевой ячейки батарея может вести себя по-разному при перезаряде и иметь разную склонность к тепловому разгону. Это обусловлено разной удельной ёмкостью (А*ч/грамм) различных типов Li-Ion ячеек. Чем больше удельная ёмкость ячейки, тем более стремительным будет тепловыделение при перезаряде.
Кроме того, при 100% SOC внешнее короткое замыкание часто приводит к термическому разгону ячейки. С другой стороны, когда ячейка имеет уровень заряда 80% SOC, максимальная температура начала теплового разгона ячейки смещается в большую сторону. Ячейка становится более устойчивой к аварийным режимам.
И, наконец, для 70% SOC внешние короткие замыкания могут вообще не быть причиной теплового разгона. То есть, риск воспламенения ячейки значительно снижается, и наиболее вероятный сценарий – лишь срабатывание предохранительного клапана литиевого аккумулятора.
Кроме того, из таблицы можно сделать вывод, что LFP (фиолетовая кривая) батареи как правило имеет крутой наклон нарастания температуры, то есть, стадия «разогрев» плавно переходит в стадию «тепловой разгон», и устойчивость этой системы к перезаряду несколько хуже. Батареи типа LMO, как видим, имеют более плавную характеристику разогрева при перезаряде.
ВАЖНО: при срабатывании системы OSD происходит сброс ячейки на байпас. Таким образом, снижается напряжение на стойке, но она остаётся в работе и выдаёт сигнал в систему мониторинга ИБП посредством системы BMS самой стойки. В случае классической системы ИБП с VRLA батареями короткое замыкание или обрыв внутри одного АКБ в стринге может привести к отказу ИБП в целом и потере работоспособности ИТ-оборудования.
Исходя из вышеизложенного, для случая использования литиевых решений в ИБП остаются актуальными риски:
- Тепловой разгон ячейки, модуля в результате внешнего КЗ – несколько уровней защит.
- Тепловой разгон ячейки, модуля в результате внутренней неисправности батареи – несколько уровней защит на уровне ячейки, модуля.
- Перезаряд – защита средствами BMS плюс все уровни защиты стойки, модуля, ячейки.
- Механическое повреждение – неактуально для нашего случая, риск события ничтожен.
- Перегрев стойки и всех батарей (модулей, ячеек). Некритично до 70-90 градусов. Если температура в помещении установки ИБП поднимется выше этих значений – значит, это уже пожар в здании. В нормальных режимах работы ЦОД риск события ничтожен.
- Снижение ресурса батарей при повышенных температурах помещения – допускается длительная работа при температуре до 40 градусов без ощутимого снижения ресурса батарей. Свинцовые батареи очень чувствительны к любому повышению температуры и снижают свой остаточный ресурс пропорционально увеличению температуры.
ВЫВОД: Специализированные литиевые аккумуляторы для ИБП ЦОД, серверной обладают достаточным уровнем защиты от нештатных ситуаций, а в комплексном решении большое количество степеней разнообразной защиты и более чем пятилетний опыт эксплуатации этих решений позволяют говорить о высоком уровне безопасности новых технологий. Кроме всего прочего, не стоит забывать, что эксплуатация литиевых АКБ в нашем секторе выглядит как «тепличные» условия для Li-Ion технологий: в отличие от вашего смартфона в кармане, батарею в ЦОД никто не будет ронять, перегревать, разряжать каждый день, активно использовать в буферном режиме.
ОТКРЫТЫЕ ТЕХНОЛОГИИ – надёжные комплексные решения от мировых лидеров, адаптированные именно под ваши цели и задачи.
Автор: Куликов Олег
Ведущий инженер конструктор
Департамент интеграционных решений
Компания Открытые Технологии
15.1. По степени обеспечения надежности электроснабжения системы противопожарной защиты следует относить к I категории согласно Правилам устройства электроустановок, за исключением электродвигателей компрессора, насосов дренажного и подкачки пенообразователя, относящихся к III категории электроснабжения, а также случаев, указанных в п. п. 15.3, 15.4.
Электроснабжение систем противопожарной защиты зданий класса функциональной пожарной опасности Ф1.1 с круглосуточным пребыванием людей должно обеспечиваться от трех независимых взаимно резервирующих источников питания, в качестве одного из которых следует применять автономные электрогенераторы.
15.2. Питание электроприемников следует осуществлять согласно [7] с учетом требований 15.3, 15.4.
15.3. При наличии одного источника электропитания (на объектах III категории надежности электроснабжения) допускается использовать в качестве резервного источника питания электроприемников, указанных в 15.1, аккумуляторные батареи или блоки бесперебойного питания, которые должны обеспечивать питание указанных электроприемников в дежурном режиме в течение 24 ч плюс 1 ч работы системы пожарной автоматики в тревожном режиме.
Примечание - Допускается ограничить время работы резервного источника в тревожном режиме до 1,3 времени выполнения задач системой пожарной автоматики.
При использовании аккумулятора в качестве источника питания должен быть обеспечен режим подзарядки аккумулятора.
15.4. При отсутствии по местным условиям возможности осуществлять питание электроприемников, указанных в 15.1, от двух независимых источников допускается осуществлять их питание от одного источника - от разных трансформаторов двухтрансформаторной подстанции или от двух близлежащих однотрансформаторных подстанций, подключенных к разным питающим линиям, проложенным по разным трассам, с устройством автоматического ввода резерва, как правило, на стороне низкого напряжения.
15.5. Место размещения устройства автоматического ввода резерва централизованно на вводах электроприемников автоматических установок пожаротушения и системы пожарной сигнализации или децентрализованно у электроприемников I категории надежности электроснабжения определяется в зависимости от взаиморасположения и условий прокладки питающих линий до удаленных электроприемников.
15.6. Для электроприемников автоматических установок пожаротушения I категории надежности электроснабжения, имеющих включаемый автоматически технологический резерв (при наличии одного рабочего и одного резервного насосов), устройство автоматического ввода резерва не требуется.
15.7. В установках водяного и пенного пожаротушения в качестве резервного питания допускается применение дизельных электростанций.
15.8. В случае питания электроприемников автоматических установок пожаротушения и системы пожарной сигнализации от резервного ввода допускается при необходимости обеспечивать электропитание указанных электроприемников за счет отключения на объекте электроприемников II и III категории надежности электроснабжения.
15.9. Защиту электрических цепей автоматических установок пожаротушения и системы пожарной сигнализации необходимо выполнять в соответствии с [7].
Не допускается устройство тепловой и максимальной защиты в цепях управления автоматическими установками пожаротушения, отключение которых может привести к отказу подачи огнетушащего вещества к очагу пожара.
15.10. При использовании аккумулятора в качестве источника питания должен быть обеспечен режим подзарядки аккумулятора.
Пожары на производственных объектах – не редкость. Сложность тушения заключается в том, что внутри зданий производственного типа расположены электроустановки, находящиеся под напряжением. При соприкосновении воды с ними образуется электрическая дуга, которая является фактором смертельно опасным. И хотя на таких объектах требования пожарной безопасности строже, но не всегда удается избежать жертв. Поэтому правильное тушение пожаров в электроустановках с использованием специальных средств является главным требованием проводимых стратегий пожаротушения.
Электрический ток и опасности, с ним связанные
Говоря об электроустановках, необходимо в первую очередь обозначить предприятия, где провести остановку, то есть отключение электроэнергии, сложно. На это требуется несколько часов. Это электростанции разного типа, электроподстанции, щитовые крупных предприятий, завязанных с нефтепереработкой и других важных отраслей.
Поэтому эвакуация людей производится по строгим правилам, где в первую очередь определяются места и участки, остающиеся под напряжением. Их или обходят, то есть составляются эвакуационные маршруты так, чтобы в эти зоны не попадать, или проводят эвакуацию со строжайшими требованиями не соприкосновения людей с проводами, кабелями, оборудованием, находящихся под напряжением.
Что касается правил тушения пожаров на электроустановках, то необходимо обозначить, что этот процесс делится на два этапа:
Тушение собственными силами
На производстве есть один человек, который отвечает за все, что происходит на смене. Это начальник смены. Если случился пожар, то приступать к его тушению можно лишь после того, как было сообщено об этом начальнику смены. Именно он отдает распоряжения:
- отключить питание электрическим током, это к часто задаваемому вопросу, кто разрешает отключать оборудование в зоне начавшегося пожара;
- вызвать пожарные расчеты;
- начать организацию тушение огня.
Важно! Заниматься тушением очага возгорания может группа работников, состоящая из двух человек и более. Порядок проводимых мероприятий определяется инструкцией.
Особенности тушения пожаров в электроустановках основано на напряжение, которое подведено к ним. А так как борьба с огнем собственными силами – это применение огнетушителей, то необходимо четко понимать, что не все огнетушащие агрегаты могут быть использованы для тушения электроустановок. Здесь зависимость такая:
- если электроустановки находятся под напряжением до 0,38 кВ, то тушить их можно хладоновыми огнетушителями;
- если напряжение до 1 кВ, то подойдут порошковые агрегаты;
- если напряжение доходит до 10 кВ, то можно использовать только углекислотные огнетушащие приборы.
При этом надо обязательно учитывать тот факт, что защита людей от электрического тока – наиважнейший фактор. Поэтому, используя собственные силы в тушении пожара, необходимо заблаговременно укомплектовать работников и сотрудников диэлектрическими перчатками, ботами и противогазами. То есть стратегия тушения очага возгорания может быть разной, могут быть использованы разные средства тушения. Но главные принципы безопасности при проведении этого вида работ основываются на безопасности людей.
Каковы же действия персонала при возникновении пожара в электроустановках:
- сообщить начальнику смены, что пожар в таком-то отсеке или цехе начался;
- надеть защитную амуницию;
- приготовить огнетушители;
- выдвигаться по несколько человек к месту возгорания;
- приступить к тушению огня.
Автоматические установки пожаротушения
Все современные электроустановки комплектуются автоматическими системами тушения пожаров. Но не все они работают в автоматическом режиме. Если в помещениях находятся люди, то включаются системы дистанционно, когда отсеки покинут люди. Если внутри никто не работает, то установки включаются автоматически.
При этом установки пожаротушения включаются лишь в том случае, если электроустановки обесточены. Если по каким-то причинам автоматического включения не произошло, то систему пожаротушения включают вручную.
Если, к примеру, на подстанции автоматических установок пожаротушения нет, то с возникновением возгорания справляются с помощью огнетушителей.
Автоматические системы пожаротушения на электроустановках
Пожарные расчеты
Первичные средства пожаротушения в электроустановках – не самый эффективный способ. Небольшой пожар ими потушить можно. А вот если очаг возгорания разросся до больших размеров, здесь могут помочь только пожарные, укомплектованные современным оборудованием.
Когда расчеты приезжают на объект, в котором находятся электроустановки, то в первую очередь они запрашивают карточки пожаротушения. В этих документах подробно расписано, где находятся электроустановки, под каким напряжением они работают, в каких местах располагаются заземляющие устройства. Карточки помогают определиться со стратегией и определением кратчайших путей к электроустановкам.
Обычно в состав электрообъектов входят собственные пожарные части, которые один раз в год проводят тренировки, где отрабатываются разные ситуации с возгоранием.
Пожарные тушах электроустановку
Инструкция по тушению пожаров в электроустановках четко оговаривает, как надо тушить очаг возгорания, какими средствами. К примеру, вот три важных пункта:
- тушить электроустановки можно только распыленной струей, для чего используют насадки НРТ-5, при этом расстояние от нее до очага возгорания не должно быть меньше 5 м;
- если для тушения электроустановок используют пену, то все элементы пожарного оборудования заземляются, к ним относятся стволы, насосы в автомобилях и пеногенераторы;
- все пожарные обуваются в диэлектрические боты, на руки надевают перчатки из того же материала, это касается и водителей пожарных машин.
Сложности в тушении электроустановок
Разобравшись со средствами пожаротушения в электроустановках, переходим к сложностям самого процесса. Все дело в том, что электрические установки – электрооборудование специфическое, поэтому есть несколько факторов, которые усложняют работу с ними:
В видео рассказывается об особенностях тушения пожаров на электроустановках:
Чем тушить электроустановки
В первую очередь необходимо ответить на вопрос, какими средствами пожаротушения не допускается тушить электроустановки на объектах, находящиеся под напряжением. Сразу надо оговориться, что если электроустановка обесточена, то не никакой разницы, чем ее тушить.
Но если она находится под напряжением, то нельзя использовать порошковые средства, если напряжение превышает 1000 В. То же самое относится и к углекислотным. А вот воздушно-пенные вообще использовать запрещено. Но их применяют в тех случаях, если корпус электроустановки разрушен, масло вытекло и образовало новые очаги возгорания. Это самый эффективный вариант. Единственное, что необходимо сделать, обесточить оборудование.
Читайте также: