Почему для кодирования текстовой информации в компьютере перешли от однобайтовых кодировок к
Кодирование текстовой информации — очень распространенное явление. Один и тот же текст может быть закодирован в нескольких форматах. Принято считать, что кодирование текстовой информации появилось с приходом компьютеров. Это и так и не так одновременно. Кодировка в том виде, в котором мы ее знаем, действительно к нам пришла с приходом компьютеров. Но над самим процессом кодирования люди бьются уже много сотен лет. Ведь, по большому счету, сама письменность уже является способом закодировать человеческую речь, для ее дальнейшего использования. Вот и получается, что любая окружающая нас информация никогда не бывает представленной в чистом виде, потому что она уже каким-то образом закодирована. Но сейчас не об этом.
Кодирование текстовой информации
Самый распространенный способ кодирования текстовой информации — это ее двоичное представление, которое сплошь и рядом используется в каждом компьютере, роботе, станке и т. д. Все кодируется в виде слов в двоичном представлении.
Сама технология двоичного представления информации зародилась еще задолго до появления первых компьютеров. Среди первых устройств, которые использовали двоичный метод кодирования, был аппарат Бодо — телеграфный аппарат, который кодировал информацию в 5 битах в двоичном представлении. Суть кодировки заключалась в простой последовательности электрических импульсов:
- 0 — импульс отсутствует;
- 1 — импульс присутствует.
В компьютерный мир такая кодировка пришла вместе с персонализацией самих компьютеров. То есть в первых компьютерах не было такой кодировки. Но как только компьютеры стали уходить «в массы», то резко обнаружилась потребность обрабатывать компьютерами большое количество именно текстовой информации, которую нужно было как-то кодировать. Тенденция обрабатывать большое количество текстовой информации сохранилась и в современных устройствах.
Так получилось, что двоичное кодирование в компьютерах связано только с двумя символами «0» и «1», которые выстраиваются в определенной логической последовательности. А сам язык подобной кодировки стал называться машинным.
Кодирование текстовой информации и компьютеры
Если смотреть на текст глазами компьютера, то в тексте нет предложений, абзацев, заголовков и т. д., потому что весь текст просто состоит из отдельных символов. Причем символами будут являться не только буквы, но и цифры, и любые другие специальные знаки (+, -,*,= и т. д.). Что самое интересное, даже пробелы, перенос строки и табуляция — для компьютера это тоже отдельные символы.
Для справки. Есть уникальный язык программирования, который в качестве своих операторов использует только пробелы, табуляции и переносы строки. Практического применения этот язык не имеет, но он есть.
Кодирование текстовой информации в компьютерных устройствах сводится к тому, что каждому отдельному символу присваивается уникальное десятичное значение от 0 и до 255 или его эквивалент в двоичной форме от 00000000 и до 11111111. Люди могут различать символы по их внешнему виду, а компьютерное устройство только по их уникальному коду.
Рассмотрите, как происходит процесс. Мы нажимаем нужный нам символ на клавиатуре, ориентируясь на их внешний вид. В оперативную память компьютера он попадает в двоичном представлении, а когда компьютер его выводит нам на экран, то происходит процесс декодирования, чтобы мы увидели знакомый нам символ.
Кодирование текстовой информации и таблицы кодировок
Таблица кодировки — это место, где прописано какому символу какой код относится. Все таблицы кодировки являются согласованными — это нужно, чтобы не возникало путаницы между документами, закодированными по одной таблице, но на разных устройствах.
На сегодняшний день существует множество таблиц кодировок. Из-за этого часто возникают проблемы с переносом текстовых документов между устройствами. Так получается, что если текстовая информация была закодирована по одной какой-то таблице, то и раскодирована она может быть только по этой таблице. Если попытаться раскодировать другой таблицей, то в результате получим только набор непонятных символов, но никак не читабельный текст.
Для кодирования букв и других символов, используемых в печатных документах, необходимо закрепить за каждым символом числовой номер – код.
1. Почему для кодирования текстовой информации в компьютере перешли от однобайтовых кодировок к двухбайтовой кодировке?
2. В текстовом режиме экран монитора компьютера обычно разбивается на 25 строк по 80 символов в строке. Определите объем текстовой информации, занимающей весь экран монитора, в кодировке Unicode.
- Попроси больше объяснений
- Следить
- Отметить нарушение
Что ты хочешь узнать?
Ответ
Всё в таблицу 256 символов не помещается.
Вряд ли это сейчас сильно актуально, но может кому-то покажется интересным (или просто вспомнит былые годы).
Интересно, что примерно год назад проблема кодировок ненадолго всплыла при «наезде» ФАС на сотовых операторов, мол те дискриминируют русскоязычных пользователей, поскольку за передачу кириллицы берут больше. Это объясняется техническим решением, выбранным разработчиком протокола SMS связи. Если бы его россияне разработали, они бы, возможно, отдали приоритет кириллице. В указанной статье «начальник управления контроля транспорта и связи Дмитрий Рутенберг отметил, что существуют и восьмибитные кодировки для кириллицы, которые могли бы использовать операторы.» Во как — на улице 21-й век, Unicode шагает по миру, а господин Рутенберг тянет нас в начало 90-х, когда шла «война кодировок» и проблема перекодировок стояла во весь рост. Интересно, в какой кодировке должен получить СМС Вася Пупкин, пользующийся финским телефоном, находящийся в Турции на отдыхе, от жены с корейским телефоном, отправляющей СМС из Казахстана? А от своего французского компаньона (с японским телефоном), находящегося в Испании? Думаю, никакой начальник ответа на этот вопрос дать не сможет. К счастью, это «экономное» предложение не воплотилось в жизнь.
Юный читатель может спросить — а что помешало сразу использовать Unicode, зачем были придуманы эти заморочки с кодовыми страницами? Думаю, дело в финансовой стороне проблемы. Unicode требует в 2 раза больше памяти, а память стоит денег (и дисковая и ОЗУ). Стал бы американец покупать компьютер на 1-2 тыс дороже из-за того, что «теперь новая ОС требует больше памяти, но позволяет без проблем работать с русским, европейскими, арабскими языками»? Боюсь, простой англоязычный покупатель воспринял бы такой аргумент «неадекватно» (и обратился бы к другим производителям).
Кодирование текстовой информации
Одна и та же информация может быть представлена (закодирована) в нескольких формах. C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до появления компьютеров. Грандиозные достижения человечества - письменность и арифметика - есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.
Двоичное кодирование – один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.
Начиная с конца 60-х годов, компьютеры все больше стали использоваться для обработки текстовой информации, и в настоящее время основная доля персональных компьютеров в мире (и большая часть времени) занята обработкой именно текстовой информации. Все эти виды информации в компьютере представлены в двоичном коде, т. е. используется алфавит мощностью два (всего два символа 0 и 1). Связано это с тем, что удобно представлять информацию в виде последовательности электрических импульсов: импульс отсутствует (0), импульс есть (1).
Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц - машинным языком.
С точки зрения ЭВМ текст состоит из отдельных символов. К числу символов принадлежат не только буквы (заглавные или строчные, латинские или русские), но и цифры, знаки препинания, спецсимволы типа "=", "(", "&" и т.п. и даже (обратите особое внимание!) пробелы между словами.
Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертанию, а компьютер - по их коду.
Удобство побайтового кодирования символов очевидно, поскольку байт - наименьшая адресуемая часть памяти и, следовательно, процессор может обратиться к каждому символу отдельно, выполняя обработку текста. С другой стороны, 256 символов – это вполне достаточное количество для представления самой разнообразной символьной информации.
В процессе вывода символа на экран компьютера производится обратный процесс — декодирование, то есть преобразование кода символа в его изображение. Важно, что присвоение символу конкретного кода — это вопрос соглашения, которое фиксируется в кодовой таблице.
Теперь возникает вопрос, какой именно восьмиразрядный двоичный код поставить в соответствие каждому символу. Понятно, что это дело условное, можно придумать множество способов кодировки.
Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код просто порядковый номер символа в двоичной системе счисления.
Виды таблиц кодировок
Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.
Для разных типов ЭВМ используются различные таблицы кодировки.
В качестве международного стандарта принята кодовая таблица ASCII (American Standard Code for Information Interchange - Американский стандартный код для информационного обмена), кодирующая первую половину символов с числовыми кодами от 0 до 127 ( коды от 0 до 32 отведены не символам, а функциональным клавишам).
Таблица кодов ASCII делится на две части.
Международным стандартом является лишь первая половина таблицы, т.е. символы с номерами от 0 (00000000), до 127 (01111111).
Структура таблицы кодировки ASCII
Порядковый номер
Символы с номерами от 0 до 31 принято называть управляющими.
Их функция – управление процессом вывода текста на экран или печать, подача звукового сигнала, разметка текста и т.п.
Стандартная часть таблицы (английский). Сюда входят строчные и прописные буквы латинского алфавита, десятичные цифры, знаки препинания, всевозможные скобки, коммерческие и другие символы.
Символ 32 - пробел, т.е. пустая позиция в тексте.
Все остальные отражаются определенными знаками.
Альтернативная часть таблицы (русская).
Вторая половина кодовой таблицы ASCII, называемая кодовой страницей (128 кодов, начиная с 10000000 и кончая 11111111), может иметь различные варианты, каждый вариант имеет свой номер.
Кодовая страница в первую очередь используется для размещения национальных алфавитов, отличных от латинского. В русских национальных кодировках в этой части таблицы размещаются символы русского алфавита.
Обращается внимание на то, что в таблице кодировки буквы (прописные и строчные) располагаются в алфавитном порядке, а цифры упорядочены по возрастанию значений. Такое соблюдение лексикографического порядка в расположении символов называется принципом последовательного кодирования алфавита.
Для букв русского алфавита также соблюдается принцип последовательного кодирования.
От начала 90-х годов, времени господства операционной системы MS DOS, остается кодировка CP866 ("CP" означает "Code Page", "кодовая страница").
Компьютеры фирмы Apple, работающие под управлением операционной системы Mac OS, используют свою собственную кодировку Mac.
Кроме того, Международная организация по стандартизации (International Standards Organization, ISO) утвердила в качестве стандарта для русского языка еще одну кодировку под названием ISO 8859-5.
Наиболее распространенной в настоящее время является кодировка Microsoft Windows, обозначаемая сокращением CP1251. Введена компанией Microsoft; с учетом широкого распространения операционных систем (ОС) и других программных продуктов этой компании в Российской Федерации она нашла широкое распространение.
С конца 90-х годов проблема стандартизации символьного кодирования решается введением нового международного стандарта, который называется Unicode.
Это 16-разрядная кодировка, т.е. в ней на каждый символ отводится 2 байта памяти. Конечно, при этом объем занимаемой памяти увеличивается в 2 раза. Но зато такая кодовая таблица допускает включение до 65536 символов. Полная спецификация стандарта Unicode включает в себя все существующие, вымершие и искусственно созданные алфавиты мира, а также множество математических, музыкальных, химических и прочих символов.
Внутреннее представление слов в памяти компьютера
с помощью таблицы ASCII
Иногда бывает так, что текст, состоящий из букв русского алфавита, полученный с другого компьютера, невозможно прочитать - на экране монитора видна какая-то "абракадабра". Это происходит оттого, что на компьютерах применяется разная кодировка символов русского языка.
Таким образом, каждая кодировка задается своей собственной кодовой таблицей. Как видно из таблицы, одному и тому же двоичному коду в различных кодировках поставлены в соответствие различные символы.
Н апример, последовательность числовых кодов 221, 194, 204 в кодировке СР1251 образует слово «ЭВМ» (Рис. 10), тогда как в других кодировках это будет бессмысленный набор символов.
К счастью, в большинстве случаев пользователь не должен заботиться о перекодировках текстовых документов, так как это делают специальные программы-конверторы, встроенные в приложения.
Информаци я, выраженная с помощью естественных и формальных языков в письменной форме, обычно называется текстовой информацией. Начиная с конца 60-х годов прошлого века, компьютеры все больше стали использоваться для обработки текстовой информации.
Кодирование и декодирование текстовой информации.
N = 2 1 => 256 => 2 8 => I = 8 битов = 1 байт.
Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертанию, а компьютер — по их коду.
При вводе в компьютер текстовой информации происходит ее двоичное кодиро ва ние, изображение символа прео бразуется в его двоичный код. Пользователь нажимает на клавиатуре клавишу с символом, и в компьютер поступа ет определенная последовательность из восьми электрических импульсов (двоичный код символа). Код символа хранится в оперативной памяти компьютера, где занимает одну ячейку.
В процессе вывода символа на экран компьют ера производится обратный процесс — декодирование, т. е. преобразо вание кода символ е, в его изображение.
Кодировки русского алфавита. Важно, что присваивание символу конкретного кода — это вопрос соглашения, которое фиксируется в кодовой таблице. Первые 33 кода (с 0 по 32) этой таблицы соответствуют не символам, а операциям (перевод строки, ввод пробела и т. д.).
Коды с 33 по 127 являются интернациональными и соответствуют символам латинского алфавита, цифрам, знакам арифметических операций и знакам препинания.
Коды с 128 по 255 являются национальными, т. е. в национальных кодировках одному и тому же коду соот ветс твуют рас лич ные символы. Существуют пять однобайтовых кодовых таблиц для русских букв ( Windows , MS - DOS , К ОИ-8, Mac , ISO ), поэтому тексты, со зданные в одной кодировке, не будут правильно отоб ражаться в другой.
В настоящее время широкое распростран ение получил новый международный стандарт Unicode , который отводит на каждый символ не один байт, а два, и потому с его помощью можно закодировать не 256 символов, а N = 2 =65 536 различ и! [х символов. Та кого количества символов достаточно, чтобы закодировать не только русский и латинский алфавиты, цифр ы| знаки и математические символы, но и греческий, арабский, иврит и дру гие алфавиты.
Контрольные вопросы
1. Почему для кодирования текстовой информ ации в компьютере перешли от од ноба йто вых к одировок к двухбай товой кодировке?
Читайте также: