Основные принципы компьютерной визуализации стандарт opengl
Технология OpenGL
OpenGL (Open Graphics Library — открытая графическая библиотека, графическое API) — спецификация, определяющая независимый от языка программирования платформонезависимый программный интерфейс для написания приложений, использующих двумерную и трёхмерную компьютерную графику.
Включает более 250 функций для рисования сложных трёхмерных сцен из простых примитивов. Используется при создании компьютерных игр, САПР, виртуальной реальности, визуализации в научных исследованиях. На платформе Windows конкурирует с Direct3D.
На базовом уровне, OpenGL — это просто спецификация, то есть документ, описывающий набор функций и их точное поведение. Производители оборудования на основе этой спецификации создают реализации — библиотеки функций, соответствующих набору функций спецификации. Реализация использует возможности оборудования там, где это возможно. Если аппаратура не позволяет реализовать какую-либо возможность, она должна быть эмулирована программно. Производители должны пройти специфические тесты (conformance tests — тесты на соответствие) прежде чем реализация будет классифицирована как OpenGL реализация. Таким образом, разработчикам программного обеспечения достаточно научиться использовать функции, описанные в спецификации, оставив эффективную реализацию последних разработчикам аппаратного обеспечения.
Эффективные реализации OpenGL существуют для Windows, Unix-платформ, PlayStation 3 и Mac OS. Эти реализации обычно предоставляются изготовителями видеоадаптеров и активно используют возможности последних. Существуют также чисто программные реализации спецификации OpenGL, одной из которых является библиотека Mesa. Из лицензионных соображений Mesa является “неофициальной” реализацией OpenGL, хотя полностью с ней совместима на уровне кода.
Спецификация OpenGL пересматривается Консорциумом ARB (Architecture Review Board), который был сформирован в 1992 году. Консорциум состоит из компаний, заинтересованных в создании широко распространённого и доступного API. Согласно официальному сайту OpenGL, членами ARB с решающим голосом на ноябрь 2004 года являются производители профессиональных графических аппаратных средств SGI, 3Dlabs, Matrox и Evans & Sutherland (военные приложения), производители потребительских графических аппаратных средств ATI и NVIDIA, производитель процессоров Intel, и изготовители компьютеров и компьютерного оборудования IBM, Apple, Dell, Hewlett-Packard и Sun Microsystems, а также один из лидеров компьютерной игровой индустрии id Software. Microsoft, один из основоположников Консорциума, покинула его в марте 2003 года. Помимо постоянных членов, каждый год приглашается большое количество других компаний, становящихся частью OpenGL ARB в течение одного года. Такое большое число компаний, вовлеченных в разнообразный круг интересов, позволило OpenGL стать прикладным интерфейсом широкого назначения с большим количеством возможностей.
Курт Экли (Kurt Akeley) и Марк Сигал (Mark Segal) являются авторами оригинальной спецификации OpenGL. Крис Фрэзиер (Chris Frazier) редактировал версию 1.1. Йон Лич (Jon Leech) редактировал версии с 1.2 по версию 2.0.
Архитектура OpenGL
OpenGL ориентируется на следующие две задачи:
- Скрыть сложности адаптации различных 3D-ускорителей, предоставляя разработчику единый API.
- Скрыть различия в возможностях аппаратных платформ, требуя реализации недостающей функциональности с помощью программной эмуляции.
Основным принципом работы OpenGL является получение наборов векторных графических примитивов в виде точек, линий и многоугольников с последующей математической обработкой полученных данных и построением растровой картинки на экране и/или в памяти. Векторные трансформации и растеризация выполняются графическим конвейером (graphics pip e line), который по сути представляет собой дискретный автомат. Абсолютное большинство команд OpenGL попадают в одну из двух групп: либо они добавляют графические примитивы на вход в конвейер, либо конфигурируют конвейер на различное исполнение трансформаций .
OpenGL является низкоуровневым процедурным API, что вынуждает программиста диктовать точную последовательность шагов, чтобы построить результирующую растровую графику (императивный подход). Это является основным отличием от дескрипторных подходов, когда вся сцена передается в виде структуры данных (чаще всего дерева), которое обрабатывается и строится на экране. С одной стороны, императивный подход требует от программиста глубокого знания законов трёхмерной графики и математических моделей, с другой стороны — даёт свободу внедрения различных инноваций.
Расширения OpenGL
Стандарт OpenGL, с появлением новых технологий, позволяет отдельным производителям добавлять в библиотеку функциональность через механизм расширений. Расширения распространяются с помощью двух составляющих: заголовочный файл, в котором находятся прототипы новых функций и констант, а также драйвер устройства, поставляемого разработчиком. Каждый производитель имеет аббревиатуру, которая используется при именовании его новых функций и констант. Например, компания NVIDIA имеет аббревиатуру NV, которая используется при именовании её новых функций, как, например, glCombinerParameterfvNV(), а также констант, GL_NORMAL_MAP_NV. Может случиться так, что определённое расширение могут реализовать несколько производителей. В этом случае используется аббревиатура EXT, например, glDeleteRenderbuffersEXT. В случае же, когда расширение одобряется Консорциумом ARB, оно приобретает аббревиатуру ARB и становится стандартным расширением. Обычно, расширения, одобренные Консорциумом ARB, включаются в одну из последующих спецификаций OpenGL.
Дополнительные библиотеки OpenGL
Библиотеки GLEW (The OpenGL Extension Wrangler Library) и GLEE (The OpenGL Easy Extension library) созданы для облегчения работы с расширениями и различными версиями OpenGL. Это особенно актуально для программистов в Windows, так как заголовочные и библиотечные файлы, поставляемые с Visual Studio, находятся на уровне версии OpenGL 1.1.
OpenGL имеет только набор геометрических примитивов (точки, линии, многоугольники) из которых создаются все трёхмерные объекты. Порой подобный уровень детализации не всегда удобен при создании сцен. Поэтому поверх OpenGL были созданы более высокоуровневые библиотеки, такие как Open Inventor и VTK. Данные библиотеки позволяют оперировать более сложными трёхмерными объектами, что облегчает и ускоряет создание трёхмерной сцены.
GLM (OpenGL Mathematics) — вспомогательная библиотека, предоставляющая программистам на C++ классы и функции для выполнения математических операций. Библиотека может использоваться при создании 3D-программ с использованием OpenGL. Одной из характеристик GLM является то, что реализация основана на спецификации GLSL. Исходный код GLM использует лицензию MIT.
Независимость от языка программирования
История развития OpenGL
Компьютерная графика нашла широкое распространение и применение в повседневной жизни. Учёные используют компьютерную графику для анализа результатов моделирования. Инженеры и архитекторы используют трёхмерную графику для создания виртуальных моделей. Кинематографисты создают спецэффекты или полностью анимированные фильмы (“Шрек”, “История игрушек” и др.). В последние годы широкое распространение получили также компьютерные игры, максимально использующие трёхмерную графику для создания виртуальных миров.
OpenGL 1.0
Silicon Graphics Incorporated (SGI) специализировалась на создании высокотехнологического графического оборудования и программных средств. Являясь в то время лидером в трёхмерной графике, SGI видела проблемы и барьеры в росте рынка. Поэтому было принято решение стандартизировать метод доступа к графической аппаратуре на уровне программного интерфейса.
Таким образом появился программный интерфейс OpenGL, который стандартизирует доступ к графической аппаратуре путём смещения ответственности за создание аппаратного драйвера на производителя графического устройства. Это позволило разработчикам программного обеспечения использовать более высокий уровень абстракции от графического оборудования, что значительно ускорило создание новых программных продуктов и снизило на них затраты.
В 1992 году компания SGI возглавила OpenGL ARB — группу компаний по разработке спецификации OpenGL. OpenGL эволюционировал из 3D-интерфейса SGI — IRIS GL. Одним из ограничений IRIS GL было то, что он позволял использовать только возможности, поддерживаемые оборудованием; если возможность не была реализована аппаратно, приложение не могло её использовать. OpenGL преодолевает эту проблему за счёт программной реализации возможностей, не предоставляемых аппаратно, что позволяет приложениям использовать этот интерфейс на относительно маломощных системах.
В 1995 году была выпущена библиотека Direct3D от Microsoft. Вскоре Microsoft, SGI и Hewlett-Packard начали проект под названием Fahrenheit, который предусматривал создание более универсального программного интерфейса на основе Direct3D и OpenGL. Идея казалась достаточно обещающей, призванной навести порядок в области интерактивной трёхмерной графики, однако, в результате финансовых трудностей в SGI и отсутствия должной индустриальной поддержки, проект был закрыт.
OpenGL 2.0
В сентябре 2001 года 3DLabs раскрыла свое видение OpenGL 2.0. Говорили, что по сравнению с DirectX главной проблемой OpenGL является Консорциум (который и должен заниматься развитием OpenGL), в который входит большое количество компаний с различными интересами, что приводит к длительному периоду принятия новой версии спецификации. OpenGL версии 2.0 была представлена 3Dlabs в ответ на беспокойство относительно медленного и нечёткого направления развития OpenGL. 3Dlabs предложила ряд существенных дополнений к стандарту, наиболее значимым из которого было добавление к ядру OpenGL языка обработки полутонов GLSL (OpenGL Shading Language). Это позволяет программисту заменить фиксированный конвейер OpenGL небольшими программами на специальном языке для создания различных эффектов, таких, как bump mapping, normal mapping, parallax mapping, HDR и т. д.
Однако, ещё до введения в стандарт OpenGL языка GLSL существовала возможность разрабатывать спецэффекты на языках ассемблера (расширения vertex_program, fragment_program) и Cg (NVidia C for Graphics). Многие предложенные возможности пока отсутствуют в версии OpenGL 2.0, хотя некоторые из них реализованы многими производителями в виде расширений.
OpenGL 3.0
11 августа 2008 года Khronos Group представила новую версию спецификации OpenGL.
Поддерживают видеокарты: Radeon HD серии; GeForce 8, 9, GTX 100, GTX 200, GTX 300 и GTX 400 серий.
OpenGL 3.1
24 марта 2009 года Khronos Group анонсировала OpenGL 3.1. В новой версии произведена чистка компонентов, которые были объявлены устаревшими, но оставались в OpenGL 3.0 для сглаживания перехода на новую версию API (устаревшие компоненты возможно в дальнейшем использовать через GL_ARB_compatibility extension).
OpenGL 3.2
3 августа 2009 года Khronos Group анонсировала OpenGL 3.2. Новая версия продолжает развитие стандарта OpenGL, чтобы дать разработчикам графики кроссплатформенный доступ к передовой функциональности GPU.
Поддерживают видеокарты: Radeon серии HD; GeForce 8000, 9000, GTX серий 200 и 400.
Знакомство с OpenGL нужно начать с того, что OpenGL — это спецификация. Т.е. OpenGL лишь определяет набор обязательных возможностей. Реализация же зависит от конкретной платформы.
OpenGL является кроссплатформенным, независимым от языка программирования API для работы с графикой. OpenGL — низкоуровневый API, поэтому для работы с ним неплохо иметь некоторое представление о графике в целом и знать основы линейной алгебры.
Именования
Графика
- GL_POINTS — каждая вершина задает точку
- GL_LINES — каждая отдельная пара вершин задает линию
- GL_LINE_STRIP — каждая пара вершин задает линию (т.е. конец предыдущей линии является началом следующей)
- GL_LINE_LOOP — аналогично предыдущему за исключением того, что последняя вершина соединяется с первой и получается замкнутая фигура
- GL_TRIANGLES — каждая отдельная тройка вершин задает треугольник
- GL_TRIANGLE_STRIP — каждая следующая вершина задает треугольник вместе с двумя предыдущими (получается лента из треугольников)
- GL_TRIANGLE_FAN — каждый треугольник задается первой вершиной и последующими парами (т.е. треугольники строятся вокруг первой вершины, образуя нечто похожее на диафрагму)
- GL_QUADS — каждые четыре вершины образуют четырехугольник
- GL_QUAD_STRIP — каждая следующая пара вершин образует четырехугольник вместе с парой предыдущих
- GL_POLYGON — задает многоугольник с количеством углов равным количеству заданных вершин
- glBegin ( GL_QUADS ) ;
- glColor3f ( 1.0 , 1.0 , 1.0 ) ;
- glVertex2i ( 250 , 450 ) ;
- glColor3f ( 0.0 , 0.0 , 1.0 ) ;
- glVertex2i ( 250 , 150 ) ;
- glColor3f ( 0.0 , 1.0 , 0.0 ) ;
- glVertex2i ( 550 , 150 ) ;
- glColor3f ( 1.0 , 0.0 , 0.0 ) ;
- glVertex2i ( 550 , 450 ) ;
- glEnd ( ) ;
Основы программы на OpenGL
- GLUT_RGBA — включает четырехкомпонентный цвет (используется по умолчанию)
- GLUT_RGB — то же, что и GLUT_RGBA
- GLUT_INDEX — включает индексированный цвет
- GLUT_DOUBLE — включает двойной экранный буфер
- GLUT_SINGLE — включает одиночный экранный буфер (по умолчанию)
- GLUT_DEPTH — включает Z-буфер (буфер глубины)
- GLUT_STENCIL — включает трафаретный буфер
- GLUT_ACCUM — включает буфер накопления
- GLUT_ALPHA — включает альфа-смешивание (прозрачность)
- GLUT_MULTISAMPLE — включает мультисемплинг (сглаживание)
- GLUT_STEREO — включает стерео-изображение
- void glutDisplayFunc (void (*func) (void)) — задает функцию рисования изображения
- void glutReshapeFunc (void (*func) (int width, int height)) — задает функцию обработки изменения размеров окна
- void glutVisibilityFunc (void (*func)(int state)) — задает функцию обработки изменения состояния видимости окна
- void glutKeyboardFunc (void (*func)(unsigned char key, int x, int y)) — задает функцию обработки нажатия клавиш клавиатуры (только тех, что генерируют ascii-символы)
- void glutSpecialFunc (void (*func)(int key, int x, int y)) — задает функцию обработки нажатия клавиш клавиатуры (тех, что не генерируют ascii-символы)
- void glutIdleFunc (void (*func) (void)) — задает функцию, вызываемую при отсутствии других событий
- void glutMouseFunc (void (*func) (int button, int state, int x, int y)) — задает функцию, обрабатывающую команды мыши
- void glutMotionFunc (void (*func)(int x, int y)) — задает функцию, обрабатывающую движение курсора мыши, когда зажата какая-либо кнопка мыши
- void glutPassiveMotionFunc (void (*func)(int x, int y)) — задает функцию, обрабатывающую движение курсора мыши, когда не зажато ни одной кнопки мыши
- void glutEntryFunc (void (*func)(int state)) — задает функцию, обрабатывающую движение курсора за пределы окна и его возвращение
- void glutTimerFunc (unsigned int msecs, void (*func)(int value), value) — задает функцию, вызываемую по таймеру
Первая программа
Теперь мы знаем основы работы с OpenGL. Можно написать простую программу для закрепления знаний.
Начнем с того, что нужно подключить заголовочный файл GLUT:
Теперь мы уже знаем, что писать в main. Зарегистрируем два обработчика: для рисования содержимого окна и обработки изменения его размеров. Эти два обработчика по сути используются в любой программе, использующей OpenGL и GLUT.
Теперь надо написать функцию-обработчик изменений размеров окна. Зададим область вывода изображения размером со все окно при помощи команды glViewport (х, у, ширина, высота). Затем загрузим матрицу проекции glMatrixMode (GL_PROJECTION), заменим ее единичной glLoadIdentity () и установим ортогональную проекцию. И наконец загрузим модельно-видовую матрицу glMatrixMode (GL_MODELVIEW) и заменим ее единичной.
В итоге получим:
- GL_COLOR_BUFFER_BIT — для очистки буфера цвета
- GL_DEPTH_BUFFER_BIT — для очистки буфера глубины
- GL_ACCUM_BUFFER_BIT — для очистки буфера накопления
- GL_STENCIL_BUFFER_BIT — для очистки трафаретного буфера
Все! Можно компилировать. Должно получиться что-то вроде этого:
Весь код целиком (для кто не осилил статью).
В принципе ничего сложного в этом нет, по крайней мере если вы уже сталкивались с графикой до этого.
Сейчас трёхмерные изображения можно увидеть везде, начиная от компьютерных игр и заканчивая системами моделлирования в реальном времени. Раньше, когда трёхмерная графика существовала только на суперкомпьютерах, не существовало единого стандарта в области графики. Все программы писались с "нуля" или с использованием накопленного опыта, но в каждой программе реализовывались свои методы для отображения графической информации. С приходом мощных процессоров и графических ускорителей трёхмерная графика стала реальностью для персональных компьютеров. Но в тоже время производители программного обеспечения столкнулись с серьёзной проблемой - это отсутствие каких-либо стандартов, которые позволяли писать программы, независимые от оборудования и операционной системы. Одним из первых таких стандартов, существующий и по сей день является OpenGL.
OpenGL - это графический стандарт в области компьютерной графики. На данный момент он является одним из самых популярных графических стандартов во всём мире. Ещё в 1982 г. в Стенфордском университете была разработана концепция графической машины, на основе которой фирма Silicon Graphics в своей рабочей станции Silicon IRIS реализовала конвейер рендеринга. Таким образом была разработана графическая библиотека IRIS GL. На основе библиотеки IRIS GL, в 1992 году был разработан и утверждён графический стандарт OpenGL. Разработчики OpenGL - это крупнейшие фирмы разработчики как оборудования так и программного обеспечения: Silicon Graphics, Inc., Microsoft, IBM Corporation, Sun Microsystems, Inc., Digital Equipment Corporation (DEC), Evans & Sutherland, Hewlett-Packard Corporation, Intel Corporation и Intergraph Corporation.
OpenGL переводится как Открытая Графическая Библиотека (Open Graphics Library), это означает, что OpenGL - это открытый и мобильный стандарт. Программы, написанные с помощью OpenGL можно переносить практически на любые платформы, получая при этом одинаковый результат, будь это графическая станция или суперкомпьютер. OpenGL освобождает программиста от написания программ для конкретного оборудования. Если устройство поддерживает какую-то функцию, то эта функция выполняется аппаратно, если нет, то библиотека выполняет её программно.
Что же представляет из себя OpenGL? С точки зрения программиста OpenGL - это программный интерфейс для графических устройств, таких как графические ускорители. Он включает в себя около 150 различных команд, с помощью которых программист может определять различные объекты и производить рендеринг. Говоря более простым языком, вы определяете объекты, задаёте их местоположение в трёхмерном пространстве, определяете другие параметры (поворот, масштаб, . ), задаёте свойства объектов (цвет, текстура, материал, . ), положение наблюдателя, а библиотека OpenGL позаботится о том чтобы отобразить всё это на экране. Поэтому можно сказать, что библиотека OpenGL является только воспроизводящей (Rendering), и занимается только отображением 3Д обьектов, она не работает с устройствами ввода (клавиатуры, мыши). Также она не поддерживает менеджер окон.
OpenGL имеет хорошо продуманную внутреннюю структуру и довольно простой процедурный интерфейс. Несмотря на это с помощью OpenGL можно создавать сложные и мощные программные комплексы, затрачивая при этом минимальное время по сравнению с другими графическими библиотеками.
В некоторых библиотеках OpenGL (например под X Windows) имеется возможность изображать результат не только на локальной машине, но также и по сети. Приложение, которое вырабатывает команды OpenGL называется клиентом, а приложение, которое получает эти команды и отображает результат - сервером. Таким образом можно строить очень мощные воспроизводящие комплексы на основе нескольких рабочих станций или серверов, соединённых сетью.
Основные возможности OpenGL.
- Геометрические и растровые примитивы. На основе геометрических и растровых примитивов строятся все объекты. Из геометрических примитивов библиотека предоставляет: точки, линии, полигоны. Из растровых: битовый массив(bitmap) и образ(image)
- Использование В-сплайнов. B-сплайны используются для рисования кривых по опорным точкам.
- Видовые и модельные преобразования. С помощью этих преобразований можно располагать обьекты в пространстве, вращать их, изменять форму, а также изменять положение камеры из которой ведётся наблюдение.
- Работа с цветом. OpenGL предоставляет программисту возможность работы с цветом в режиме RGBA (красный-зелёный-синий-альфа) или используя индексный режим, где цвет выбирается из палитры.
- Удаление невидимых линий и поверхностей. Z-буферизация.
- Двойная буферизация. OpenGL предоставляет как одинарную так и двойную буферизацию. Двойная буферизация используется для того, чтобы устранить мерцание при мультипликации, т.е. изображение каждого кадра сначала рисуется во втором(невидимом) буфере, а потом, когда кадр полностью нарисован, весь буфер отображается на экране.
- Наложение текстуры. Позволяет придавать объектам реалистичность. На объект, например шар, накладывается текстура(просто какое-то изображение), в результате чего наш объект теперь выглядит не просто как шар, а как разноцветный мячик.
- Сглаживание. Сглаживание позволяет скрыть ступенчатость, свойственную растровым дисплеям. Сглаживание изменяет интенсивность и цвет пикселей около линии, при этом линия смотрится на экране без всяких зигзагов.
- Освещение. Позволяет задавать источники света, их расположение, интенсивность, и т.д.
- Атмосферные эффекты. Например туман, дым. Всё это также позволяет придать объектам или сцене реалистичность, а также "почувствовать" глубину сцены.
- Прозрачность объектов.
- Использование списков изображений.
Дополнительные библиотеки OpenGL
Несмотря на то, что библиотека OpenGL (сокращённо GL) предоставляет практически все возможности для моделирования и воспроизведения трёхмерных сцен, некоторые из функций, которые требуются при работе с графикой, отсутствуют в стандартной библиотеке OpenGL.. Например, чтобы задать положение и направление камеры, с которой будет наблюдаться сцена, нужно самому рассчитывать модельную матрицу, а это далеко не все умеют. Поэтому для OpenGL существуют так называемые вспомогательные библиотеки.
Первая из этих библиотек называется GLU. Эта библиотека уже стала стандартом и поставляется вместе с главной библиотекой OpenGL. В состав этой библиотеки вошли более сложные функции, например для того чтобы определить цилиндр или диск потребуется всего одна команда. Также в библиотеку вошли функции для работы со сплайнами, реализованы дополнительные операции над матрицами и дополнительные виды проекций.
Следующая библиотека, также широко используемая - это GLUT. Это также независимая от платформы библиотека. Она реализует не только дополнительные функции OpenGL, но и предоставляет функции для работы с окнами, клавиатурой и мышкой. Для того чтобы работать с OpenGL в конкретной операционной системе (например Windows или X Windows), надо провести некоторую предварительную настройку и эта предварительная настройка зависит от конкретной операционной системы. С библиотекой GLUT всё намного упрощается, буквально несколькими командами можно определить окно, в котором будет работать OpenGL, определить прерывание от клавиатуры или мышки и всё это не будет зависеть от операционной системы. Библиотека предоставляет также некоторые функции, с помощью которых можно определять некоторые сложные фигуры, такие как конусы, тетраэдры, и даже можно с помощью одной команды определить чайник!
Есть ещё одна библиотека похожая на GLUT, называется она GLAUX. Это библиотека разработана фирмой Microsoft для операционной системы Windows. Она во многом схожа с библиотекой GLUT, но немного отстаёт от неё по своим возможностям. И ещё один недостаток заключается в том, что библиотека GLAUX предназначена только для Windows, в то время как GLUT поддерживает очень много операционных систем.
Существуют и другие дополнительные библиотеки для OpenGL. Все они добавляют что-то своё или ориентированы на какую-то платформу. Например существует такая библиотека как GLX - это расширение для X Windows, позволяющее использовать в X Windows OpenGL. GLX предоставляет не только локальный рендеринг, но и рендеринг по сети.
Альтернативы OpenGL
Хотя библиотека OpenGL и считается одной из лучших библиотек как для профессионального применения так и для игр, у неё существуют и конкуренты.
Одним из главных конкурентов считается Direct3D из пакета DirectX, разработанный фирмой Microsoft. Direct3D создавался исключительно для игровых приложений. Если сравнивать эти две библиотеки, то нельзя сказать, что одна из них лучше, а другая хуже, у каждой библиотеки имеются свои особенности. Например, если сравнивать их в плане переносимости программ с одной платформы на другую, то Direct3D будет работать только на Intel платформах под управлением операционной системы Windows, в то время программы, написанные с помощью OpenGL можно успешно перенести на такие платформы как Unix, Linux, SunOS, IRIX, Windows, MacOS и многие другие. А вот в плане объектно-ориентированного подхода OpenGL уступает Direct3D. OpenGL работает по принципу конечного автомата, переходя из одного состояния в другое, совершая при этом какие-то преобразования. Ещё одним преимуществом Direct3D является поддержка дешёвого оборудования, OpenGL же поддерживается не на всех графических картах, но для профессиональных ускорителей OpenGL является стандартом де-факто. И ещё, OpenGL легче чем Direct3D для изучения основ графики, OpenGL можно применять например для начального изучения трёхмерной графики.
GLide до недавнего времени тоже являлся довольно широко используемым стандартом для игровых приложений. Этот стандарт создала фирма 3Dfx и библиотека GLide создавалась исключительно для видео ускорителей фирмы 3Dfx Voodoo и была оптимизирована исключительно под них. GLide является более низкоуровневым по отношению к OpenGL и по своим командам похож на него. GLide мало чем отличается от OpenGL по своим возможностям, за исключением некоторых функций, которые специально предназначались для Voodoo ускорителей. Но к сожалению 3Dfx отказалась от этого стандарта, передав его в руки разработчиков открытого программного обеспечения.
Есть ещё несколько библиотек, среди них можно отметить Heidi. Heidi это библиотека или даже лучше сказать драйвер для визуализации трёхмерных сцен, используемый только в 3D Studio Max и только под Windows NT.
Стоит также отметить совместную разработку двух гигантов - Microsoft и Silicon Graphics в области стандартизации компьютерной графики. Этот проект носит название Fahrenheit и сейчас находится в стадии разработки.
Заключение
Заканчивая вводный рассказ про OpenGL хочется подвести некоторые итоги. Итак OpenGL представляет собой единый стандарт для разработки трёхмерных приложений, сочетает в себе такие качества как мощь и в то же время простоту. Мультиплатформенность позволяет без труда переносить программное обеспечение с одной операционной системы в другую. OpenGL предоставляет вам в распоряжение всю мощь аппаратных возможностей, которые вы имеете на данном компьютере и при написании программ вам не нужно будет беспокоится о конкретных деталях используемого оборудования, за вас побеспокоится драйвер OpenGL. OpenGL прекрасно подходит как для профессионалов так и для новичков в области компьютерной графики.
Книга рассчитана на пользователей средней и высокой квалификации, студентов и аспирантов соответствующих специальностей.
Оглавление
1. Обзор компьютерной графики 36
2. Краткий обзор графических систем 74
3. Выходные графические примитивы 142
4. Атрибуты графических примитивов 264
5. Геометрические преобразования 346
6. Двухмерное наблюдение 436
7. Трехмерное наблюдение 498
8. Представления трехмерных объектов 572
9. Методы исследования видимых поверхностей 734
10. Модели освещения и методы визуализации поверхностей 774
11. Методы интерактивного ввода и графические интерфейсы пользователя 918
12. Модели цвета и применение цвета 972
13. Компьютерная анимация 998
14. Иерархическое моделирование 1028
15. Форматы графических файлов 1042
А. Математика компьютерной графики 1067
Предметный указатель 1144
Алфавитный указатель функций OpenGL 1155
Содержание
Особенности третьего издания 30
Примеры программирования 31
Требуемые знания 32
Предлагаемые курсы 32
Обзор компьютерной графики 36
1.1. Графики и диаграммы 37
1.2. Автоматизированное проектирование 40
1.3. Виртуальная реальность 46
1.4. Визуализация данных 48
1.6. Компьютерное искусство 60
Поиск
Програмирование с использованием OpenGL
Последние публикации
Организация рабочего пространства – проблема, актуальная для любого офиса или конторы.
Цифровая техника настолько плотно прижилась в доме каждого из нас, что порой с трудом вспоминаются те времена, когда обходились без видеокамер, фотоаппаратов, мобильных телефонов или планшетов
Если каких-то десять лет назад посмотреть любимый фильм можно было только по телевизору или в кинотеатре, то сегодня индустрия досуга развита куда больше и уже нет необходимости следить за программой телепередач, достаточно иметь интернет
Читайте также: