Основы компьютерной графики что это
Краткая аннотация: Понятие "компьютерная графика ". Растровые изображения. Пиксели. Разрешение изображения. Размер изображения. Достоинства и недостатки растровой графики. Векторная графика . Достоинства и недостатки векторной графики. Сравнение растровой и векторной графики.
Цель: получить представление о базовых понятиях компьютерной графики.
Компьютерная графика - это область информатики, занимающаяся созданием, хранением и обработкой различных изображений (рисунков, чертежей, мультипликации) на компьютере.
Компьютерная графика классифицируется по типу представления графической информации, и следующими из него алгоритмами обработки изображений. Обычно компьютерную графику разделяют на векторную и растровую .
Под растровым понимают способ представления изображения в виде совокупности отдельных точек (пикселей) различных цветов или оттенков.
При увеличении растрового рисунка в несколько раз становится видно, что изображение состоит из конечного числа "квадратиков" определенного цвета. Эти квадратики и называют пикселями .
В векторной графике все изображения описываются в виде математических объектов – контуров, т.е. изображение разбивается на ряд графических примитивов – точки, прямой , ломанной, дуги, многоугольника.
Оба этих способа кодирования графической информации имеют свои особенности и недостатки.
Растровая графика позволяет создать (воспроизвести) практически любой рисунок, с использованием более чем 16 млн. оттенков цветов, вне зависимости от сложности.
Растровое представление изображения естественно для большинства устройств ввода-вывода графической информации, таких как мониторы, матричные и струйные принтеры, цифровые фотоаппараты, сканеры.
Основной проблемой растровой графики является большой объем файлов, содержащих изображения: чем больше количество пикселей и чем меньше их размеры, тем лучше выглядит изображение.
Второй недостаток растровых изображений связан с невозможностью их увеличения для рассмотрения деталей. Поскольку изображение состоит из точек, то увеличение изображения приводит только к тому, что эти точки становятся крупнее и напоминают мозаику. Никаких дополнительных деталей при увеличении растрового изображения рассмотреть не удается. Более того, увеличение точек растра визуально искажает иллюстрацию и делает её грубой. Этот эффект называется пикселизацией (от пиксель – самый маленький элемент изображения, точка (как атом в молекуле)).
У векторных изображений , напротив, размер файла не зависит от реальной величины объекта, что позволяет, используя минимальное количество информации , описать сколько угодно большой объект файлом минимального размера.
Описание объектов может быть легко изменено. Также это означает, что различные операции с рисунком, такие как перемещение, масштабирование, вращение, заполнение и т. д. не ухудшают его качества.
К недостаткам векторной графики относят следующие:
- Возможность изображения в векторном виде доступна далеко не для каждого объекта: для этого может потребоваться разбить объект на очень большое количество векторных линий, что сильно увеличивает количество памяти, занимаемой изображением, и время его прорисовки на экране.
- Векторный формат не дает возможность отобразить плавные переходы цветов, сохранить фотографическую точность изображения.
Выбор растрового или векторного формата зависит от целей и задач работы с изображением. Каждый из видов компьютерной графики был разработан для решения определенных задач и имеет свою заданную область применения.
Если нужна фотографическая точность цветопередачи, то предпочтительнее растр. Логотипы, схемы, элементы оформления удобнее представлять в векторном формате.
Пиксели, разрешение, размер изображения
Размеры растровых изображений выражают в виде количества пикселов по горизонтали и вертикали, например, 600?800. В данном случае это означает, что ширина изображения составляет 600, а высота — 800 точек. Количество точек по горизонтали и вертикали может быть разным для разных изображений.
При выводе изображения на поверхность экрана или бумаги, оно занимает прямоугольник определённого размера. Для оптимального размещения изображения на экране необходимо согласовывать количество точек в изображении, пропорции сторон изображения с соответствующими параметрами устройства отображения.
Степень детализации изображения, число пикселей (точек) отводимых на единицу площади называют разрешением .
Если пикселы изображения выводятся пикселами устройства вывода один к одному, размер будет определяться только разрешением устройства вывода. Соответственно, чем выше разрешение экрана, тем больше точек отображается на той же площади и тем менее зернистой и более качественной будет ваша картинка.
При большом количестве точек, размещённом на маленькой площади, глаз не замечает мозаичности рисунка. Справедливо и обратное: малое разрешение позволит глазу заметить растр изображения ("ступеньки").
Высокое разрешение изображения при малом размере плоскости отображающего устройства не позволит вывести на него всё изображение, либо при выводе изображение будет "подгоняться", например, для каждого отображаемого пиксела будут усредняться цвета попадающей в него части исходного изображения. При необходимости крупно отобразить изображение небольшого размера на устройстве с высоким разрешением приходится вычислять цвета промежуточных пикселей.
Следует четко различать: разрешение экрана; разрешение печатающего устройства; разрешение изображения.
Все эти понятия относятся к разным объектам. Друг с другом эти виды разрешения никак не связаны, пока не потребуется узнать, какой физический размер будет иметь картинка на экране монитора, отпечаток на бумаге или файл на жестком диске.
Разрешение экрана (экранного изображения) — это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (зависит от настроек Windows). Разрешение экрана измеряется в пикселях и определяет размер изображения, которое может поместиться на экране целиком. Для измерения экранного разрешения используют обозначение ppi (pixel per inch).
Разрешение принтера (печатного изображения) — это свойство принтера, выражающее количество отдельных точек, которые могут быть напечатаны на участке единичной длины (растра). Оно измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере. В зависимости от сорта бумаги выбирают следующие величины частоты растра: для газетной бумаги - 70-90 dpi, для бумаги среднего качества - 90-100 dpi, для глянцевой - 133 dpi и выше.
Разрешение изображения (оригинала) — это свойство самого изображения. Разрешение оригинала используется при вводе изображения в компьютер и измеряется в точках на дюйм (dots per inch – dpi), задается при создании изображения в графическом редакторе или с помощью сканера. Установка разрешения оригинала зависит от требований, предъявляемых к качеству изображения и размеру файла. В общем случае действует правило: чем выше требования к качеству, тем выше должно быть разрешение оригинала.
Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения — его физическим размером.
Физический размер изображения может измеряться как в пикселях, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом.
Если изображение готовят для демонстрации на экране, то его ширину и высоту задают в пикселях, чтобы знать, какую часть экрана оно занимает. Если изображение готовят для печати, то его размер задают в единицах длины, чтобы знать, какую часть листа бумаги оно займет.
1 ОСНОВЫ КОМПЬЮТЕРНОЙ ГРАФИКИ
ОСНОВНЫЕ ПОНЯТИЯ
Обработка информации разделяется на три основных направления: обработка изображений, распознавание изображений и компьютерная графика (КГ).
Обработка изображений – это преобразование изображений, т.е. входными данными является изображение, и результат – тоже изображение, но преобразованное (например, повышение контраста, четкости изображения, коррекция цвета, сглаживание и т.д.). В качестве материала для обработки могут быть космические снимки, отсканированные изображения, инфракрасные изображения и т.п.
Для распознавания изображений основная задача – получение описания изображенных объектов. Методы и алгоритмы распознавания разрабатывались, для обеспечения зрения роботов и для систем специального назначения. Но в последнее время компьютерные системы распознавания изображений все чаще используются и повседневной жизни человека, например, офисные системы распознавания текста, создание трехмерных моделей человека.
Задача КГ – визуализация, т.е. создание изображения. Визуализация выполняется исходя из описания (модели) того, что нужно отображать. (например, отображение графика функции, диаграммы, карты или схемы или отображение реальной трехмерной сцены в играх, художественных и мультипликационных фильмах, в системах архитектурного проектирования).
КГ- Это область деятельности, в которой компьютеры используются как для синтеза изображений, так и для обработки визуальной информации, полученной из реального мира
Области применения КГ:
Графический интерфейс пользователя: основывается на представлении всех доступных пользователю системных объектов и функций в виде графических компонентов экрана;
-Спецэффекты, цифровая кинематография;
-Компьютерные игры;
-Цифровая фотография и цифровая обработка изображений
-Системы автоматизированного проектирования
Существует два класса КГ: двухмерная и трехмерная графика
Двухмерная (2D) компьютерная графика - создание и обработка цифровых изображений, полученных, на основе двухмерных моделей (двухмерных геометрических примитивов, текста и цифровых изображений).
Применение: Типография, Картография, Технические чертежи, Издательское дело, Компьютерные игры, Графический интерфейс пользователя
Программы для создания и обработки 2D-изображений и анимации:
Adobe Photoshop, Corel Draw, Macromedia (в настоящее время, Adobe) Flash, Adobe Illustrator
Трехмерная (3D) графика это Статические и динамические компьютерные изображения, создаваемые при помощи компьютера, которые передают эффект трехмерности изображаемых объектов
Особенности трехмерной графики: трёхмерное изображение отличается от плоского построением геометрической проекции трёхмерной модели сцены на экране компьютера или иного графического устройства с помощью специализированных программ
Программы для создания и обработки 3D-графики:
3D Studio Max, Maya, Poser, Pov-Ray
Отличия от двухмерной графики
Трехмерное представление геометрических данных хранится в памяти компьютера с целью получения в последствии набора двухмерных изображений
1. Виды компьютерной графики
Различают 4 вида компьютерной графики.
фрактальное изображение ;
Они отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.
3. Растровая графика и пиксель
Растровый файл состоит из точек, число которых определяется разрешением, измеряемым обычно в точках на дюйм (dpi) или на сантиметр (dpc). Пиксель (англ. Pixel – PICture’S Element) - это мельчайшая единица изображения в растровой графике. В ажным фактором, влияющим, с одной стороны, на качество вывода изображения, а с другой - на размер файла, является глубина цвета, т.е. число разрядов, отводимых для хранения информации о трех составляющих. Глубина цвета является информация о количестве цветов, закодированных в файле. Цвет каждого пиксела кодируется определенным числом бит (bit) , то есть элементарных единиц информации, с которыми может иметь дело компьютер. Каждый бит может принимать два значения -- 1 или 0. В зависимости от того, сколько бит отведено для цвета каждого пиксела, возможно кодирование различного числа цветов. Нетрудно сообразить, что если для кодировки отвести лишь один бит, то каждый пиксел может быть либо белым (значение 1), либо черным (значение 0). Такое изображение называют монохромным (monochrome) .
Трехмерная графика
Ее еще называют объектно-ориентированной. Это позволяет изменять как все элементы трехмерной сцены, так и каждый объект в отдельности. Применяется она при разработке дизайн-проектов интерьера, архитектурных объектов, в рекламе, при создании обучающих компьютерных программ, видео-роликов, наглядных изображений деталей и изделий в машиностроении и т. д. В трехмерной графике изображения (или персонажи) моделируются и перемещаются в виртуальном пространстве, в природной среде или в интерьере, а их анимация позволяет увидеть объект с любой точки, переместить в искусственно созданной среде и пространстве, разумеется, при сопровождении специальных эффектов. Эти свойства трехмерной графики позволяют создавать и кинопродукцию профессионального качества. Интересно, что в процессе разработки трехмерной графики и ее анимации человек выступает в качестве режиссера и оператора, поскольку ему приходится придумывать сюжет, содержание и композицию каждого кадра и распределять движение объекта или объектов сцены не только в пространстве, но и во времени. Что же требует трехмерная графика от человека? В первую очередь, умение моделировать различные формы и конструкции при помощи программных средств, а также знания ортогонального (прямоугольного) и центрального проецирования. Последнее называется перспективой.
Фрактальная графика
Этот вид компьютерной графики является на сегодняшний день одним из самых быстро развивающихся и перспективных. Математической основой фрактальной графики является фрактальная геометрия. В основу метода построения изображений во фрактальной графике положен принцип наследования от, так называемых, «родителей» геометрических свойств объектов-наследников
Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании. Фрактальную графику редко применяют для создания печатных или электронных документов, но ее часто используют в развлекательных программах.
- (Windows Bitmap) разрабатывался фирмой Microsoft каксовместимый со всеми приложениями Windows.Это «чистый» растровый формат, где закодирован каждый пиксель,поэтому из всех растровых форматов это самый «тяжелый» (т.е. имеющий наибольший информационный объем).
Преимущества
: высокое качество изображений
: очень большой объем файла, что сильно затрудняет илиделает невозможным его хранение, передачу, особенно в Интерне
Формат JPEG
JPEG - ( J oint P hotographic E xperts G roup) – сжатый особым образом растровый файл (с потерей качества).JPEG ищет плавные цветовые переходы, обрабатывая квадратные блокисо стороной 8 пикселей. Вместо действительных значений JPEGхранит скорость изменения от пиксела к пикселу. Лишнюю, с еготочки зрения, слабо воспринимаемой человеческим глазом цветовуюинформацию он отбрасывает, усредняя некоторые значения. Чемвыше уровень сжатия, тем больше данных отбрасывается и тем нижекачество. Формат аппаратно независим. В JPEG следует сохранятьтолько конечный вариант работы, потому что каждое пересохранениеприводит к все новым потерям (отбрасыванию) данных ипревращения исходного изображения в кашу.
Преимущества
: высокое качество изображений при небольших размерах файла (сжатие рисунков в десятки и сотни раз). Самый распространенный формат, применяется для хранения фотографий, размещения полноцветных изображений в Интернет.
: не поддерживает прозрачность изображений, воз ни кно вен ие р азмыто сти из ображе ни я пи си льной сте пе ни сжа тия.
Формат GIF
GIF - ( G raphics I nterchange F ormat) – создан специально для передачиизображений в Интернет фирмой CompuServe.GIF может хранит изображения в режиме индексированных цветов (до256), т.е. переходя к формату GIF, мы уменьшаем число цветов и размер файла (в тех случаях, когда простая картинка не требует миллионов цветов). Сжатие файлов производится путем замены последовательности одинаковых символов одним, умноженным на число повторений (алгоритм LZW). Кроме того, файл GIF можетсодержать не одну, а несколько растровых картинок, которыеинтернетовские браузеры могут подгружать одну за другой суказанной в файле частотой. Это называется GIF-анимация.
Преимущества
: малый размер файла, поддержка прозрачности и анимации рисунков, самый популярный формат в Интернет (оформление Web – страниц, баннеры).
: основное ограничение использования GIF в малом количестве воспроизводимых цветов (до 256). Этого явно недостаточно для полиграфии.
Пример GIF – анимации
является стандартным форматом пакета Adobe Photoshop иотличается от большинства обычных растровых форматоввозможностью хранения слоев (layers). Формат поддерживает альфа-каналы, слои, контуры, прозрачность, векторные надписи и т. п.Прекрасно подойдет для переноса или хранения изображений,содержащих специфические, свойственные только Adobe Photoshop,элементы.Главный
Этот формат, созданный специально для использования в Интернет на смену GIF, сжимающий графическую информацию без потерькачества. В отличие от GIF сжимает растровые изображения нетолько по горизонтали, но и по вертикали, что обеспечивает болеевысокую степень сжатия.Глубина цвета может быть любой, вплоть до 48 бит (RGB, для сравнения,- 24), поддерживается плавно переходящая прозрачность. В файлформата PNG записывается информация о гамма-коррекции. Гаммапредставляет собой некое число, характеризующее зависимостьяркости свечения экрана вашего монитора от напряжения наэлектродах кинескопа. Это число, считанное из файла, позволяетввести поправку яркости при отображении. Нужно оно для того,чтобы картинка, созданная на Мас'е, выглядела одинаково и на РС ина Silicon Graphics. Таким образом, эта особенность помогает реализации основной идеи WWW - одинакового отображенияинформации независимо от аппаратуры пользователя. Файлы PNGмогут делать все основные графические редакторы.
(Targa) – это имя графического адаптера фирмы Truevision, которыйвпервые использовал TGA-формат. Формат может хранитьизображения с глубиной цвета до 32 бит. Наряду со стандартнымитремя RGB - каналами TGA-файл имеет дополнительный альфа-каналдля представления информации о прозрачности изображения.Информация может быть сжата.Основное
достоинство –
формат используется программнымипродуктами многих известных в мире компьютерной графики фирм.
Формат TIFF
TIFF
(Tagged Image File Format) – аппаратно независимый формат TIFFна сегодняшний день является одним из самых распространенных инадежных, его поддерживают практически все программы на РС иMacintosh так или иначе связанные с графикой. TIFF является лучшимвыбором при импорте растровой графики в векторные программы ииздательские системы. Ему доступен весь диапазон цветовых моделейот монохромной до RGB, CMYK и дополнительных цветов Pantone.TIFF может сохранять векторы Photoshop'a, Alpha-каналы длясоздания масок в видеоклипах Adobe Premiere и массу другихдополнительных данных. Наибольшие проблемы обычно вызываетLZW-компрессия, иногда применяемая в TIFF'e. Ряд программ(например, QuarkXPress 3.x и Adobe Streamline) не умеют читатьтакие файлы, кроме того, они могут дольше выводиться на принтерыи фотонаборные автоматы. Только если файл комрессуется в 3-4 раза,получается выигрыш во времени вывода
- основной рабочий формат популярного пакета CorelDraw,являющимся неоспоримым лидером в классе векторных графических редакторов.Пользоваться CorelDraw чрезвычайно удобно, он имеет неоспоримоелидерство на платформе РС. Многие программы на РС (FreeHand,Illustrator, PageMaker, . ) могут импортировать файлы CDR. Начиная с7-ой версии CorelDraw в файлах стали применять компрессию длявекторов и растра отдельно, возможность внедрять шрифты, файлыCDR имеют огромное рабочее поле 45х45 метров (этот параметр важен для наружной рекламы); начиная с 4-й версии, поддерживается многостраничность.
Форматы векторной графики
Формат ALAI ( A dobe I llustrator) - поддерживают практически все программы,связанные с векторной графикой. Этот формат является наилучшим посредником при передаче изображений из одной программы в другую. В целом, несколько уступая CorelDRAW по иллюстративнымвозможностям, (может содержать в одном файле только однустраницу, имеет маленькое рабочее поле - этот параметр очень важендля наружной рекламы - всего 3х3 метра) тем не менее, он отличаетсянаибольшей стабильностью и совместимостью с языком PostScript, накоторый ориентируются практически все издательско- полиграфические приложения.
Родной формат Windows. Служит для передачи векторов через буферобмена (Clipboard). Понимается практически всеми программамиWindows, так или иначе связанными с векторной графикой. Однако,несмотря на кажущуюся простоту и универсальность, пользоватьсяформатом WMF стоит только в крайних случаях для передачи«голых» векторов. WMF искажает (!) цвет, не может сохранять рядпараметров, которые могут быть присвоены объектам в различныхвекторных редакторах.
Подведем итоги…
• формат BMP – очень качественная графика, но большой объем файла;•формат JPEG – наиболее подходящий для хранения качественныхизображений и фотографий, приемлемое соотношение качества и размера файла;•формат JPEG обычно используется для рисунков высокого качества,содержащих тысячи и миллионы цветов (до 16,7 миллионовоттенков);•Удобство использования рисунков JPEG заключается в том, что,изменяя качество рисунка, можно управлять степенью сжатия файла;•обозреватель способен загружать рисунки в формате JPEG только линейно, от верхней строки к нижней; •формат GIF наилучшим образом подходит для изображений, вкоторых содержится малое количество разных цветов;
Компьютерная графика – это совокупность методов и приемов для преобразования при помощи ЭВМ данных в графическое представление или графического представления в данные.
Конечным продуктом компьютерной графики является изображение (графическая информация). Изображение можно разделить на:
Рисунок – графическая форма изображения, в основе которой лежит линия.
Чертеж – это контурное изображение проекции некоторых реально существующих или воображаемых объектов.
Картина – тоновое черно-белое или цветное изображение.
Разрешение изображения – свойство самого изображения. Оно измеряется в точках на дюйм (dpi) и задается при создании изображения в графическом редакторе или с помощью сканера. Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения – его физическим размером.
Физический размер изображения . Может измеряться как в пикселях, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом.
ВИДЫ КОМПЬЮТЕРНОЙ ГРАФИКИ
Различают три вида компьютерной графики. Это растровая графика , векторная графика и фрактальная графика . Они отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.
Растровая графика
Растровый метод – изображение представляется в виде прямоугольной матрицы, каждая ячейка которой представлена цветной точкой.
Растровые изображения состоят из прямоугольных точек – растр. Растровые изображения обеспечивают максимальную реалистичность, поскольку в цифровую форму переводится каждый мельчайший фрагмент оригинала. В цифровом изображении каждая точка растра (пиксель) предоставлена единственным параметром – цветом. Такие изображения сохраняются в файлах гораздо большего объема, чем векторные, поскольку в них запоминается информация о каждом пикселе изображения, т.е. качество растровых изображений зависит от их размера.
Растровую графику применяют при разработке электронных (мультимедийных) и полиграфических изданий.
Достоинства растровой графики:
программная независимость (форматы файлов, предназначенные для сохранения точечных изображений, являются стандартными, поэтому не имеют решающего значения, в каком графическом редакторе создано то или иное изображение);
Недостатки растровой графики:
значительный объем файлов (определяется произведением площади изображения на разрешение и на глубину цвета (если они приведены к единой размерности);
принципиальные сложности трансформирования пиксельных изображений;
эффект пикселизации – связан с невозможностью увеличения изображения для рассмотрения деталей. Поскольку изображение состоит из точек, то увеличение приводит к тому, что точки становятся крупнее. Никаких дополнительных деталей при увеличении растрового изображения рассмотреть не удается, а увеличение точек растра визуально искажает иллюстрацию и делает ее грубой;
Векторная графика
Векторный метод – это метод представления изображения в виде совокупности отрезков и дуг и т. д. В данном случае вектор – это набор данных, характеризующих какой–либо объект.
Векторные изображения состоят из контуров. Контуры состоят из одного или нескольких смежных сегментов ограниченных узлами.
Сегменты могут иметь прямолинейную или криволинейную форму.
Замкнутые контуры могут иметь залив. Заливка может быть сплошная, градиентная, узорная, текстурная.
Любые контуры могут иметь обводку. Контур – понятие математическое и толщины он не имеет. Чтобы контур сделать видимым ему придают обводку – линию заданной толщины и цвета проведенную строго по контуру.
Векторные изображения строятся вручную, однако они могут быть также получены из растровых изображений с помощью трассировки.
Программные средства для работы с векторной графикой предназначены в первую очередь для создания иллюстраций и в меньшей степени для их обработки.
Такие средства широко используют в рекламных агентствах, дизайнерских бюро, редакциях и издательствах. Оформительские работы, основанные на применении шрифтов и простейших геометрических элементов, решаются средствами векторной графики много проще.
Достоинства векторной графики
полная свобода трансформации (изменение масштаба без потери качества и практически без увеличения размеров исходного файла);
небольшой размер файла по сравнению с растровым изображением;
прекрасное качество печати;
отсутствие проблем с экспортом векторного изображения в растровое;
объектно-ориентированный характер векторной графики (возможность редактирования каждого элемента изображения в отдельности);
Недостатки векторной графики
практически невозможно экспортировать из растрового формата в векторный (можно, конечно, трассировать изображение, хотя получить хорошую векторную картинку нелегко);
невозможно применение обширной библиотеки эффектов, используемых при работе с растровыми изображениями.
Сравнительная характеристика растровой и векторной графики
Критерий сравнения
Растровая графика
Векторная графика
Способ представления изображения
Растровое изображение строится из множества пикселей
Векторное изображение описывается в виде последовательности команд
Представление объектов реального мира
Растровые рисунки эффективно используются для представления реальных образов
Векторная графика не позволяет получать изображения фотографического качества
Качество редактирования изображения
При масштабировании и вращении растровых картинок возникают искажения
Векторные изображения могут быть легко преобразованы без потери качества
Особенности печати изображения
Растровые рисунки могут быть легко напечатаны на принтерах
Векторные рисунки иногда не печатаются или выглядят на бумаге не так, как хотелось бы
Фрактальная графика
Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании. Фрактальная графика , как и векторная – вычисляемая, но отличается от неё тем, что никакие объекты в памяти компьютера не хранятся. Изображение строится по уравнению (или по системе уравнений), поэтому ничего, кроме формулы, хранить не надо. Изменив коэффициенты в уравнении, можно получить совершенно другую картину. Способность фрактальной графики моделировать образы живой природы вычислительным путем часто используют для автоматической генерации необычных иллюстраций.
Фрактал – это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого (по крайней мере, приблизительно)
Основное свойство фракталов — самоподобие. Любой микроскопический фрагмент фрактала в том или ином отношении воспроизводит его глобальную структуру. В простейшем случае часть фрактала представляет собой просто уменьшенный целый фрактал.
КЛАССЫ ПРОГРАММ ДЛЯ РАБОТЫ С РАСТРОВОЙ ГРАФИКОЙ
Средства создания изображений :
● графический редактор Paint , входящий в состав ОС Windows ;
Эти программы ориентированы непосредственно на процесс рисования. В них акцент сделан на использование удобных инструментов рисования и на создание новых художественных инструментов и материалов.
Средства обработки изображений :
Эти растровые графические редакторы предназначены не для создания изображений "с нуля", а для обработки готовых рисунков с целью улучшения их качества и реализации творческих идей. Исходный материал для обработки на компьютере может быть получен разными путями: сканирование иллюстрации, загрузка изображения, созданного в другом редакторе, ввод изображения от цифровой фото- или видеокамеры, использование фрагментов изображений из библиотек клипартов, экспортирование векторных изображений.
Средства каталогизации изображений :
Программы-каталогизаторы позволяют просматривать графические файлы множества различных форматов, создавать на жестком диске удобные альбомы, перемещать и переименовывать файлы, документировать и комментировать иллюстрации.
Средства создания и обработки векторных изображений
В тех случаях, когда основным требованием к изображению является высокая точность формы, применяют специальные графические редакторы, предназначенные для работы с векторной графикой. Такая задача возникает при разработке логотипов компаний, при художественном оформлении текста (например, журнальных заголовков или рекламных объявлений), а также во всех случаях, когда иллюстрация является чертежом, схемой или диаграммой, а не рисунком. Наиболее распространены следующие программы:
Особую группу программных средств, основанных на принципах векторной графики, составляют системы трехмерной графики: 3 D Studio Max , Adobe Dimension , LightWave 3 D , Maya , Corel Bryce , Blender .
Средства создания фрактальных изображений
Основным производителем программ фрактальной графики является компания Meta Creations . Наиболее известны программы, позволяющие создавать фрактальные объекты или использовать их в художественных композициях (для фона, заливок и текстур каких-либо объектов):
● Fractal Design Painter (Corel Painter);
● Fractal Design Expression;
● Fractal Design Detailer;
НАИБОЛЕЕ РАСПРОСТРАНЕННЫЕ ФОРМАТЫ ГРАФИЧЕСКИХ ФАЙЛОВ
Формат хранения – это способ кодировки графического изображения.
Форматы хранения растровых изображений:
BMP (Windows Device Independent Bitmap). Наиболее распространенный формат файлов для растровых изображений в системе Windows . В файле этого формата сначала записывается палитра, если она есть, а затем растр в виде битового (а точнее, байтового) массива. В битовом массиве последовательно записываются байты строк растра. Число байтов в строке должно быть кратно четырем, поэтому если количество пикселов по горизонтали не соответствует такому условию, то справа в каждую строку дописывается некоторое число битов (выравнивание строк на границу двойного слова).
Формат служит для обмена растровыми изображениями между приложениями ОС Windows . Формат поддерживает большинство цветовых моделей, вплоть до 24-битного пространства RGB . Полиграфический стандарт CMYK не поддерживается. Сфера применения - электронные публикации.
Файлы в данном формате занимают значительный объем, для них характерно низкое качество изображений, выводимых на печать.
GIF ( CompuServeGraphics Interchange Format ). Формат поддерживает функции прозрачности цветов и некоторые виды анимации. Запись изображения происходит через строку, т.е. полукадрами, аналогично телевизионной системе развертки. Благодаря этому на экране сначала появляется картинка в низком разрешении, позволяющая представить общий образ, а затем загружаются остальные строки. Этот формат поддерживает 256 цветов. Один из цветов может получить свойство прозрачности благодаря наличию дополнительного двухбитового альфа-канала. Допускается включение в файл нескольких растровых изображений, воспроизводимых с заданной периодичностью, что обеспечивает демонстрацию на экране простейшей анимации.
Все данные в файле сжимаются методом Lempel - Ziv - Welch ( LZW ) без потери качества, что дает наилучшие результаты на участках с однородной заливкой.
Абсолютно новой функцией стала запись в файл информации о гамма-коррекции, т.е. поддержания одинакового уровня яркости изображения независимо от особенностей представления цвета в различных операционных системах и приложениях.
Применен усовершенствованный метод сжатия без потери информации Deflate . Новый метод сжатия позволил сократить объем файлов.
JPEG (Joint Photographic Expert Group). По существу является методом сжатия изображений с потерей части информации. Преобразование данных при записи происходит в несколько этапов. Независимо от исходной цветовой модели изображения все пикселы переводятся в цветовое пространство CIE LAB . Затем отбрасывается не менее половины информации о цвете, спектр сужается до палитры, ориентированной на особенности человеческого зрения. Далее изображение разбивается на блоки размером 8х8 пикселов. В каждом блоке сначала кодируется информация о "среднем" цвете пикселов, а затем описывается разница между "средним" цветом блока и цветом конкретного пиксела.
Применение компрессии JPEG позволяет до 500 раз уменьшить объем файла по сравнению с обычным bitmap . Вместе с тем искажение цветовой модели и деградация деталей не позволяют использовать этот формат для хранения изображений высокого качества.
PCD ( PhotoCD - Image Pac ). Разработан фирмой Kodak для хранения цифровых растровых изображений высокого качества. Файл имеет внутреннюю структуру, обеспечивающую хранение изображения с фиксированными величинами разрешений, и поэтому размеры любых файлов лишь незначительно отличаются друг от друга и находятся в диапазоне 4-5 Мбайт. Обеспечивает высокое качество полутоновых изображений.
PCX (PC Paintbrush File Format). Растровый формат. Впервые появился в программе PC Paintbrush для MS - DOS . После лицензирования программы Paintbrush для Windows стал использоваться рядом приложений Windows .
TIFF (Tagged Image File Format). Считается лучшим форматом для записи полутоновых изображений.
Формат распознается практически всеми графическими программами и позволяет хранить изображения высочайшего качества. Последние версии формата поддерживают несколько способов сжатия изображений: LZW (без потери информации), ZIP (без потери информации), JPEG (с потерей части информации). Универсальным считают метод сжатия LZW .
Курс лекций по учебной дисциплине ОП.02 Компьютерная графика составлен в соответствии с рабочей программой профессионального модуля разработанной на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образования 15.02.08 Технология машиностроения.
Составитель: Юрова М.Н.
Содержание
Раздел 1. Системы автоматизированного проектирования
Тема 1.1. Общие сведения о системах автоматизированного проектирования.
История развития компьютерной графики;
Определение и основные задачи компьютерной графики;
Области применения компьютерной графики.
История развития компьютерной (машинной) графики
Компьютерная графика насчитывает в своем развитии не более двадцати лет, а ее коммерческим приложениям – и того меньше. Андриесван Дам считается одним из отцов компьютерной графики, а его книги – фундаментальными учебниками по всему спектру технологий, положенных в основу машинной графики. Также в этой области известен Айвэн Сазерленд , чья докторская диссертация явилась теоретической основой машинной графики.
До недавнего времени экспериментирование по использованию возможностей интерактивной машинной графики было привилегией лишь небольшому количеству специалистов, в основном ученые и инженеры, занимающиеся вопросами автоматизации проектирования, анализа данных и математического моделирования. Теперь же исследование реальных и воображаемых миров через «призму» компьютеров стало доступно гораздо более широкому кругу людей.
Такое изменение ситуации обусловлено несколькими причинами. Прежде всего, в результате резкого улучшения соотношения стоимость/производительность для некоторых компонент аппаратуры компьютеров. Кроме того, стандартное программное обеспечение высокого уровня для графики стало широкодоступным, что упрощает написание новых прикладных программ, переносимых с компьютеров одного типа на другие. Следующая причина обусловлена влиянием, которое дисплеи оказывают на качество интерфейса – средства общения между человеком и машиной, – обеспечивая максимальные удобства для пользователя. Новые, удобные для пользователя системы построены в основном на подходе WYSIWYG (аббревиатура от английского выражения «What you see is what you get» – «Что видите, то и имеете»), в соответствии с которым изображение на экране должно быть как можно более похожим на то, которое в результате печатается.
Большинство традиционных приложений машинной графики являются двумерными. В последнее время отмечается возрастающий коммерческий интерес к трехмерным приложениям. Он вызван значительным прогрессом в решении двух взаимосвязанных проблем: моделирования трехмерных сцен и построения как можно более реалистичного изображения. Например, в имитаторах полета особое значение придается времени реакции на команды, вводимые пилотом и инструктором. Чтобы создавалась иллюзия плавного движения, имитатор должен порождать чрезвычайно реалистичную картину динамически изменяющегося «мира» с частотой как минимум 30 кадров в секунду. В противоположность этому изображения, применяемые в рекламе и индустрии развлечений, вычисляют автономно, нередко в течение часов, с целью достичь максимального реализма или произвести сильное впечатление.
Развитие компьютерной графики, особенно на ее начальных этапах, в первую очередь связано с развитием технических средств и в особенности дисплеев:
произвольное сканирование луча;
растровое сканирование луча;
дисплеи с эмиссией полем.
1.2 Определение и основные задачи компьютерной графики
При обработке информации, связанной с изображением на мониторе, принято выделять три основных направления: распознавание образов, обработку изображений и машинную графику.
Основная задача распознавания образов состоит в преобразовании уже имеющегося изображения на формально понятный язык символов. Распознавание образов или система технического зрения (COMPUTER VISION) – это совокупность методов, позволяющих получить описание изображения, поданного на вход, либо отнести заданное изображение к некоторому классу (так поступают, например, при сортировке почты). Одной из задач COMPUTER VISION является так называемая скелетизация объектов, при которой восстанавливается некая основа объекта, его «скелет».
Обработка изображений (IMAGE PROCESSING) рассматривает задачи, в которых и входные и выходные данные являются изображениями. Например, передача изображения с устранением шумов и сжатием данных, переход от одного вида изображения к другому (от цветного к черно-белому) и т.д. Таким образом, под обработкой изображений понимают деятельность над изображениями (преобразование изображений). Задачей обработки изображений может быть как улучшение в зависимости от определенного критерия (реставрация, восстановление), так и специальное преобразование, кардинально изменяющее изображения.
При обработке изображений существует следующие группы задач:
Компьютерная (машинная) графика воспроизводит изображение в случае, когда исходной является информация неизобразительной природы. Например, визуализация экспериментальных данных в виде графиков, гистограмм или диаграмм, вывод информации на экран компьютерных игр, синтез сцен на тренажерах.
Компьютерная графика в настоящее время сформировалась как наука об аппаратном и программном обеспечении для разнообразных изображений от простых чертежей до реалистичных образов естественных объектов. Компьютерная графика используется почти во всех научных и инженерных дисциплинах для наглядности и восприятия, передачи информации. Применяется в медицине, рекламном бизнесе, индустрии развлечений и т. д. Без компьютерной графики не обходится ни одна современная программа. Работа над графикой занимает до 90% рабочего времени программистских коллективов, выпускающих программы массового применения.
Конечным продуктом компьютерной графики является изображение . Это изображение может использоваться в различных сферах, например, оно может быть техническим чертежом, иллюстрацией с изображением детали в руководстве по эксплуатации, простой диаграммой, архитектурным видом предполагаемой конструкции или проектным заданием, рекламной иллюстрацией или кадром из мультфильма.
Компьютерная графика – это наука, предметом изучения которой является создание, хранение и обработка моделей и их изображений с помощью ЭВМ, т.е. это раздел информатики, который занимается проблемами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере.
В компьютерной графике рассматриваются следующие задачи:
– представление изображения в компьютерной графике;
– подготовка изображения к визуализации;
– осуществление действий с изображением.
Под компьютерной графикой обычно понимают автоматизацию процессов подготовки, преобразования, хранения и воспроизведения графической информации с помощью компьютера. Под графической информацией понимаются модели объектов и их изображения.
В случае если пользователь может управлять характеристиками объектов, говорят об интерактивной компьютерной графике , т.е. способность компьютерной системы создавать графику и вести диалог с человеком. В настоящее время почти любую программу можно считать системой интерактивной компьютерной графики.
Интерактивная компьютерная графика – это также использование компьютеров для подготовки и воспроизведения изображений, но при этом пользователь имеет возможность оперативно вносить изменения в изображение непосредственно в процессе его воспроизведения, т.е. предполагается возможность работы с графикой в режиме диалога в реальном масштабе времени.
Интерактивная графика представляет собой важный раздел компьютерной графики, когда пользователь имеет возможность динамически управлять содержимым изображения, его формой, размером и цветом на поверхности дисплея с помощью интерактивных устройств управления.
Исторически первыми интерактивными системами считаются системы автоматизированного проектирования (САПР), которые появились в 60-х годах 20 века. Они представляют собой значительный этап в эволюции компьютеров и программного обеспечения. В системе интерактивной компьютерной графики пользователь воспринимает на дисплее изображение, представляющее некоторый сложный объект, и может вносить изменения в описание (модель) объекта. Такими изменениями могут быть как ввод и редактирование отдельных элементов, так и задание числовых значений для любых параметров, а также иные операции по вводу информации на основе восприятия изображений.
Системы типа САПР активно используются во многих областях, например, в машиностроении и электронике. Одними из первых были созданы САПР для проектирования самолетов, автомобилей, системы для разработки микроэлектронных интегральных схем, архитектурные системы. Такие системы на первых порах функционировали на достаточно больших компьютерах. Потом распространилось использование быстродействующих компьютеров среднего класса с развитыми графическими возможностями – графических рабочих станций. С ростом мощностей персональных компьютеров все чаще САПР использовали на дешевых массовых компьютерах, которые сейчас имеют достаточные быстродействие и объемы памяти для решения многих задач. Это привело к широкому распространению систем САПР.
Сейчас становятся все более популярными геоинформационные системы (ГИС) . Это разновидность систем интерактивной компьютерной графики. Они аккумулируют в себе методы и алгоритмы многих наук и информационных технологий. Такие системы используют последние достижения технологий баз данных, в них заложены многие методы и алгоритмы математики, физики, геодезии, топологии, картографии, навигации и, конечно же, компьютерной графики. Системы типа ГИС зачастую требуют значительных мощностей компьютера как в плане работы с базами данных, так и для визуализации объектов, которые находятся на поверхности Земли. Причем, визуализацию необходимо делать с различной степенью детализации – как для Земли в целом, так и в границах отдельных участков. В настоящее время заметно стремление разработчиков ГИС повысить реалистичность изображений пространственных объектов и территорий.
Работа с компьютерной графикой – одно из самых популярных направлений использования персонального компьютера, причем занимаются этой работой не только профессиональные художники и дизайнеры. На любом предприятии время от времени возникает необходимость в подаче рекламных объявлений в газеты и журналы, в выпуске рекламной листовки или буклета. Иногда предприятия заказывают такую работу специальным дизайнерским бюро или рекламным агентствам, но часто обходятся собственными силами и доступными программными средствами.
Типичными для любой ГИС являются такие операции – ввод и редактирование объектов с учетом их расположения на поверхности Земли, формирование разнообразных цифровых моделей, запись в базы данных, выполнение разнообразных запросов к базам данных. Важной операцией является анализ с учетом пространственных, топологических отношений множества объектов, расположенных на некоторой территории.
1.3 Области применения компьютерной графики
Область применения компьютерной графики не ограничивается одними художественными эффектами. Во всех отраслях науки, техники, медицины, в коммерческой и управленческой деятельности используются построенные с помощью компьютера схемы, графики, диаграммы, предназначенные для наглядного отображения разнообразной информации. Конструкторы, разрабатывая новые модели автомобилей и самолетов, используют трехмерные графические объекты, чтобы представить окончательный вид изделия. Архитекторы создают на экране монитора объемное изображение здания, и это позволяет им увидеть, как оно впишется в ландшафт.
Можно рассмотреть следующие области применения компьютерной графики.
Научная графика
Первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше понять полученные результаты, производили их графическую обработку, строили графики, диаграммы, чертежи рассчитанных конструкций. Первые графики на машине получали в режиме символьной печати. Затем появились специальные устройства – графопостроители (плоттеры) для вычерчивания чертежей и графиков чернильным пером на бумаге. Современная научная компьютерная графика дает возможность проводить вычислительные эксперименты с наглядным представлением их результатов.
Деловая графика
Деловая графика – область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчетная документация, статистические сводки – вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы. Программные средства деловой графики включаются в состав электронных таблиц.
Конструкторская графика
Конструкторская графика используется в работе инженеров–конструкторов, архитекторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом САПР (систем автоматизации проектирования). Средствами конструкторской графики можно получать как плоские изображения (проекции, сечения), так и пространственные трехмерные изображения.
Иллюстративная графика
Иллюстративная графика – это произвольное рисование и черчение на экране компьютера. Пакеты иллюстративной графики относятся к прикладному программному обеспечению общего назначения. Простейшие программные средства иллюстративной графики называются графическими редакторами.
Художественная и рекламная графика
Художественная и рекламная графика – ставшая популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации. Графические
пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этих графических пакетов является возможность создания реалистических изображений и "движущихся картинок".
Компьютерная анимация
Компьютерная анимация – это получение движущихся изображений на экране дисплее. Художник создает на экране рисунке начального и конечного положения движущихся объектов, все промежуточные состояния рассчитывает и изображает компьютер, выполняя расчеты, опирающиеся на математическое описание данного вида движения. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения. Мультимедиа – это объединение высококачественного изображения на экране компьютера со звуковым сопровождением. Наибольшее распространение системы мультимедиа получили в области обучения, рекламы, развлечений.
Графика для Интернета
Появление глобальной сети Интернет привело к тому, что компьютерная графика стала занимать важное место в ней. Все больше совершенствуются способы передачи визуальной информации, разрабатываются более совершенные графические форматы, ощутимо желание использовать трехмерную графику, анимацию, весь спектр мультимедиа.
Контрольные вопросы:
Опишите этапы развития компьютерной графики.
Дайте определение понятиям «Компьютерная графика» и «Интерактивная компьютерная графика».
Читайте также: