Основные схемы подключения межсетевых экранов
При подключении корпоративной или локальной сети к глобальным сетям необходимы:
• защита корпоративной или локальной сети от удаленного НСД со стороны глобальной сети;
• сокрытие информации о структуре сети и ее компонентов от пользователей глобальной сети;
• разграничение доступа в защищаемую сеть из глобальной сети и из защищаемой сети в глобальную сеть.
Для эффективной защиты межсетевого взаимодействия система МЭ должна быть правильно установлена и сконфигурирована. Данный процесс состоит:
• из формирования политики межсетевого взаимодействия;
• выбора схемы подключения и настройки параметров функционирования МЭ.
Формирование политики межсетевого взаимодействия
Политика межсетевого взаимодействия является составной частью общей политики безопасности в организации. Она определяет требования к безопасности информационного обмена организации с внешним миром и должна отражать два аспекта:
• политику доступа к сетевым сервисам;
• политику работы МЭ.
Политика доступа к сетевым сервисам определяет правила предоставления и использования всех возможных сервисов защищаемой компьютерной сети. В рамках данной политики должны быть заданы все сервисы, предоставляемые через МЭ, и допустимые адреса клиентов для каждого сервиса. Кроме того, для пользователей должны быть указаны правила, описывающие, когда, кто, каким сервисом и на каком компьютере может воспользоваться. Задаются также ограничения на методы доступа, например на использование протоколов SLIP(Serial Line Internet Protocol) и PPP (Point-to-Point Protocol). Ограничение методов доступа необходимо для того, чтобы пользователи не могли обращаться к «запрещенным» сервисамInternet обходными путями. Правила аутентификации пользователей и компьютеров, а также условия работы пользователей вне локальной сети организации должны быть определены отдельно.
Для того чтобы МЭ успешно защищал ресурсы организации, политика доступа пользователей к сетевым сервисам должна быть реалистичной. Реалистичной считается такая политика, при которой найден баланс между защитой сети организации от известных рисков и необходимым доступом пользователей к сетевым сервисам.
Политика работы МЭ задает базовый принцип управления межсетевым взаимодействием, положенный в основу функционирования МЭ. Может быть выбран один из двух принципов:
1) запрещено все, что явно не разрешено;
2) разрешено все, что явно не запрещено.
Фактически выбор принципа устанавливает, насколько «подозрительной» или «доверительной» должна быть система защиты. В зависимости от выбора, решение может быть принято как в пользу безопасности и в ущерб удобству использования сетевых сервисов, так и наоборот.
При выборе принципа 1 МЭ настраивается так, чтобы блокировать любые явно не разрешенные межсетевые взаимодействия. Этот принцип соответствует классической модели доступа, используемой во всех областях информационной безопасности. Такой подход позволяет адекватно реализовать принцип минимизации привилегий, поэтому с точки зрения безопасности он является лучшим. Администратор безопасности должен на каждый тип разрешенного взаимодействия задавать правила доступа (одно и более). Администратор не сможет по забывчивости оставить разрешенными какие-либо полномочия, так как по умолчанию они будут запрещены. Доступные лишние сервисы могут быть использованы во вред безопасности, что особенно характерно для закрытого и сложного ПО, в котором могут быть различные ошибки и некорректности. Принцип 1, в сущности, является признанием факта, что незнание может причинить вред. Следует отметить, что правила доступа, сформулированные в соответствии с этим принципом, могут доставлять пользователям определенные неудобства.
При выборе принципа 2 МЭ настраивается так, чтобы блокировать только явно запрещенные межсетевые взаимодействия. В этом случае повышается удобство использования сетевых сервисов со стороны пользователей, но снижается безопасность межсетевого взаимодействия. Пользователи имеют больше возможностей обойти МЭ, например, могут получить доступ к новым сервисам, не запрещаемым политикой (или даже не указанным в политике), или запустить запрещенные сервисы на нестандартных портах TCP/UDP, которые не запрещены политикой. Администратор может учесть не все действия, которые запрещены пользователям. Ему приходится работать в режиме реагирования, предсказывая и запрещая те межсетевые взаимодействия, которые отрицательно воздействуют на безопасность сети. При реализации принципа 2 внутренняя сеть оказывается менее защищенной от нападений хакеров, поэтому производители МЭ обычно отказываются от его использования.
МЭ является симметричным. Для него отдельно задаются правила, ограничивающие доступ из внутренней сети во внешнюю сеть, и наоборот. В общем случае его работа основана на динамическом выполнении двух функций:
• фильтрации проходящих через него информационных потоков;
• посредничества при реализации межсетевых взаимодействий.
В зависимости от типа экрана эти функции могут выполняться с различной полнотой. Простые МЭ ориентированы на выполнение только одной из них. Комплексные МЭ обеспечивают совместное выполнение указанных функций защиты. Собственная защищенность МЭ достигается с помощью тех же средств, что и защищенность универсальных систем.
Чтобы эффективно обеспечивать безопасность сети, комплексный МЭ обязан управлять всем потоком, проходящим через него, и отслеживать свое состояние. Для принятия управляющих решений по используемым сервисам МЭ должен получать, запоминать, выбирать и обрабатывать информацию, полученную от всех коммуникационных уровней и от других приложений.
Недостаточно просто проверять пакеты по отдельности. Информация о состоянии соединения, полученная из инспекции соединений в прошлом и других приложений — главный фактор в принятии управляющего решения при установлении нового соединения. При принятии решения учитываются как состояние соединения (полученное из прошлого потока данных), так и состояние приложения (полученное из других приложений). Полнота и правильность управления требуют, чтобы комплексный МЭ имел возможность анализа и использования следующих элементов:
• информации о соединениях — информации от всех семи уровней в пакете;
• истории соединений — информации, полученной от предыдущих соединений;
• состояния уровня приложения — информации о состоянии, полученной из других приложений. Например, аутентифи-цированному до настоящего момента пользователю можно предоставить доступ через МЭ только для авторизованных видов сервиса;
• агрегирующих элементов — вычислений разнообразных выражений, основанных на всех вышеперечисленных факторах.
Основные схемы подключения МЭ
При подключении корпоративной сети к глобальным сетям необходимо разграничить доступ в защищаемую сеть из глобальной сети и из защищаемой сети в глобальную сеть, а также обеспечить защиту подключаемой сети от удаленного НСД со стороны глобальной сети. При этом организация заинтересована в сокрытии информации о структуре своей сети и ее компонентов от пользователей глобальной сети. Работа с удаленными пользователями требует установления жестких ограничений доступа к информационным ресурсам защищаемой сети.
Часто возникает потребность иметь в составе корпоративной сети несколько сегментов с разными уровнями защищенности:
• свободно доступные сегменты (например, рекламный WWW-сервер);
• сегмент с ограниченным доступом (например, для доступа сотрудникам организации с удаленных узлов);
• закрытые сегменты (например, финансовая локальная подсеть организации).
Для подключения МЭ могут использоваться различные схемы, которые зависят от условий функционирования защищаемой сети, а также от количества сетевых интерфейсов и других характеристик, используемых МЭ. Широкое распространение получили схемы:
• защиты сети с использованием экранирующего маршрутизатора;
• единой защиты локальной сети;
• с защищаемой закрытой и не защищаемой открытой подсетями;
• с раздельной защитой закрытой и открытой подсетей.
Рассмотрим подробнее схему с защищаемой закрытой и незащищаемой открытой подсетями. Если в составе локальной сети имеются общедоступные открытые серверы, то их целесообразно вынести как открытую подсеть до МЭ (рис. 9.7).
Рис. 9.7. Схема с защищаемой закрытой и не защищаемой открытой подсетями
Этот способ обладает высокой защищенностью закрытой части локальной сети, но обеспечивает пониженную безопасность открытых серверов, расположенных до МЭ.
Некоторые МЭ позволяют разместить эти серверы на себе. Однако такое решение не является лучшим с точки зрения безопасности самого МЭ и загрузки компьютера. Схему подключения МЭ с защищаемой закрытой подсетью и не защищаемой открытой подсетью целесообразно использовать лишь при невысоких требованиях по безопасности к открытой подсети.
Если же к безопасности открытых серверов предъявляются повышенные требования, тогда необходимо использовать схему с раздельной защитой закрытой и открытой подсетей.
Персональные и распределенные сетевые экраны
За последние несколько лет в структуре корпоративных сетей произошли определенные изменения. Если раньше границы таких сетей можно было четко очертить, то сейчас это практически невозможно. Еще недавно такая граница проходила через все маршрутизаторы или иные устройства (например, модемы), через которые осуществлялся выход во внешние сети. В удаленных офисах организации ситуация была схожа. Однако сейчас полноправным пользователем защищаемой МЭ сети является сотрудник, находящийся за пределами защищаемого периметра. К таким сотрудникам относятся пользователи, работающие на дому или находящиеся в командировке. Несомненно им также требуется защита. Но все традиционные МЭ построены так, что защищаемые пользователи и ресурсы должны находиться под их защитой с внутренней стороны корпоративной или локальной сети, что является невозможным для мобильных пользователей.
Для решения этой проблемы были предложены следующие подходы:
• применение распределенных МЭ (distributed firewall);
• использование возможностей виртуальных частных сетей VPN (virtual private network).
Распределенный межсетевой экран (distributed firewall) — централизованно управляемая совокупность сетевых мини-экранов, защищающих отдельные компьютеры сети.
Для индивидуальных пользователей представляет интерес технология персонального сетевого экранирования. В этом случае сетевой экран устанавливается на защищаемый персональный компьютер. Такой экран, называемый персональным экраном компьютера (personal firewall) или системой сетевого экранирования, контролирует весь исходящий и входящий трафик независимо от всех прочих системных защитных средств. При экранировании отдельного компьютера поддерживается доступность сетевых сервисов, но уменьшается нагрузка, индуцированная внешней активностью. В результате снижается уязвимость внутренних сервисов защищаемого таким образом компьютера, поскольку первоначально сторонний злоумышленник должен преодолеть экран, где защитные средства сконфигурированы особенно тщательно и жестко.
Эти средства не только защищают от внешних атак компьютеры, на которых они установлены, но и обеспечивают защиту трафика, передаваемого за пределы данного узла (т. е. организуют защищенные каналы VPN). Именно такое решение позволило обеспечить защиту сетей с нечетко очерченными границами.
Наличие функции централизованного управления у распределенного МЭ — его главное отличие от персонального экрана. Если персональные сетевые экраны управляются только с компьютера, на котором они установлены, и идеально подходят для домашнего применения, то распределенные МЭ могут управляться централизованно, с единой консоли управления, установленной в главном офисе организации. Это позволило некоторым производителям выпускать МЭ в двух версиях:
• персональной (для индивидуальных пользователей);
• распределенной (для корпоративных пользователей).
В современных условиях более 50% различных атак и попыток доступа к информации осуществляется изнутри локальных сетей, поэтому классический «периметровый» подход к созданию системы защиты корпоративной сети становится недостаточно эффективным. Корпоративную сеть можно считать действительно защищенной от НСД только при наличии в ней средств защиты точек входа со стороны Internet и решений, обеспечивающих безопасность отдельных компьютеров, корпоративных серверов и фрагментов локальной сети предприятия. Решения на основе распределенных или персональных МЭ наилучшим образом обеспечивают безопасность отдельных компьютеров, корпоративных серверов и фрагментов локальной сети предприятия.
Проблемы безопасности МЭ
МЭ не решает все проблемы безопасности корпоративной сети. Кроме описанных выше достоинств МЭ, существуют ограничения в их использовании и угрозы безопасности, от которых МЭ не могут защитить. Отметим наиболее существенные из этих ограничений:
• возможное ограничение пропускной способности. Традиционные МЭ являются потенциально узким местом сети, так как все соединения должны проходить через МЭ и в некоторых случаях изучаться МЭ;
• отсутствие встроенных механизмов защиты от вирусов. Традиционные МЭ не могут защитить от пользователей, загружающих зараженные вирусами программы для ПЭВМ из интернетовских архивов или при передаче таких программ в качестве приложений к письму, поскольку эти программы могут быть зашифрованы или сжаты большим числом способов;
• отсутствие эффективной защиты от получаемого из Internet опасного содержимого (апплеты Java, управляющие элементы ActiveX, сценарии JavaScript и т. п.). Специфика мобильного кода такова, что он может быть использован как средство для проведения атак. Мобильный код может быть реализован в виде:
— вируса, который вторгается в ИС и уничтожает данные на локальных дисках, постоянно модифицируя свой код и затрудняя тем самым свое обнаружение и удаление;
— агента, перехватывающего пароли, номера кредитных карт и т. п.;
— программы, копирующей конфиденциальные файлы, содержащие деловую и финансовую информацию и пр.;
• МЭ не может защитить от ошибок и некомпетентности администраторов и пользователей;
• традиционные МЭ являются по существу средствами, только блокирующими атаки. В большинстве случаев они защищают от атак, которые уже находятся в процессе осуществления. Более эффективным было бы не только блокирование, но и упреждение атак, т. е. устранение предпосылок реализации вторжений. Для организации упреждения атак необходимо использовать средства обнаружения атак и поиска уязвимостей, которые будут своевременно обнаруживать и рекомендовать меры по устранению «слабых мест» в системе защиты. Технологии обнаружения атак и анализа защищенности сетей мы рассмотрим в следующих статьях. Для защиты информационных ресурсов распределенных корпоративных систем необходимо применение комплексной системы информационной безопасности, которая позволит эффективно использовать достоинства МЭ и компенсировать их недостатки с помощью других средств безопасности.
Эта статья была опубликована Пятница, 11 сентября, 2009 at 14:57 в рубрике Технологии межсетевых экранов. Вы можете следить за ответами через RSS 2.0 feed.
При подключении корпоративной сети к глобальным сетям необходимо разграничить доступ в защищаемую сеть из глобальной сети и из защищаемой сети в глобальную сеть, а также обеспечить защиту подключаемой сети от несанкционированного удаленного доступа со стороны глобальной сети. При этом организация заинтересована в сокрытии информации о структуре своей сети и ее компонентов от пользователей глобальной сети. Работа с удаленными пользователями требует установления жестких ограничений доступа к информационным ресурсам защищаемой сети.
У организации часто возникает потребность иметь в составе корпоративной сети нескольких сегментов с разными уровнями защищенности:
О свободно доступные сегменты (например, рекламный VWW-cepBep);
О сегмент с ограниченным доступом (например, для доступа сотрудникам организации с удаленных узлов);
О закрытые сегменты (например, финансовая локальная подсеть организации).
Для подключения межсетевых экранов могут использоваться различные схемы, которые зависят от условий функционирования защищаемой сети, а также от количества сетевых интерфейсов и других характеристик используемых МЭ. Широкое распространение получили следующие схемы подключения межсетевых экранов:
О схемы защиты сети с использованием экранирующего маршрутизатора;
О схемы единой защиты локальной сети;
О схемы с защищаемой закрытой и не защищаемой открытой подсетями;
О схемы с раздельной защитой закрытой и открытой подсетей [10, 28].
Схема защиты с использованием экранирующего маршрутизатора. Межсетевой экран, основанный на фильтрации пакетов, является самым распространенным и наиболее простым в реализации. Он состоит из экранирующего маршрутизатора, расположенного между защищаемой сетью и потенциально враждебной открытой внешней сетью (рис. 8.10). Экранирующий маршрутизатор (пакетный фильтр) сконфигурирован для блокирования или фильтрации входящих и исходящих пакетов на основе анализа их адресов и портов.
Компьютеры, находящиеся в защищаемой сети, имеют прямой доступ в сеть Интернет, в то время как большая часть доступа к ним из Интернета блокируется.
Часто блокируются такие опасные службы, как X Windows, NIS и NFS. В принципе, экранирующий маршрутизатор может реализовать любую из политик безопасности, описанных ранее. Однако если маршрутизатор не фильтрует пакеты по порту источника и номеру входного и выходного порта, то реализация политики «запрещено все, что не разрешено в явной форме» может быть затруднена.
Межсетевые экраны, основанные на фильтрации пакетов, имеют те же недостатки, что и экранирующие маршрутизаторы, причем эти недостатки становятся более ощутимыми при ужесточении требований к безопасности защищаемой сети. Отметим некоторые из них:
О сложность правил фильтрации; в некоторых случаях совокупность этих правил может стать неуправляемой;
О невозможность полного тестирования правил фильтрации; это приводит к незащищенности сети от непротестированных атак;
О практически отсутствующие возможности регистрации событий; в результате администратору трудно определить, подвергался ли маршрутизатор атаке и скомпрометирован ли он.
Схемы подключения межсетевых экранов с несколькими сетевыми интерфейсами. Схемы защиты с МЭ с одним сетевым интерфейсом (рис. 8.11) недостаточно эффективны как с точки зрения безопасности, так и с позиций удобства конфигурирования. Они физически не разграничивают внутреннюю и внешнюю сети, а соответственно, не могут обеспечивать надежную защиту межсетевых взаимодействий. Настройка таких межсетевых экранов, а также связанных с ними маршрутизаторов представляет собой довольно сложную задачу, цена решения которой превышает стоимость замены МЭ с одним сетевым интерфейсом на МЭ с двумя или тремя сетевыми интерфейсами. Поэтому далее будут более подробно рассмотрены схемы подключения межсетевых экранов с двумя и тремя сетевыми интерфейсами.
Защищаемую локальную сеть целесообразно представлять как совокупность закрытой и открытой подсетей. Здесь под открытой подсетью понимается подсеть, доступ к которой со стороны потенциально враждебной внешней сети может быть полностью или частично открыт. В открытую подсеть могут, например, входить общедоступные WWW-, FTP- и SMTP-серверы, а также терминальный сервер с модемным пулом.
Среди множества возможных схем подключения МЭ типовыми являются следующие:
О схема единой защиты локальной сети;
О схема с защищаемой закрытой и не защищаемой открытой подсетями;
О схема с раздельной защитой закрытой и открытой подсетей.
Схема единой защиты локальной сети. Данная схема является наиболее простым решением (рис. 8.12), при котором МЭ целиком экранирует локальную сеть от потенциально враждебной внешней сети. Между маршрутизатором и МЭ имеется только один путь, по которому идет весь трафик. Данный вариант МЭ реализует политику безопасности, основанную на принципе «запрещено все, что явно не разрешено»; при этом пользователю недоступны все службы, кроме тех, для которых определены соответствующие полномочия. Обычно маршрутизатор настраивается таким образом, что МЭ является единственной видимой снаружи машиной.
Открытые серверы, входящие в локальную сеть, также будут защищены межсетевым экраном. Однако объединение серверов, доступных из внешней сети, с другими ресурсами защищаемой локальной сети существенно снижает безопасность межсетевых взаимодействий. Поэтому данную схему подключения МЭ можно использовать лишь при отсутствии в локальной сети открытых серверов или когда имеющиеся открытые серверы делаются доступными из внешней сети только для ограниченного числа пользователей, которым можно доверять.
Поскольку межсетевой экран использует хост, то на нем могут быть установлены программы для усиленной аутентификации пользователей. Межсетевой экран может также протоколировать доступ, попытки зондирования и атак системы, что позволит выявить действия злоумышленников.
Для некоторых сетей может оказаться неприемлемой недостаточная гибкость схемы защиты на базе межсетевого экрана с двумя интерфейсами.
Схема с защищаемой закрытой и не защищаемой открытой подсетями. Если в составе локальной сети имеются общедоступные открытые серверы, тогда их целесообразно вынести как открытую подсеть до межсетевого экрана (рис. 8.13). Данный
Рис. 8.11. Защита локальной сети с помощью МЭ с одним сетевым интерфейсом
Рис. 8.12. Схема единой защиты локальной сети
Рис. 8.13. Схема с защищаемой закрытой и не защищаемой открытой подсетями
способ обладает более высокой защищенностью закрытой части локальной сети, но обеспечивает пониженную безопасность открытых серверов, расположенных до межсетевого экрана.
Некоторые МЭ позволяют разместить эти серверы на себе. Однако такое решение не является лучшим с точки зрения безопасности самого МЭ и загрузки компьютера. Схему подключения МЭ с защищаемой закрытой и не защищаемой открытой подсетями целесообразно использовать лишь при невысоких требованиях по безопасности к открытой подсети.
Если же к безопасности открытых серверов предъявляются повышенные требования, тогда необходимо использовать схему с раздельной защитой закрытой и открытой подсетей.
Схемы с раздельной защитой закрытой и открытой подсетей. Такая схема может быть построена на основе одного МЭ с тремя сетевыми интерфейсами (рис. 8.14) или на основе двухМЭ с двумя сетевыми интерфейсами (рис. 8.15). В обоих случаях доступ к открытой и закрытой подсетям локальной сети возможен только через межсетевой экран. При этом доступ к открытой подсети не позволяет осуществить доступ к закрытой подсети.
Из этих двух схем большую степень безопасности межсетевых взаимодействий обеспечивает схема с двумя МЭ, каждый из которых образует отдельный эшелон защиты закрытой подсети. Защищаемая открытая подсеть здесь выступает в качестве экранирующей.
Обычно экранирующую подсеть конфигурируют таким образом, чтобы обеспечить доступ к компьютерам подсети как из потенциально враждебной внешней сети, так и из закрытой подсети локальной сети. Однако прямой обмен информационными пакетами между внешней сетью и закрытой подсетью невозможен. При атаке системы с экранирующей подсетью необходимо преодолеть по крайней мере две независимые линии защиты, что является весьма сложной задачей. Средства мониторинга состояния межсетевых экранов позволяют практически всегда обнаружить подобную попытку, и администратор системы может своевременно предпринять необходимые действия по предотвращению несанкционированного доступа.
Следует обратить внимание на то, что работа удаленных пользователей, подключаемых через коммутируемые линии связи, также должна контролироваться в соответствии с политикой безопасности, проводимой в организации. Типовое решение этой задачи - установка сервера удаленного доступа (терминального сервера), который обладает необходимыми функциональными возможностями, например терминального сервера Аппех компании Вау Хе1уог1«. Терминальный сервер является системой с несколькими асинхронными портами и одним интерфейсом локальной сети. Обмен информацией между асинхронными портами и локальной сетью осуществляется только после соответствующей аутентификации внешнего пользователя.
Подключение терминального сервера должно осуществляться таким образом, чтобы его работа выполнялась исключительно через межсетевой экран. Это позволяет достичь необходимой степени безопасности при работе удаленных пользователей с информационными ресурсами организации. Такое подключение возможно,
Рис. 8.14. Схема с раздельной защитой закрытой и открытой подсетей на основе одного МЭ
с тремя сетевыми интерфейсами
Рис. 8.15. Схема с раздельной защитой закрытой и открытой подсетей на основе двух МЭ с двумя сетевыми интерфейсами
если терминальный сервер включить в состав открытой подсети при использовании схем подключения МЭ с раздельной защитой открытой и закрытой подсетей.
Программное обеспечение терминального сервера должно предоставлять возможности администрирования и контроля сеансов связи через коммутируемые каналы. Модули управления современных терминальных серверов имеют достаточно развитые возможности обеспечения безопасности самого сервера и разграничения доступа клиентов и выполняют следующие функции:
О использование локального пароля на доступ к последовательному порту, на удаленный доступ по протоколу РРР, а также для доступа к административной консоли;
О использование запроса на аутентификацию с какой-либо машины локальной сети; О использование внешних средств аутентификации;
Роутер (router) в переводе с английского дословно означает маршрутизатор. Но, как всегда, дословный перевод не всегда отражает реальность. Модели «роутеров для доступа в Интернет», предлагаемые большинством вендоров, по факту представляют собой межсетевой экран, сочетающий и простые функции вроде фильтрации по MAC, и «продвинутые» анализаторы, например, контроль приложений (Application Patrol).
Так что же такое маршрутизатор, межсетевой экран, и где их можно встретить?
Маршрутизатор
В самом названии маршрутизатор заключена расшифровка его предназначения.
В классическом (академическом) представлении маршрутизатор нужен для трансляции пакетов между раздельными IP сетями. Это решает вопрос объединения разрозненных LAN и предотвращения роста широковещательного трафика в одной большой локальной сети разделением её на сегменты. Разумеется, для правильного перенаправления трафика необходимо знать, куда его отправлять, то есть выстраивать маршрут (автор благодарит «Капитана Очевидность» за точную формулировку).
Современные модели маршрутизаторов работают выше 3-го уровня модели OSI. Помимо трансляции IP пакетов из одной сети в другую, эти устройства часто имеют функции управления трафиком, например, возможность закрывать/открывать TCP или UPD порты, выполнять функции Port Address Translation, PAT (иногда называется Destination NAT, DNAT) и так далее. Также для работы некоторых протоколов необходимо, чтобы маршрутизатор умел работать как Application-level gateway, ALG, для обеспечения работы таких протоколов как: PPTP, IPsec, RTSP, SIP, H.323, SMTP, DNS, TFTP.
Маршрутизатором может быть и старый компьютер с настроенной таблицей маршрутов, и специализированное сетевое устройство, которое только и делает, что анализирует простейшие условия вроде списков ACL и перебрасывает пакеты из одной сети в другую.
В частности, маршрутизаторы в виде отдельных устройств применяются, если требуется не только логическое (VLAN) но и физическое разделение на подсети. Например, нужно отделить сеть кампуса, где живут студенты, от университетской сети, где идут исследования.
В современных локальных сетях вместо маршрутизаторов в виде отдельных устройств часто используются коммутаторы L3, позволяющие управлять VLAN, и соответственно, отдельными подсетями.
Пример из практики. Сеть небольшого предприятия, где в качестве ядра сети использовался Cisco Catalyst 3750. Согласно требованиям безопасности, коммутаторы уровня доступа были настроены по принципу: один коммутатор — одна подсеть — один VLAN. Для удешевления проекта выбрали свичи от 3Com. Проще говоря, каждый 3Com был подключен строго в одном VLAN и в одной подсети, а пакеты между подсетями ходили через Catalyst.
С задачей маршрутизацией между VLAN вполне справится L3 коммутатор Zyxel XGS4600-32. Помимо перенаправления пакетов он обладает ещё множеством полезных функций.
Рисунок 1. Коммутатор Zyxel XGS4600-32 L3 с функциями маршрутизатора.
Межсетевой экран
Обычный набор встроенных функций МСЭ (межсетевой экран): антивирус, IDP, патруль приложений — позволяет проверять трафик вплоть до 7 уровня OSI. Помимо этого, есть и другие возможности контроля, отсутствующие в обычных маршрутизаторах.
Разумеется, многие межсетевые экраны обладают стандартным «джентльменским набором» типичного маршрутизатора. Но «сила» МСЭ определяется наличием функций по фильтрации и управлению трафиком, а также усиленном аппаратным обеспечением для реализации этих задач.
Стоит отметить, что набор возможностей фильтрации того или иного устройства МСЭ вовсе не означает: «Чем больше функций смогли «накрутить», тем «лучше» межсетевой экран». Основной ошибкой было бы при покупке делать акцент на длине перечня всевозможных «фишек», без учета конкретного предназначения, конструктивных особенностей, параметров быстродействия и других факторов. Все должно быть строго дозировано и сбалансировано без перекосов в сторону «сверхбезопасности» или «суперэкономии».
И тут администратор сети сталкивается с первой проблемой. Если для SOHO сегмента не так уж сложно сформулировать типичный набор требований, то для корпоративного сегмента это требует дополнительной подготовки. Для лучшего удовлетворения нужд бизнеса существуют различные устройства — каждое под свою нишу. Например, для VPN Gateway набор функций по обеспечению безопасности, разумеется, играет большую роль, но основной задачей является все же создание и поддержание работоспособности VPN каналов. В качестве примера такого устройства можно привести ZyWALL VPN1000
Рисунок 2. Межсетевой экран VPN — ZyWALL VPN1000
А вот для Secure Gateway всевозможные фильтры, «Песочница» и другие виды проверок стоят на первом месте. В качестве примера такого специализированного устройства для повышения уровня защиты можно привести ZyWALL ATP800.
Рисунок 3. Межсетевой экран для обеспечения безопасности — ZyWALL ATP800.
Как видно из рисунков, внешний вид подобных устройств может быть весьма схож, а всё отличие заключается внутри — программном и аппаратном обеспечении. Более подробно об можно прочитать в статье «Для тех, кто выбирает межсетевой экран».
Механизмы защиты межсетевых экранов
Теперь, когда мы обсудили отличия между маршрутизаторами и сетевыми экранами, а также между различными типами межсетевых экранов — самое время поговорить о методах поддержания требуемого уровня безопасности. Какие этапы защиты, через которые проходит трафик, помогают поддерживать сеть в безопасности?
Firewall
Данный сервис перешел «по наследству» от маршрутизаторов. При помощи файрвола отслеживаются и блокируются нежелательные адреса, закрываются порты, анализируются другие признаки пакетов, по которым можно «вычислить» нежелательный трафик. На этом этапе происходит отражения большого числа угроз, таких как попытки соединиться с общедоступными TCP портами, бомбардировка пакетами с целью выведения системы из строя и так далее.
IP Reputation
Это облачное расширение функций обычного файрвола и безусловный шаг вперед. Дело в том, что в обычной ситуации система ничего не знает об источнике или приемнике (в зависимости от типа трафика). Если это явно не прописано в правилах файрвола, например, «Запретить», то трафик будет проходить, пусть даже от самых вредоносных сайтов. Функция IP Reputation позволяет проверить, является ли IP-адрес подозрительным или «засветился» в той или иной базе данных по проверке репутации. Если со стороны базы данных поступили сведения о плохой репутации IP адреса, то появляется возможность для маневра: оставить прохождение трафика без изменений, запретить полностью или разрешить при определенном условии.
Проверка происходит быстро, потому что отправляется только сам IP адрес и короткий запрос, ответ также приходит в крайне лаконичной форме, что не оказывает сильного влияние на объем трафика.
SSL Inspection
Позволяет проверять трафик, зашифрованный по протоколу SSL для того, чтобы остальные профили МСЭ могли раскрывать пакеты и работать с SSL трафиком как с незашифрованным. Когда информационный поток защищен от внешнего доступа при помощи шифрования, то и проверить его не представляется возможным — для этого тоже нужен доступ к его содержанию. Поэтому на этапе проверки трафик расшифровывается, прочитывается системой контроля и повторно шифруется, после чего передается в пункт назначения.
С одной стороны, внешне это напоминает атаку man-in-middle, что выглядит как нарушение системы защиты. С другой стороны, SSL шифрование защищает не только полезную информацию, но и всевозможные нарушения корпоративной безопасности. Поэтому применение SSL Inspection на этапе санкционированной проверки выглядит весьма оправданным.
Intrusion Detection/Prevention Service
Системы обнаружения вторжений Intrusion Detection System, IDS, давно нашли применение в межсетевых экранах. Данная функция предназначена для сетевого мониторинга, анализа и оповещения в случае обнаружения сетевой атаки. Механизм IDS основывается на определённом шаблоне и оповещает при обнаружении подозрительного трафика. К сожалению, IDS сами по себе не в состоянии остановить атаку, они лишь оповещают о ней.
А вот система предотвращения вторжений — Intrusion Prevention Service, IPS, является определенным шагом вперед и, помимо обнаружения нежелательного трафика, способна сама блокировать или отбрасывать нежелательные пакеты. Тем самым предотвращая попытки взлома или просто нежелательные события.
Для обеспечения работы IPS — используются специальные сигнатуры, благодаря которым можно распознавать нежелательный трафик и защищать сеть как от широко известных, так и от неизвестных атак. Помимо предотвращения вторжения и распространение вредоносного кода, IPS позволяет снизить нагрузку на сеть, блокируя опасный или попросту бесполезный трафик. База данных IPS включает информацию о глобальных атаках и вторжениях, собранную на публичных или специализированных закрытых сайтах, что позволяет обнаружить сетевые атаки при минимальном количестве ошибочных срабатываний.
Antimalware
Исторически под этим названием понимают классический антивирус, но в последнее время область применения данного механизма защиты значительно расширена и включает в себя не только защиту от вирусов, но и от другого вредоносного кода, включая фишинговые приложения, небезопасные скрипты и так далее.
В качестве «движка» (engine) в межсетевых шлюзах Zyxel используются локальные сигнатуры от BitDefender и облачные от McAfee.
Sandbox
Традиционно из самых больших проблем сетевой безопасности является постоянное распространение новых вирусов.
Выше уже описывались другие средства защиты: IPS и антивирус (antimalware) для защиты сетей. Однако эти две функции не всегда эффективны против новых модификаций вредоносного кода. Зачастую приходится сталкиваться с мнением о том, что антивирус «на потоке» способен определить только очень простые и широко известные угрозы, в первую очередь полагаясь на записи в антивирусных базах. Для более серьезных случаев требуется поведенческий анализ. Грубо говоря, нужно создать для предполагаемого вредоносного кода комфортные условия и попробовать его запустить.
Как раз «Песочница» (Sandbox) — это и есть виртуализированная, изолированная и безопасная среда, в которой запускаются неизвестные файлы для анализа их поведения.
«Песочница» работает следующим образом:
Когда файл проходит через вирусную программу, она сначала проверяет базу данных защиты от вредоносных программ.
Если файл неизвестен, его копия перенаправляется в Sandbox.
Эта служба проверяет файл и определяет, является ли он нормальным, подозрительным или опасным.
По результатам проверки «Песочница», размещенная в облаке, получит новую информацию об этом новом элементе и сохранить её в своей базе данных для аналогичных случаев. Таким образом, облачная архитектура не только делает его общедоступным, но и позволяет постоянно обновлять в режиме реального времени.
В свою очередь, база данных защиты от вредоносных программ регулярно синхронизируется с «Песочницей», чтобы поддерживать ее в актуальном состоянии и блокировать новые вредоносные вирусы в режиме реального времени.
E-mail security
Данная служба включает в себя антиспам и проверку на фишинговые вложения.
В качестве инструментов в настройках "Anti-Spam" доступно:
- «белый список» — "White List", чтобы определять и пропускать полезную почту от доваренных отправителей.
- «черный список» — "Black List" для выявления и обработки спама;
- также возможна проверка электронной почты на наличие в «черных списках» DNS (DNSBL),
Примечание. DNSBL — это базы данных, где указываются домены и IP адреса подозрительных серверов. Существует большое число серверов DNSBL которые отслеживают IP адреса почтовых серверов, имеющих репутацию источников спама и заносят их в свои базы данных.
Content Filtering
Говоря про контентную фильтрацию, в данном случае мы будем иметь в виду ZYXEL Content Filtering 2.0, который служит для управления и контроля доступа пользователей к сети.
Механизм наблюдения Zyxel Content Filtering 2.0 изучает особенности поведения пользователей в Интернет. Это позволяет оперативно сканировать принимаемую информацию из глобальной сети.
Проще говоря, данная система повышает уровень безопасности, блокируя доступ к опасным и подозрительным веб-сайтам и предотвращает загрузку с них вредоносного кода. В целях стандартизации и унификации настроек можно применять политики, например, для точно настраиваемой блокировки и фильтрации.
Если говорить об изменениях (собственно, почему «2.0»), то в новой версии Content Filtering были внесены несколько существенных изменений, в частности:
Переход на Content Filtering 2.0 происходит через загрузку соответствующего микрокода.
Отдельно стоит сказать о пополнении информационной базы. За счет обработки более 17 миллиардов транзакций каждый день, выполняемых 600 миллионами пользователей из 200 стран, пополняется глобальная база данных, и с каждым новым «знанием» повышается степень защиты системы. Стоит также отметить, что >99% контролируемого контента уже содержится в локальном кэше, что позволяет быстрее обрабатывать поступающие запросы.
Таблица 1. Security Service Content Filtering 2.0 — Схема применения.
Application Patrol
Данная служба работает на 7 уровне OSI и проверяет популярные сетевые приложения, включая социальные сети, игры, бизнес-приложения совместно с моделью их поведения.
В Zyxel Application Patrol применяется модуль Deep Packet Inspection (DPI) для контроля использование сети. Данный модуль распознает 19 категорий приложений, что позволяет адаптировать протоколы управления с учетом конкретных приложений и их поведения.
Среди механизмов защиты можно отметить: назначение приоритетов для приложений, контроль полосы пропускания для каждого приложения, блокировка нежелательных приложений. Данные меры не только повышают уровень безопасности, но и улучшают работу сети в целом, например, через запрет нецелевого использования полосы пропускания.
Основой для идентификации приложений служат специальные сигнатуры, полученные благодаря анализу данных, модели поведения и так далее. Собранная информация хранится в база данных Zyxel и содержит данные о большом количестве различных приложений, включая особенности их поведения, генерируемый трафик и так далее. База данных постоянно обновляется.
В итоге
Мы только поверхностно пробежали по небольшой части функций, которые отличают маршрутизатор от межсетевого экрана. Тем не менее, очевидно, что эти устройства имеют разное предназначение, функции, схемы использования. Эти особенности находят свое отражение как при проектировании новых сетей, так и при эксплуатации уже существующих.
Читайте также: