Pci frequency что это
Любая компьютерная технология проходит свой путь от рождения, триумфа к свалке истории. Все бы ничего, да каждое очередное нововведение, как правило, чревато серьезным перетряхиванием системных блоков и неопределенностью в умах пользователей – пора или еще подождать с апгрейдом? Тем более огромными кажутся все новшества, которые свалятся на головы покупателей в нынешнем году. Такого всестороннего разрушительного действия на основы платформы не было уже давно - сменятся процессорные разъемы (у Intel настанет время Socket 775, у AMD, соответственно, Socket 939); к концу года действительно новой будет называться система лишь с 240-контактными модулями DDR2; вдогонку ко всему этому близится появление новых форм-факторов самих плат – BTX. Но самым радикальным все же станет низвержение старых привычных элементов ландшафта системной платы – разъемов PCI и AGP, которым приходит время сказать последнее "прости-прощай".
Новое поколение технологий приносит новые скорости и новые технологические решения. Правда, на деле случалось не раз, что революционные нововведения оказывались не всегда своевременными и не такими уж полезными, как красиво заявлялось при их выпуске. Традиционно, отдуваться за эксперименты приходится конечному покупателю. Примеров самых передовых, но неоцененных или невостребованных технологий можно привести множество – шина EISA, память RDRAM, слоты AMR/CNR и многое другое.
Не касаясь тупиковых ветвей эволюции ПК, сегодня стоит поговорить о своевременности внедрения новых технологий на примере шины PCI Express. Сегодня можно с уверенностью сказать, что от перехода на этот шинный стандарт никуда не деться. Попробуем рассмотреть ключевые особенности новоявленной шины, ее сходства и отличия от распространенных сейчас PCI и AGP.
Прежде всего, не стоит рассматривать PCI Express как банального наследника традиций PCI. Консорциум разработчиков нового интерфейса, ранее носившего название 3GIO, ставил перед собой цель разработать новую высокоскоростную шину с максимальной масштабируемостью, простой разводкой, низким уровнем паразитных излучений и электромагнитных помех. Это лишь краткий перечень требований к новому интерфейсу, некоторые особенности его реализации в конкретных условиях, как, например, поддержка "горячего" подключения, требуются лишь в определенных специфических приложениях. Сначала -
Немного истории
Первые разработки шины PCI, стартовавшие в начале 90-х годов, были призваны избавиться от множества присутствовавших на тот момент несовместимых шинных интерфейсов – VLB (VESA Local Bus), EISA, ISA и Micro Channel. Наряду с этим преследовалась цель избавиться от тяжкого наследия фрагментированной шины ISA и впервые добиться соединений класса "чип-чип".
На момент появления в 1993 году базовой версии шины Peripheral Component Interconnect (PCI) - IEEE P1386.1, предусматривались революционные усовершенствования: расширение шины данных до 32 бит, поддержка адресации до 4 ГБ данных (32 бита), а также использование режима синхронного обмена данными. По тем временам тактовая частота шины 33 МГц удовлетворяла условиям работы с периферией в настольных и серверных системах, все были довольны. Последовавший за этим резкий скачок тактовых частот процессоров и памяти привел к увеличению тактовой частоты PCI до 66 МГц, хотя, тактовые частоты процессоров за этот же период скакнули с 33 МГц до 3,0+ ГГц. Все последующие варианты PCI – AGP, PCI-X, MiniPCI, CardBus, несмотря на привнесение определенных дополнений, например, иных форм-факторов разъемов, новых сигнальных уровней и даже передачи данных по фронтам импульса (Double Data Rate/ Quadruple Data Rate), тем не менее, несли в себе ограничения, накладываемые самой топологией интерфейса.
Возможности наращивания пропускной способности шины PCI за счет увеличения тактовой частоты без усложнения схем разводки и соответствующего адекватного удорожания к настоящему времени исчерпаны полностью. А ведь на очереди появились такие актуальные интерфейсы, как 1/10 Gigabit Ethernet, IEEE 1394B, которые полностью выбирают пропускную возможность шины одним устройством и даже выходят за эти рамки. PCI душит рост скорости периферии, критичными становятся ограничения по числу сигнальных контактов шины, торможение процессов реального времени и требования по энергосбережению современных ПК. Если вспомнить наиболее производительные версии шины PCI, например, серверную PCI-X и графическую AGP, то в этом случае мы упираемся в укорачивание проводников шины за счет высокой частоты, требование к установке своего контроллера на каждый слот и достаточно высокую стоимость ее реализации.
Грядет тотальное торжество последовательных шин
Итого, параллельные шины себя исчерпали, рано или поздно взоры разработчиков должны были обратиться в сторону последовательных. Так оно и есть, в результате чего практически все современные индустриальные интерфейсы к настоящему времени перебрались на такой принцип обмена данными. Взгляните на приведенную ниже таблицу: речь идет не только о сетевых интерфейсах, которым на роду написано быть последовательными; все остальные ключевые шины уже имеют последовательную природу.
Между прочим, внешние интерфейсы уже давно перебрались на последовательную топологию, и в самых своих свежих реализациях – USB 2.0, IEEE1394b, показывают скорости, которые немыслимы для параллельных соединений. С этой точки зрения шина PCI в наших компьютерах действительно, выглядит своеобразным анахронизмом.
Особенности PCI Express
Основой нового интерфейса, как известно, в общем случае будут являться дифференциальные сигнальные пары контактов, совершающие обмен данными по схеме "точка-точка". Благодаря новой топологии мы сразу получаем массу положительных моментов: удешевление конструкции, снижение габаритов, более простая разводка печатных дорожек с упрощенными требованиями к борьбе с паразитными излучениями, и, главное, возможность работы на гораздо более высоких частотах, с поддержкой "горячей" замены периферийных устройств. Уходит в прошлое такой важный для параллельного интерфейса параметр, как нужда в синхронизации сигнальных линий всей шины.
Архитектуру PCI Express можно рассматривать послойно, в сравнении с адресной моделью PCI. Конфигурация PCI Express является стандартной для устройств, определенных plug-and-play спецификациями PCI: программный уровень генерирует запросы чтения/записи, уровень транзакций транспортирует эти запросы к периферийным устройствам с помощью разделенного пакетного протокола. Для поддержания высокой производительности шины соединительный (link) уровень добавляет пакетам очередность и CRC; базовый физический уровень состоит из двойного симплексного канала, осуществляющего функции приемной и передающей пары. Таким образом, исходная скорость 2,5 Гб/с в каждом направлении позволяет говорить о создании дуплексного коммуникационного канала производительностью до 200 МБ/с, что в четыре раза превышает возможности классической шины PCI.
Рассматривая процессы, протекающие в шине на сигнальном уровне, нельзя не отметить уникальные плюсы PCI Express - значительное снижение затухания в линиях передачи и повышенная чувствительность приемной части интерфейса. Из чего напрашивается вывод о менее критичных требованиях к импедансу входных цепей, а также возможность увеличения длины разводки проводников шины - в нынешней версии стандарта PCI-E они лимитируются 12 дюймами для системных плат, 3,5 дюймами для контроллеров и 15 дюймами для межчиповых соединений. При этом не предъявляется никаких дополнительных требований к технологии разводки печатной платы: могут использоваться как обычные 4-слойные PCB толщиной 0,062 дюйма, так и варианты с шестью и более слоями.
Теоретически, требования, выдвигаемые стандартом PCI Express, с легкостью могут быть адаптированы для нужд устройств любого уровня – от мобильного телефона до сервера уровня предприятия, а также, в перспективе, могут быть переложены для применения других физических типов носителей. Именно такая гибкость и необходима для интерфейса, собирающегося прослужить стандартом ближайшее обозримое будущее.
Использование новых разъемов и других конструктивных возможностей, оговоренных спецификациями нового стандарта, позволяет говорить об увеличении энергопотребления конечных контроллеров до 75 Вт (при токе до 5,5 А)!
Такие мощные контроллеры потребуют дополнительных мер по отводу тепла из корпуса, зато отпадет нужда в подводке разъемов дополнительного питания, которые так характерны для нынешнего поколения видеокарт AGP 8x.
Системы питания компьютеров с поддержкой разных вариантов PCI Express отличаются от привычных нам спецификаций ATX12 и, скорее, схожи с требованиями, предъявляемыми к питанию серверных систем. Так, привычный 20-контактный разъем питания ATX удлиняется и в нем появляются четыре дополнительных контакта, как раз для усиления силовых шин +12 В, 5,0 В и +3,3 В. Соответственно, до 75 Вт повышаются ограничения на питание одного слота в BIOS. При этом нижняя граница мощности для блоков питания устанавливается на уровне примерно 300 Вт. Словом, хотя изменения в цепях питания и не носят такой радикальный характер, как при переходе с AT на ATX, с мыслью о неминуемом апгрейде БП придется свыкнуться.
Варианты PCI Express: их будет много
Версии PCI Express будут внедряться в зависимости от ставящихся перед интерфейсом задач и типом устройства. Например, серверы, где востребована максимальная пропускная способность, будут оборудованы максимальным количеством слотов PCI Express с максимальными показателям. В то же время, для нужд ноутбуков в большинстве случаев будет достаточно архитектуры PCI Express x1. Для настольных ПК и рабочих станций понадобится комбинация из различных вариантов реализации шины.
Совершенно новые требования выдвигаются к механическим показателям PCI Express. Для того, чтобы периферийные платы не имели возможности вывалиться из слота при вибрации или транспортировке, разработаны повышенные требования к защелкам и крепежу разъемов PCI Express.
Несмотря на то, что новый стандарт дает некую свободу конечным производителям при разработке крепежа, жестко оговоренными остаются следующие требования: энергопотребление – не более 75 Вт, вес – не более 350 граммов, высота – не более 115,15 мм.
Конечно, под такими монстрами прозрачно подразумеваются графические карты с интерфейсом PCI Express 16x; во всех других случаях требования к крепежу и другим характеристикам контроллеров значительно скромнее.
Особняком стоит реализация PCI Express для мобильных устройств в виде стандарта ExpressCard. Первыми поддержку модулей этого подстандарта получат ноутбуки и миниатюрные настольные ПК, хотя, уже известны случаи представления концепций серверных плат с разъемом ExpressCard. основное преимущество применения таких модулей - подключение периферии практически без нужды использования крепежного инструмента, а также инсталляции дополнительных драйверов. Технология ExpressCard заменит собой все устаревшие параллельные шины, в результате останутся только три современных интерфейса - PCI Express, USB 2.0 и FireWire.
В настоящее время разработано два форм-фактора модулей ExpressCard – ExpressCard/34 (ширина 34 мм) и ExpressCard/54 (ширина 54). Оба модуля имеют высоту 5 мм, как у стандарта PC Card Type II; длина модулей 75 мм, что на 10,6 мм меньше, чем у PC Card. При этом, модули ExpressCard/34 и ExpressCard/54 обладают одинаковым интерфейсом. Каждый слот под модули ExpressCard может обслуживать шину PCI Express x1.
Преимущества PCI Express
Сравнивая возможности господствовавшей многие годы параллельной шины PCI и архитектуру PCI Express, можно выделить пять наиболее значимых преимуществ последней:
• Высокая производительность – повышение пропускной способности версии x1 как минимум вдвое по сравнению с PCI, возможность линейного наращивания производительности путем линейного расширения шины. Помимо этого, PCI Express является реально дуплексной шиной.
• Упрощение разводки периферии – стандартизация там, где ранее использовались всевозможные варианты PCI - AGP, PCI-X и др.; снижение комплексных затрат на разработку и внедрение систем.
• Уровневая архитектура – основные затраты на развитие PCI Express в дальнейшем ложатся лишь на разработку соответствующей обвязки, можно экономить на возможности работы с прежним программным обеспечением.
PCI Express (PCIe, PCI-e) – один из наиболее распространенных протоколов передачи данных. Он используется в современной компьютерной технике для обеспечения взаимодействия различных ее функциональных блоков между собой.
Для самостоятельной сборки или апгрейда компьютера необходимо понимать, что такое PCI Express, какие существуют его версии, чем они отличаются и какие возможности обеспечивают.
Актуальности вопросу придает также то, что недавно компания AMD в своих последних процессорах и видеокартах начала использовать новую версию PCI Express (PCIe 4.0), позиционируя это как важное преимущество над устройствами конкурентов. Действительно ли это так?
Во всем этом мы и попытаемся разобраться.
Что такое PCI Express
PCI Express (Peripheral Component Interconnect Express, сокращенно - PCIe или PCI-e) - это компьютерная шина, использующая высокопроизводительный протокол последовательной передачи данных.
Большинству непосвященных это определение наверняка покажется туманным. Чтобы стало понятней, разберем его более подробно.
Компьютерная шина - соединение, служащее для передачи данных между функциональными блоками компьютера.
Протокол – в данном случае значит "схема", "алгоритм", "порядок".
Последовательная передача данных – понятие более сложное, ему придется уделить больше внимания.
Все данные внутри компьютера циркулируют, обрабатываются и хранятся в виде двоичного кода, мельчайшими частичками которого являются биты. Подробнее об этом можно узнать здесь.
Передача данных между функциональными блоками компьютера может осуществляться либо параллельным, либо последовательным способом.
Параллельная передача данных
Параллельный способ подразумевает использование физического соединения из значительного количества проводников. Передача данных осуществляется "порциями", в которых количество битов соответствует количеству проводников в соединении. Каждая такая порция перед передачей как бы "развертывается в пространстве", разделяясь на биты, каждый из которых проходит к принимающему устройству по отдельному проводнику. Таким образом, каждую единицу времени каждый бит двоичного кода передается по отдельному проводу этого соединения, одновременно (параллельно) с другими битами, передающимися по остальным его проводам. Поэтому схема и называется параллельной.
Например, компьютерная шина PATA (IDE), которая в домашних компьютерах не так давно была основным способом подключения жестких дисков, состоит из 40 проводников (на изображении ниже). Из них только 16 используются непосредственно для параллельной передачи данных. За каждую передачу (такт) по такой шине проходит 16 битов информации. Частота шины - 33 МГц, то есть каждую секунду происходит 33 млн. передач. Таким образом, максимальная пропускная способность такого соединения равна 528 млн. битов в секунду (16 х 33 млн.), или, если перевести в мегабайты - 66 Мегабайт / с.
Несмотря на простоту, параллельная передача данных изжила себя и уже почти не используется в компьютерной технике. Главные ее недостатки:
• высокие затраты на создание каналов (нужно много проводников);
• высокая помеховосприимчивость из-за взаимного влияния передаваемых сигналов друг на друга (особенно, на длинные расстояния);
• необходимость обеспечения синхронного прохождения данных одновременно по всех проводниках соединения, из-за чего достижение высокой частоты отправки сигналов (частоты шины) является слишком сложной задачей.
Последовательная передача данных
Влиянию указаных выше негативных факторов в значительно меньшей степени подвержены схемы последовательной передачи данных. Сегодня они являются очень распространенными. Все USB-устройства, современные жесткие диски, SSD, видеокарты, сетевые карты и т.д. взаимодействуют с другим оборудованием с использованием последовательной передачи данных. Способ ее реализации в каждом из этих видов устройств, конечно же, отличается, но принцип везде одинаков.
Для последовательной схемы не нужно много проводников. Передача данных осуществляется через один коммуникационный канал по одному биту за каждую передачу, последовательно, один за одним (что-то на подобие азбуки Морзе).
На первый взгляд, такая схема кажется менее эффективной, чем в случае с параллельной передачей. Но это далеко не так. Высокая скорость здесь достигается за счет огромной частоты передачи данных (несколько миллиардов в секунду). А для устройств, требующих особо высоких скоростей обмена данными, одновременно используется несколько таких каналов (линий). Например, современные игровые видеокарты подключаются к компьютеру через 16 линий PCIe (PCIe x16).
Особенности стандарта PCI Express, его версии
Разработка стандарта PCI Express была начата фирмой Intel. Спецификации первой его версии появились еще в 2002 году. Сейчас развитием PCI Express занимается организация PCI Special Interest Group, в совет директоров которой входят представители основных разработчиков аппаратного и программного обеспечения (Intel, Microsoft, IBM, AMD, Sun Microsystems, HP, NVIDIA и другие). В своем развитии PCIe прошел несколько этапов и уже развился до версии 5.0.
PCIe является полнодуплексным протоколом, то есть предусматривает использование независимых друг от друга каналов приёма и передачи данных (устройство может одновременно отправлять и получать данные).
Перед отправкой данные кодируются в блоки. Это необходимо для синхронизации передающего и принимающего устройств, а также уменьшения влияния помех.
В PCIe 3.0 и боле новых ее версиях данные кодируются по более эффективной схеме 128b/130b (каждые 128 бит кодируются в 130-битный блок). Доля полезного содержания в передаваемых данных здесь составляет уже около 98,46%.
Разные версии PCIe отличаются не только способом "упаковки" битов в блоки, но и частотой передачи данных. В PCIe 1.0 она составляет 2,5 ГТ/с (гигатранзакций в секунду), то есть за одну секунду передается 2,5 миллиарда битов. Для лучшего восприятия переведем это в привычные единицы:
2,5*10 9 Бит / с = 312,5 Мегабайт / с.
Учитывая, что только 80% из них являются полезными данными, реальная пропускная способность PCIe 1.0 составляет 250 Мегабайт / с.
В PCIe 5.0 частота передачи данных возросла аж до 32 ГТ/с. Переведем это в удобный вид:
32*10 9 Бит / с = 4000 Мегабайт / с = 4 Гигабайт / с.
Поскольку полезные данные составляют 98,46%, реальная пропускная способность PCIe 5.0 равна 3,938 Гигабайт / с.
Применение PCI Express в компьютере. Разъемы PCI Express
Контроллер (управляющее устройство) линий PCIe не так давно встраивался только в чипсет (главную микросхему) материнской платы. Но, начиная с 2009 года, контроллер PCIe добавляется производителями также и непосредственно в центральный процессор. Это уменьшает задержки и позволяет процессору более эффективно взаимодействовать с другими устройствами.
Версии и количество линий PCIe в разных моделях процессоров и чипсетов отличается. Бо́льшая их часть формируется в разъемы, размещаемые на материнской плате. Они позволяют подключать к компютеру разнообразные устройства (видеокарты, звуковые карты, сетевые карты, Wi-Fi-адаптеры и др.).
На материнской плате современного компьютера можно найти разъемы PCIe нескольких видов, отличающихся количеством используемых в них линий PCIe (от х1 до х16 линий). Не зависимо от того, насколько старым является компьютер, и какая версия PCIe в нем используется, эти разъемы всегда выглядят одинаково:
на изображении: верхний разъем - PCIe x4, по средине - PCIe x16, внизу - PCIe x1
Разные версии PCIe являются полностью совместимыми. То есть, если в старый компьютер, где используется версии PCIe 2.0, установить, например, видеокарту с PCIe 4.0, она будет нормально работать. Однако, реальная скорость обмена данными при этом у нее будет ограничена возможностями PCIe 2.0.
И наоборот, в самый новый компьютер с PCIe 4.0 можно без проблем установить старую видеокарту с PCIe 2.0.
Еще одной особенностью PCIe является совместимость разных ее разъемов. В разъем PCIe x16 можно подключить не только видеокарту, но и абсолютно любое другое устройство PCIe, в том числе и с разъемом PCIe x8, PCIe x4 или PCIe x1.
Совместимость разъемов сохраняется также и в обратную сторону. То есть, в разъем PCIe x1 можно установить видеокарту с разъемом PCIe x16. Физически она туда не войдет, но если разрезать заднюю стенку разъема (как на изображении ниже), то все получится.
Это, конечно же, "кустарщина" и без крайней надобности так делать не нужно. Тем более, что видеокарта при таком подключении будет работать в режиме PCIe x1, что весьма негативно скажется на ее быстродействии.
В ноутбуках для установки дополнительных устройств вместо упомянутых выше разъемов используется более компактный вариант - Mini PCIe. Линии PCIe используются также для создания некоторых других разъемов, в чатности, разъемов M.2 (служат для подключения современных запоминающих устройств, а также устройств некоторых других типов).
на изображении - разъем M.2 с запоминающим устройством в нем
Нужно ли апгрейдить компьютер ради PCIe 4.0
Как уже говорилось выше, последней из официально вышедших версий PCIe является версия 5.0 (опубликованы официальные спецификации, но на практике она не используется). Самой "свежей" версией из используемых по состоянию на конец 2019 года является PCIe 4.0, и, судя по всему, еще долго будет таковой оставаться. Она вышла в 2017 году, однако внедрена в конкретные устройства лишь недавно, в 2019 году. Ее начала использовать компания AMD в процессорах Ryzen архитектуры Zen 2, а также в видеокартаx Radeon серии RX 5700 / 5500.
Несомненно, это значительное достижение AMD, однако, оно пока является лишь заделом на будущее и не дает никаких практических преимуществ перед конкурентами. Компания Intel внедрять PCIe 4.0 в свои процессоры не торопится. Не спешит делать это и компания nVidia, видеокарты которой пока довольствуются PCIe 3.0.
Все дело в том, что на современном этапе развития компьютерной техники возможностей PCIe 3.0 вполне достаточно. Превосходство PCIe 4.0 можно увидеть лишь в синтетических тестах. В практических же сценариях необходимости в настолько высоких скоростях обмена данными пока нет.
Видеокарты с PCIe 4.0 вполне нормально работают и в системах с PCIe 3.0. Более того, даже в компьютерах с PCIe 2.0 они показывают почти такую же производительность в играх и других приложениях, как в компьютерах с PCIe 4.0.
Но продлится это, судя по всему, не долго. Направлением, где в ближайшее время станет реально востребованной PCIe 4.0, являются современные М.2 SSD-накопители, быстродействие которых уже почти "уперлось в потолок " стандарта PCIe 3.0. Затем черед дойдет до видеокарт и другого оборудования.
Так что апгрейдить старый компьютер только ради PCIe 4.0 пока нецелесообразно. Однако при покупке нового компьютера, который планируется к использованию достаточно длительнное время, брать во внимание версию PCIe, поддерживаемую его внутренними устройствами, однозначно нужно.
Учитывая, что разгон таки штука довольно непростая и неоднозначная, то статей в этом цикле будет довольно приличное количество, а подзабросили мы его по одной простой причине, - тем для написания, помимо оного, существует бесконечное множество и везде успеть просто невозможно.
Сегодня мы рассмотрим самую базовую и типичную сторону разгона, но при всём при этом максимально затронем важнейшие и ключевые нюансы, т.е дадим понимание как оно работает на примере.
Разгон процессора в разрезе [на примере платы P5E Deluxe].
Собственно, можно сказать, что варианта разгона бывает два: с помощью программ или непосредственно из BIOS .
Программные методы мы сейчас не будем рассматривать по множествам причин, одна (и ключевая) из которых, - это отсутствие стабильной адекватной защиты системы (да и, в общем-то железа, если конечно не считать синие экраны смерти таковыми) в случае установки некорректных настроек находясь непосредственно в Windows . С разгоном же непосредственно из BIOS всё выглядит куда более разумно, а посему мы будем рассматривать именно этот вариант (к тому же, он позволяет задать большее количество настроек и добиться большей стабильности и производительности).
Вариантов BIOS 'а существует довольно большое количество (а с приходом UEFI их стало и того больше), но основы и концепции разгона сохраняют свои принципы из года в год, т.е подход к нему не меняется, если не считать интерфейсы, местами названия настроек и ряд технологий этого самого разгона.
Я рассмотрю здесь пример на основе своей старенькой мат.платы Asus P5E Deluxe (про которую я когда-то очень давно рассказывал тут) и процессора Core Quad Q6600 . Последний, собственно, служит мне верой и правдой уже черт знает сколько лет (как и мат.плата) и разогнан мною изначально с 2,4 Ghz до 3,6 Ghz , что Вы можете увидеть на скриншоте из CPU-Z:
К слову, кому интересно, таки о том как выбирать столь хорошие и надежные мат.платы мы писали тута, а про процессоры здесь. Я же перейду к непосредственно процессу разгона, предварительно напомнив следующее:
Предупреждение! Ахтунг! Аларм! Хехнде хох!
Всю ответственность за Ваши последующие (равно как и предыдущие) действия несёте только Вы. Автор лишь предоставляет информацию, пользоваться или нет которой, Вы решаете самостоятельно. Всё написанное проверено автором на личном примере (и неоднократно) и в разных конфигурациях, однако сие не гарантирует стабильную работу везде, равно как и не защищает Вас от возможных ошибок в ходе проделанных Вами действий, а так же любых последствий, что могут за ними наступить. Будьте осторожны и думайте головой.
Собственно, что нам нужно для успешного разгона? Да в общем-то ничего особенного не считая второго пункта:
- Во-первых, прежде всего, конечно же, компьютер со всем необходимым, т.е мат.платой, процессором и тп. Узнать, что за начинка у Вас стоит, Вы можете скачав вышеупомянутый CPU-Z;
- Во-вторых, таки обязательно, - это хорошее охлаждение, ибо разгон прямым образом влияет на тепловыделение процессора и элементов материнской платы, т.е без хорошего обдува, в лучшем случае, разгон приведет к нестабильности работы или не будет иметь свой силы, а в худшем случае, что-нибудь таки попросту сгорит;
- В-третьих же, само собой, необходимы знания, дать которые призвана эта статья, прошлая статья из этого цикла, а так же весь сайт "Заметки Сис.Админа".
Так как всю необходимую теорию мы уже подробно разобрали в предыдущей статье, то я сразу перейду к практической стороне вопроса. Заранее прошу прощения за качество фото, но монитор глянцевый, а на улице, не смотря на жалюзи, таки светло.
Вот так выглядит BIOS на борту моей мат.платы (попасть в BIOS , напомню, на стационарном компьютере, можно кнопочкой DEL на самой ранней стадии загрузки, т.е сразу после включения или перезапуска):
Здесь нас будет интересовать вкладка " Ai Tweaker ". В данном случае именно она отвечает за разгон и изначально выглядит как список параметров с выставленными напротив значениями " Auto ". В моём случае она выглядит уже вот так:
Здесь нас будут интересовать следующие параметры (сразу даю описание + моё значение с комментарием почему):
Если говорить совсем упрощенно, то, в первую очередь, мы с Вами меняем множитель и частоту FSB , опираясь на ту конечную частоту процессора, что мы хотели бы получить. Далее сохраняем изменения и пробуем загрузится. Если всё получилось, то проверяем температуры, стабильность работы системы и компьютера вообще, после чего, собственно, либо оставляем всё как есть, либо пробуем взять новую частоту. Если же на новой частоте стабильности нет, т.е Windows не грузится или появляются синие экраны или что-то еще, то либо возвращаемся к прошлым значениям (или чуть утихомириваем свои аппетиты), либо подбираем все остальные значения ровно до тех пор, пока стабильность не будет достигнута.
Что касается различных типов BIOS , то где-то функции могут называться как-то иначе, но смысл несут они один и тот же, равно как и значения + принцип разгона остаются постоянными. В общем, при желании, разберетесь.
В двух словах как-то так. Остаётся лишь перейти к послесловию.
Послесловие.
Как видите из последних предложений, если задуматься, то быстрый разгон в общем-то не проблема (особенно при наличии хорошего охлаждения). Выставил два параметра, несколько перезагрузок и, - вуаля!, - заветные мегагерцы в кармане.
Тщательный же хороший разгон хотя бы на 50 %, т.е как в моём случае на 1200 Mhz плюсом к 2400 Mhz , требует некоего количества времени (в среднем это где-то 1-5 часов, в зависимости от удачливости и желаемого конечного результата), большую часть из которого отнимает шлифовка стабильности и температур, а так же пачку терпения, ибо больше всего в сим раздражает постоянная необходимость перезагрузок для сохранения и последующего тестирования новых параметров.
Подозреваю, что у желающих заняться сим процессом будет много вопросов (что логично), а посему, если они таки есть (равно как и дополнения, мысли, благодарности и прочее), то буду рад увидеть их в комментариях.
Оставайтесь с нами! ;)
PS : Крайне настоятельно не рекомендую заниматься разгоном ноутбуков.
Белов Андрей (Sonikelf) Заметки Сис.Админа [Sonikelf's Project's] Космодамианская наб., 32-34 Россия, Москва (916) 174-8226Помните, если вы не знакомы с настройкой BIOS, рекомендуется использовать пункт "Load Optimized Defaults" (загрузить оптимальные настройки), чтобы быстро завершить настройку, и обеспечить правильную работу системы. Перед разгоном мы рекомендуем пользователям вначале загрузить систему с "Load Optimized Defaults", и только затем выполнять тонкую настройку.
Раздел Cell Menu системной платы P35 DiamondВсе настройки, касающиеся разгона, находятся в разделе "Cell Menu". В них входят:
D.O.T. control (управление технологией динамического разгона) Intel EIST (усовершенствованная технология Intel SpeedStep®) Adjust CPU FSB Frequency (настройка частоты CPU FSB) CPU Ratio CMOS Setting (установка множителя частоты процессора) Advanced DRAM Configuration (специальные настройки динамической памяти) PCIEx4 Speed Controller (управление скоростью PCIEx4) Auto Disable DIMM/PCI Frequency (автоматическое отключение тактовой частоты DIMM/PCI) Spread Spectrum (ограничение спектра тактовой частоты) Adjust CPU FSB Frequency (настройка часторы CPU FSB):После загрузки оптимизированных настроек эта функция автоматически определит и покажет частоту CPU. Например, для процессора Intel Core 2 Duo E6850, здесь будет показано значение "333 (MHz)". Настройка частоты может выполняться цифровыми клавишами или клавишами "Page Up" и "Page Down". В процессе настройки величина, показанная серым шрифтом "Adjusted CPU Frequency" (установленное значение частоты CPU), будет изменяться в соответствии с установленной частотой.
Совет :
Идя навстречу пожеланиям энтузиастов разгона, компания MSI создала в "Cell Menu" особый режим "Power User mode" (пользовательский режим питания). Просто нажмите "F4", и покажется скрытое меню. Пункты меню "Power User mode" ориентированы на настройку памяти и включают в себя величины SCOMP и ODT.
Обычно частота шины PCI Express не имеет прямой связи с разгоном; тем не менее ее тонкая настройка также поможет разгону. (Установка по умолчанию составляет 100, ее не рекомендуется увеличивать свыше 120, это может повредить графическую карту.)
CPU Voltage (напряжение питания CPU) :
Этот пункт является критическим для разгона, однако из-за сложности взаимосвязей отыскать наилучшую настройку непросто. Мы рекомендуем пользователям настраивать эту величину с осторожностью, поскольку неправильная установка может вывести процессор из строя. В соответствии в нашим опытом при наличии хорошего вентилятора, нет необходимости устанавливать предельное значение напряжения питания CPU. Например, для процессора Intel Core 2 Duo E6850 рекомендуется устанавливать напряжение в диапазоне 1.45 VTT FSB Voltage (напряжение VTT FSB) :
Чтобы обеспечить близкие напряжения питания всем основным устройствам напряжение VTT FSB также должно быть повышено. Повышение не должно быть большим, чтобы не вызвать отрицательного эффекта.
NB Voltage (напряжение питания Северного Моста) :
Северный мост играет определяющую роль в разгоне, поскольку он важен для сохранения стабильности работы процессора, памяти и графической карты. Это достигается посредством увеличения напряжения его питания. Мы рекомендуем пользователям выполнить тонкую настройку этого параметра.
SB I/O Power (питание ввода/вывода Южного Моста) :
Южный мост управляет подключением периферийных устройств и карт расширения, которые последнее время играют все более важную роль на платформе Intel. Стандартное напряжение питания ICH9R составляет 1.5V, что определяет настройку напряжения для устройств ввода/вывода. Мы рекомендуем повысить напряжение до 1.7
1.8V, что повысит стабильность совместной работы Северного и Южного Мостов, а также поможет разгону.
Раньше при разгоне Южный Мост игнорировался, однако при повышении напряжения питания он увеличивает производительность.
Советы :
MSI предупреждает вас: чаще проверяйте скорость вращения вентилятора и температуру. Хорошее охлаждение играет при разгоне определяющую роль.
Внимание :
P35 Diamond - мощная системная плата, предоставляющая для разгона полный набор функций и обеспечивающая защиту системы. При трех неудачных разгонах подряд система автоматически установит стандартные настройки BIOS для надежной загрузки системы. Перед разгоном убедитесь в том, что каждый из компонентов способен выдержать его режим. Компания MSI не несет ответственности за любые повреждения, связанные с неудачным разгоном. Данная статья предназначена только для ознакомленияя.
Когда все параметры уставновлены, мы рекомендуем сохранить их с помощью функции "User Settings" (пользовательские настройки) в меню BIOS, которая облегчает загрузку настроек, а также позволяет установить стандартные настройки при неудачном разгоне. Пользователь может сохранить два набора настроек и выбирать требуемый.
В разделе User Settings (пользовательские настройки) "Press Enter" (Нажмите Ввод), чтобы сохранить параметры BIOS.
При неудачном разгоне, у пользователей остается возможность войти в раздел User Setting (пользовательские настройки) для установки более подходящих параметров, чтобы восстановить нормальную работу.
Раньше, чем ожидалось, платформа Intel вступила в эру памяти DDR3. Память DDR3 обладает более низким рабочим напряжением, тепловыделением и более высокой тактовой частотой. Она обладет лучшей эффективностью разгона, чем DDR2. Тем не менее, чипсет и модули памяти по-прежнему не имеют окружения, соответствующего разгону, и это ограничивает потенциал DDR3.
Системная плата MSI P35 Diamond от MSI поставляется с памятью DDR3 и внешне очень похожа на P35 Platinum. Она обладает большим потенциалам, чем предшественица. Системная плата P35 Diamond может поддерживать многоядерные процессоры Intel 1333MHz и использовать модули памяти 1066MHz DDR3, обладающие выдающейся производительностью (спецификация изделия находится здесь).
При разгоне P35 Diamond имеет столь же превосходную производительность, что и P35 Platinum, но обладает некоторыми отличиями. Благодаря памяти DDR3, пользователи имеют возможность тонкой настройки некоторых компонентов, например, напряжения питания и соотношения частот, что повлияет на результаты разгона. В завершение мы подробнее остановимся на тонкостях, которые следует иметь в виду, приступая к разгону.
Советы :
При разгоне повышается напряжение питания основных устройств, и они выделяют больше тепла, чем обычно. Поэтому охлаждение становится при разгоне важной проблемой.
Внимание:
OC - это программная среда, с которой любой пользователь компьютера соприкасается каждый день. Стабильность ОС определяет работоспособность системы. Мы рекомендуем пользователям установить стандартные настройки во время установки ОС и не включать никаких разгонных или оптимизирующих функций.
Вместе с системной платой P35 Diamond мы использовали процессор Intel Core 2 Duo E6850. Модули памяти предоставлены компанией Corsair CM3X1024-1066C7 DDR3-1066, графическая карта Nvidia GeForce 8600GTS, жесткий диск Western Digital WD740ADFD.
Модули памяти Corsair CM3X1024-1066C7 DDR3-1066/7-7-7-21/1024MB/1.5V
Память DDR3 обладает более низким рабочим напряжением, выделением тепла и большей тактовой частотой, что обеспечивает лучшую эффективность разгона. При установке модулей памяти важна настройка напряжения питания.
Стандартная настройка BIOS:
Вид окна программы определения параметров системы (CPU-Z 1.40):
Следующми шагом мы входим в раздел "Cell Menu" в BIOS. Далее мы устанавливаем частоту 450MHz, множитель частоты 8, что гарантирует стабильность. Согласно спецификации чипсета P35, при повышении частоты CPU изменяется также частота памяти. Поэтому, для достижения стабильности мы изменяем соотношение частот FSB/памяти на 1:1.
На следующем изображении показаны измеренные нами рабочие параметры (зависят от окружающих условий)
По окончании настроек можно нажать "F10" для сохранения параметров и нажать "OK" для перезапуска системы с новыми параметрами.
Далее показано состояние разгона в программе CPU-Z после перезапуска:
Обычно разгон сосредоточен на повышении частоты процессора, что снижает стабильность, но остается широко используемым способом. Ниже показано повышение производительности, достигнутое просредством разгона.
Согласно результатам, повышение производительности составляет около 5%, и система весьма стабильна. Несомненно, пользователи могут определить настройки для своих окружающих условий посредством пошагового подбора.
Читайте также: