Опишите принципы компьютерного моделирования
Что называется моделью? Для чего необходима модель? Какие бывают компьютерные модели? Что такое вычислительный эксперимент?
Моделью называется объект , который заменяет реальный предмет или явление для изучения его свойств . Модель называют инструментом познания объекта .
Известно , что , правильно построенная модель информативнее и доступнее при изучении свойств , чем реальный объект . Существует несколько требований к модели , после выполнения которых модель можно считать информативной . К ним относятся :
наглядность и видимость основных свойств и построения ;
доступность ее для исследования или воспроизведения ;
простота исследования , воспроизведения ;
сохранение информации , содержащейся в оригинале и способность получение новой информации .
Для того , чтобы результаты моделирования можно было использовать при работе с реальным объектом , модель должна быть адекватной , то есть свойства модели должны совпадать со свойствами реального объекта . Смысл замены реального объекта для исследования его моделью в том , что исследовать модель дешевле и проще , к тому же в некоторых случаях безопаснее .
Модель отражает наиболее значимые свойства объекта , оставляя без внимания второстепенными .
К основному предназначению моделирования можно отнести изучение поведения сложных систем физических процессов и явлений . Некоторые объекты и явления не могут быть изучены естественным образом ввиду различных факторов . В других случаях , исследования компьютерных моделей могут предшествовать реальным экспериментам для оценки необходимых ресурсов .
Естественно , модель любого реального явления или объекта недостаточно точна , нежели само явление или объект , но хорошо построенная модель способна отобразить все свойства и нюансы поведения системы в целом . Благодаря отображению всех характеристик объекта разом .
Модель способна научить надлежащим образом управлять реальным объектом путем проб и ошибок . Использовать для этой цели реальный объект бывает невозможно либо рискованно и неоправданно .
Итак , модель необходима для :
Модели можно разделить на вербальные , математические и компьютерные . Вербальные модели представляют собой утверждения , записанные на естественном или формализованном языке , которые описывают изучаемый объект . Математические модели представляют собой совокупность математических операторов и действий с ними , часто это есть система уравнений . Компьютерная модель это программа или их совокупность , которая благодаря математическим преобразованиям имитирует поведение изучаемой системы .
Одним из эффективных способов изучения явлений является научный эксперимент, то есть воспроизведение изучаемого явления в контролируемых условиях, которыми можно управлять. Исследуемый объект часто заменяют компьютерной моделью ввиду большей удобности и экономичности. Благодаря распространению мощных ЭВМ и информационных технологий в настоящее время компьютерное моделирование можно назвать самым результативным методом исследования физических, технических и других систем. Компьютерные модели позволяют выявить основные условия, которые определяют свойства изучаемых явлений и объектов, изучить обратную связь системы на изменяющиеся условия.
Компьютерная модель – это отдельная программа либо программный комплекс, которые позволяют при помощи вычислений и графического отображения результатов воспроизводить реальные объекты и процессы при воздействии на них различных факторов. Такие модели еще называют имитационными.
Компьютерное моделирование – метод решения задачи анализа или синтеза сложной системы на основе изучения ее компьютерной модели. Смысл такого моделирования состоит в получении количественных и качественных результатов по созданной модели, что позволяет изучить неизвестные ранее свойства системы. Компьютерная модель должна отображать максимальное количество взаимосвязей и характеристик реального объекта, существующие ограничения. Модель следует строить универсальной, чтобы использовать ее для описания подобных объектов; простой, чтобы обойтись разумными тратами на исследование.
Компьютерная модель также является отличным наглядным и обучающим пособием для учащихся. При использовании компьютерной модели в качестве обучающего механизма существуют возможности:
- рассмотреть сложные явления и процессы на доступном уровне;
- сделать акцент на главных свойствах системы благодаря гибкой форме ее представления и наличию эффектов мультимедиа;
- наблюдать за процессом в динамике, учитывая все его изменения;
- представлять работу системы в наглядном виде: графики, схемы, диаграммы;
- предпринимать действия невозможные в реальности из-за пространственно-временных рамок или опасения за безопасность модели и окружающей среды.
Виды компьютерных моделей.
Для начала определимся, каким может быть компьютерное моделирование.
- Физическое моделирование – моделирование, при котором создается целая установка для проведения экспериментов либо отдельный тренажер, например, для тренировки управления самолетом. Такая модель принимает внешние сигналы, осуществляет необходимые математические операции и выдает соответствующие сигналы для управления моделью.
- Численное моделирование – решение системы уравнений математическими методами, проведение вычислительного эксперимента на основе входных параметров системы и внешних воздействий на нее. Примером может служить моделирование любых природных и искусственных процессов.
- Суть имитационного моделирования в создании программы, которая будет имитировать поведение сложной системы. Такая имитация основана на формальном описании логики существования системы, при котором учитываются взаимодействия всех ее составляющих. Примерами являются исследования биологических, физических и других систем, а также создание игр, обучающих программ.
- Информационное моделирование – создание информационной модели, то есть объединенных вместе данных, классифицированных по определенным признакам, определяющих суть исследуемого объекта. Информационной моделью являются таблицы, графики, анимации, диаграммы, карты.
- Моделирование знаний, к которому относится создание систем искусственного интеллекта. За основу таких моделей берутся знания какой-либо области, состоящие из данных и правил. Примером служат экспертные системы, логические игры, программы для роботов, создания эффектов виртуальной реальности и прочее.
Исходя из всего вышеперечисленного, компьютерные модели можно разделить на:
- дискриптивные модели, описывающие исследуемый объект и факторы, влияющие на изменения в его поведении.
- оптимизационные модели помогают определить наиболее подходящий способ взаимодействия со сложной системой, управления ею.
- прогностические модели предсказывают состояние объекта в конкретные моменты в будущем.
- учебные модели, используемые для наглядного обучения обучающихся, их тестирования.
- игровые модели создают несуществующие ситуации, имитирующие реальность, играют в логические игры.
Под компьютерным моделированием изначально подразумевалось только имитационное моделирование, однако, не трудно заметить, что использование компьютера для других целей может значительно помочь для решения поставленных задач. Например, построение современных математических моделей по входным экспериментальным данным невозможно или труднодостижимо без использования компьютера.
Первые задач, решаемые с помощью компьютерного моделирования, были связаны с физикой и представляли собой в основном сложные нелинейные задачи физики с помощью итерационных схем и по сути являлось математическим моделированием. Хорошие результаты в моделировании в области физики распространили использование этого метода исследования и на другие области. Сложность решаемых моделированием задач зависела только от мощности используемых компьютеров, тем самым и ограничивалась несовершенными мощностями
После публикации в 1948 году статьи Дж. Неймана и С. Улама, в которой впервые было описано применение метода Монте-Карло, многие исследователи стали называть компьютерное моделирование методами Монте-Карло. Это не верно, правильней будет выглядеть разделение компьютерного моделирования на несколько направлений[6]:
- Методы Монте-Карло или методы вычислительной математики. Используются численные методы, объекты заменяются числами, результаты формируются в таблицы или графики;
- Методы имитационного моделирования;
- Методы статистической обработки данных на основе метода планирования эксперимента;
- Комплексы имитационного моделирования, в которых объединяются все вышеупомянутые методы.
Разновидностью компьютерного моделирования является вычислительный эксперимент, который предполагает дальнейшее численное исследование модели после ее создания, позволяющее исследовать объект в различных его модификациях и при различных условиях.
С использованием ЭВМ для выполнения арифметических и логических операций производительность интеллектуального труда человека значительно возросла. Первые задачи, для которых создавались ЭВМ, были связаны с ядерной энергией и освоением пространства космоса. Сейчас же компьютер принимает участие в различных задачах и исследованиях, эта технология теоретических экспериментов получила название вычислительного эксперимента. Основой вычислительного эксперимента является математическое моделирование, теоретической базой – прикладная математика, а технической – мощные электронные вычислительные машины.
Компьютерное моделирование и вычислительный эксперимент становятся новым методом научного познания для исследования сложных моделей систем. Цикл вычислительного эксперимента принято разделять на несколько этапов для лучшего восприятия сути этого метода.
Любое явление или объект обладает огромным количеством свойств, характеристик или параметров, охватить которые бывает очень сложно, поэтому приходится проводить упрощение такого объекта, отбрасывая несущественные детали. Иными словами, строить модель.
Под моделью мы будем понимать любой материальный или идеальный объект, обладающий некоторыми свойствами, совпадающими со свойствами реального объекта.
При этом исследователь будет выбирать такие свойства, которые являются существенными для изучаемого объекта. Например, при проектировке здания архитектору важен внешний вид объекта, для инженера — прочность и материалы, для инженера-геолога – нагрузка на грунт. Поэтому модель одного и того же здания будет различна.
Давайте рассмотрим еще один класс моделей — это математические модели. Например, все геометрические объекты (круг, треугольник, прямая) являются моделями. В окружающем нас мире не существует таких объектов.
Например, стол. Можем ли мы сказать, что он идеально прямоугольный? Нет, конечно, так как каждый край стола не может быть идеальной прямой линией. Однако, во многих случаях можно считать, что это так.
Подобные рассуждения справедливы и для всех других математических объектов — вектор, числа, функций, производных, интегралов.
Будем считать, что математическое моделирование — это описание реальной ситуации с помощью математических терминов, математических операций и математической символики.
Основоположником математического моделирования в России был академик Российской академии наук Александр Андреевич Самарский, который первый предложил использовать математические модели, реализуемые с помощью компьютера и дальнейшее их исследование. Важнейшим преимуществом использования таких моделей заключается в невысоких финансовых затратах и относительной простоте. При этом практика является и остается критерием истинности и завершающим звеном в исследовании.
Моделирование требует четкого плана действий. На первом этапе формируется задача, которую необходимо решить с помощью модели, далее разрабатывается некий математический эквивалент исследуемого объекта, после чего происходит тестирование такой модели и сравнение с практическими знаниями. Если модель на тестовом этапе не противоречит практике, то проводится эксперимент с моделью, после чего анализируются результаты и делаются выводы. Давайте рассмотрим все этапы моделирования на примере колеса, вращающегося внутри более большого:
ЭТАП 1. Постановка задачи
В колесе радиуса R катится колесо радиуса r. Какую траекторию описывает точка, расположенная на ободе колеса r?
ЭТАП 2. Математическая модель
Траектория движения этой точки находится по формулам:
где φ изменяется от 0 до 2π (угол смещения колеса r).
Вывод уравнения движения смотри по ссылке .
ЭТАП 3. Алгоритм решения
Для получения траектории движения колеса, нам необходимо изменять значение φ от 0 до 30. Вычислять координаты и представлять их на графике. Попробуем это сделать с помощью программы Excel.
ЭТАП 4. Разработка программы. Тестирование
Создадим таблицу по образцу:
В столбец А занесем значения угла φ от 0 до 6.28 с шагом 0.01.
Запишем в ячейку а в ячейку
С помощью маркера заполнения распространим эти формулы до конца таблицы.
По значениям столбцов B и С построим точечный график:
ЭТАП 5. Вычислительный эксперимент
Изменяя значения в ячейках F3 и F4, получи различные картинки:
ЭТАП 6. Анализ результатов. Выводы
Вычислительный эксперимент показал, что вид фигуры зависит от отношения радиусов маленького и большого колеса. Такие фигуры носят названия — ГИПОЦИКЛЫ.
К основным этапам компьютерного моделирования относятся:
-
, определение объекта моделирования;
- разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия;
- формализация, то есть переход к математической модели; создание алгоритма и написание программы;
- планирование и проведение компьютерных экспериментов;
- анализ и интерпретация результатов [2] .
Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритма(ов), воспроизводящего функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций.
Содержание
Практическое применение
Компьютерное моделирование применяют для широкого круга задач, таких как:
- анализ распространения загрязняющих веществ в атмосфере
- проектирование шумовых барьеров для борьбы с шумовым загрязнением
- конструирование транспортных средств
- полетные имитаторы для тренировки пилотов
- прогнозирование погоды
- эмуляция работы других электронных устройств
- прогнозирование цен на финансовых рынках
- исследование поведения зданий, конструкций и деталей под механической нагрузкой
- прогнозирование прочности конструкций и механизмов их разрушения
- проектирование производственных процессов, например химических
- стратегическое управление организацией
- исследование поведения гидравлических систем: нефтепроводов, водопровода
- моделирование роботов и автоматических манипуляторов
- моделирование сценарных вариантов развития городов
- моделирование транспортных систем
- имитация краш-тестов
- моделирование результатов пластических операций
Различные сферы применения компьютерных моделей предъявляют разные требования к надежности получаемых с их помощью результатов. Для моделирования зданий и деталей самолетов требуется высокая точность и степень достоверности, тогда как модели эволюции городов и социально-экономических систем используются для получения приближенных или качественных результатов.
Читайте также: