Нужен ли радиатор для ssd m 2
Хотя твердотельные накопители или твердотельные накопители за последние несколько лет стали значительно дешевле, эти 2,5-дюймовые твердотельные накопители в настоящее время заменяются твердотельными накопителями NVMe на основе PCI Express. Новые твердотельные накопители намного компактнее (8 × 2,2 см) и вставляются прямо в материнскую плату через слот M.2.
Эти диски M.2 не только быстрее и компактнее, но и устраняют необходимость в громоздких кабелях питания и данных. Цены на твердотельные накопители NVMe за последний год резко упали до такой степени, что они лишь незначительно дороже, чем их относительно более медленные 2,5-дюймовые твердотельные накопители.
Высокая скорость, высокая температура, низкая продолжительность жизни
Однако их огромная плотность хранения приводит к перегреву. Мало кто понимает, что твердотельные накопители NVMe могут быстро и легко достичь температуры свыше 80 ° C (предполагаемый рабочий диапазон для большинства твердотельных накопителей NVMe составляет от 0 ° C до 70 ° C).
Нужны ли теплоотводы от NVMe?
Мы использовали Samsung PM981 NVMe SSD в наших тепловых тестах на пытки. Диск был установлен в тот же слот M.2 с высокой пропускной способностью прямо над графическим процессором для обеспечения согласованности между запусками. Мы подвергли диск трем непрерывным циклам Crystal Disk Mark 6 для каждого метода охлаждения, каждый из которых длился примерно пять минут. Температуры холостого хода были записаны до испытаний на пытки, а затем максимальные температуры для каждого запуска. Температуру окружающей среды поддерживали на уровне 22 ° С для консистенции.
Наш испытательный стенд основан на новейшей платформе Ryzen 2nd Gen (микроархитектура Zen 2), которая не должна вызывать каких-либо узких мест в производительности, поскольку новая платформа X570 по своей природе перегружена для поддержки более быстрого стандарта PCI-E 4.0. Вот технические характеристики ПК, используемого для тестов:
-
Процессор: AMD Ryzen 5 3600Процессорный кулер: Кулер Мастер MasterLiquid ML240RMotherbard: Asus TUF Gaming X570-PlusПамять: 16 ГБ ОЗУ ADATA XPG D41 DDR 3600 МГцGPU: Gigabyte GeForce RTX 2070 SUPER GAMING OCСлучай: NZXT H700i
Запуск M.2 NVMe SSD без радиатора
Приведенный выше основной график показывает единственное преимущество использования вашего жесткого диска NVMe без радиатора. Наличие контроллера и флэш-памяти NAND под воздействием воздушного потока в корпусе ПК позволяет пустому диску работать на холостом ходу по сравнению с двумя из трех радиаторов. Тепловые накладки, используемые для термического соединения алюминиевых радиаторов с компонентами привода, неэффективны для рассеивания тепла при более низких температурах. Это спорный вопрос, поскольку здесь несколько градусов, и это не имеет значения, если на холостом ходу диск остается ниже 50 ° C.
Однако победа недолговечна, поскольку SSD-накопитель Samsung PM981 NVMe стреляет до колоссальной температуры 94 ° C менее чем через минуту после стресс-теста Crystal Disk Mark 6. Контроль температурного диода контроллера Phoenix ясно показывает, что привод подвергался тепловому дросселированию. Модули флэш-памяти NAND также нагреваются до 61 ° C при самом первом запуске. В двух последующих запусках механизм тепловой защиты контроллера выполняет свою работу и стабилизирует температуру на 96 ° C за счет небольшого снижения производительности. Флэш-память NAND, тем не менее, продолжает подниматься до тех пор, пока не станет опасно близкой к максимальной рабочей температуре 69 ° C.
Излишне говорить, что это далеко не оптимально. Несмотря на то, что накопители NVMe обладают достаточным запасом производительности, чтобы не обращать внимания на термическое регулирование, это не может быть полезным для здоровья накопителя в течение длительного времени.
Использование радиатора, поставляемого с материнской платой
Большинство приличных материнских плат, и почти все платы Ryzen 2nd Gen, оснащены как минимум одним радиатором M.2 для охлаждения основного диска M.2. К сожалению, большинство из этих радиаторов не имеют достаточного количества металла или площади поверхности. Кроме того, материнские платы, которые предоставляют только одну из них, заставляют вас размещать твердотельный накопитель NVMe в неудобных местах, таких как слот M.2, спрятанный под GPU. Не идеальная ситуация с точки зрения воздушного потока.
Удивительно, но даже тонкий и удручающе плоский лист алюминия, поставляемый с материнской платой ASUS, является классическим случаем чего-то лучше, чем ничего. Во всех трех прогонах теплоотвод SSD материнской платы мог удерживать накопитель значительно ниже температурного потолка 70 ° C, что рекомендует большинство производителей. Это еще одна причина, чтобы не экономить на материнской плате для вашего следующего ПК.
EKWB EK-M.2 NVMe Радиатор
Если это звучит резко, обратите внимание на пятнистую поверхность и качество анодирования стороны, которая должна термически взаимодействовать с твердотельным накопителем. Качество и плотность алюминия далеко не так хороши, как запрошенная цена заставит вас поверить. И это отражается на его производительности. Радиатор за $ 20 незначительно лучше спартанской алюминиевой планки, которая поставляется бесплатно с бюджетной материнской платой Ryzen X570. Это делает свою работу, но это определенно не стоит той премии, которую требует.
Барроу M.2 OLED радиатор
Можно утверждать, что дисплей будет препятствовать воздушному потоку через радиатор и отрицательно повлиять на тепловые потоки. Это, однако, компенсируется весом и плотностью алюминия, используемого для изготовления радиатора. Он чувствует себя значительно тяжелее радиатора EKWB и может похвастаться гораздо лучшим качеством поверхности и качеством анодирования. Поставляемые термоподушки также выглядят намного качественнее. Это наглядно отражается на производительности, так как радиатор Barrow SSD превосходит все протестированные до него с достаточно приличным запасом.
Радиатор нагревается медленнее всего благодаря своей плотности. Тот факт, что показания температуры NAND-вспышки относительно выше по сравнению с радиатором материнской платы, показывает, что он хорошо отводит тепло от контроллера. Это действительно здорово, потому что, вопреки распространенному мнению, NAND flash работает оптимально и наиболее безопасно при температуре 50 ° C и выше до тех пор, пока она остается ниже 70 ° C, за пределами которой целостность данных может быть нарушена.
Вывод: материнская плата или вторичный рынок, вам нужен радиатор
Нужны ли теплоотводы от NVMe? Наш ответ будет громким ДА. В то время как легко установить и забыть о твердотельном накопителе NVMe, эти накопители могут и будут сильно перегреваться даже при обычном повседневном использовании. Высокоэффективный потолок этих приводов затрудняет ощущение теплового дросселирования, но длительное воздействие таких высоких температур не сулит ничего хорошего для долговечности.
Эта статья полезна? да нет
Полное руководство по покупке оборудования
Хотите узнать, как выбрать оборудование для вашей установки? Полное руководство по покупке оборудования показывает, на что обращать внимание при покупке оборудования.
Не секрет, что скоростные NVMe модели класса Samsung 960 Evo(Pro), Plextor M8SeGN и иже с ними подвержены перегреву. Причем часть моделей выпускается с предустановленным радиатором, а вот другая – без. И это может вызывать опасения, учитывая указанные в спецификации высокие значения скоростей чтения-записи. Большие цифры, к сожалению, не только греют душу и тешат самолюбие, но также греют сам девайс. Вот и попался мне на ресурсе uk.hardware.info глаза материал, где рассматривается охлаждение SSD, проводится тестирование радиаторов для накопителей M.2, с результатами которого предлагаю ознакомиться.
Суть проблемы
Вопрос нагрева и, соответственно, охлаждения не возникал, когда речь шла о накопителях на шине SATA. В них с температурным режимом работы все хорошо в любых условиях, даже при отсутствии обдува. Нагрев стал проявлять себя при переходе на гораздо более быстродействующую шину PCIe, когда скоростные показатели чтения или записи превысили отметку в 1 ГБ/с.
Обновление. 24.10.2018. Кстати, это не совсем так. Все же даже некоторые накопители на шине SATA, правда, в форм-факторе 2.5 дюйма, имеют склонность к заметному нагреву, что показывают результаты тестирования, например, Crucial BX500 или Kingston HyperX Fury RGB. Термопрокладка на контроллер и/или чипы памяти или обдув все же желателен в некоторых случаях.
И чем больше была скорость, тем горячее становился накопитель. Это вынудило выпускать модели с уже установленным теплорассеивающим радиатором. При этом та же модель накопителя могла иметь модификацию без такой термозащиты.
С возможным перегревом SSD стараются бороться сами производители материнских плат, которые снабжают свои модели (в основном среднего и высшего ценового диапазона) идущими в комплекте радиаторами. К сожалению, далеко не все «материнки» имеют такую опцию.
Проблема усугубляется еще тем, что на поверхности материнской платы M.2 разъемы располагаются не в самых оптимальных с точки зрения охлаждения местах. Так, накопитель, установленный между двумя PCI-Express разъемами, в которых стоит одна, а то и две мощных видеокарты, зажат между этими двумя «печками», которые отнюдь не улучшают условия работы.
Отсюда вывод, накопители надо охлаждать, тем более, что температуры могут быть весьма серьезными. Так, у использовавшегося в качестве подопытного Samsung 960 Pro емкостью 512 ГБ в тесте Atto Disk Benchmark контроллер нагревался до 111°C, а чипы памяти – до 71°C. Стоит ли говорить, что это многовато.
Естественно, появлялся троттлинг, а скорости чтения падали с более чем 3 ГБ/с до 2.4 ГБ/с, запись же снижалась с 2 ГБ/с до менее, чем 1.7 ГБ/с. Можно предположить, что падение не такое уж и большое, но, во-первых, зачем тогда приобретать накопитель, который нельзя использовать на полную мощность. И во-вторых, это просто опасно. Ведь случись чего, в мир иной уйдет не только железяка, но и хранящиеся на ней данные.
Справедливости ради надо сказать, что обдув приносит плоды. Установленный 92-мм вентилятор на расстоянии, соответствующем нахождению передней стенки среднего корпуса, снижает температуру контроллера до приемлемых 79°C. Проблема в том, что это в идеальных условиях. Вы сможете обеспечить накопитель постоянным потоком воздуха, которому не препятствуют никакие другие элементы, провода и т. п. конкретно в вашем компьютере? Как ни крути, а дополнительное охлаждение крайне желательно.
Участники тестирования
О подопытном уже было сказано, это Samsung 960 Pro. А вот в качестве радиаторов выступили 8 моделей, большинство из которых – это стандартные теплорассеивающие крышки с материнских плат, но был и еще один участник. Речь о совсем недавно выпущенном компанией EK радиаторе для SSD M.2.
Данный производитель хорошо известен своими системами охлаждения, в первую очередь жидкостными. Данный радиатор представляет собой довольно высокую конструкцию с глубокими ребрами, что позволяет надеяться на эффективное охлаждение.
Другие радиаторы, входящие в состав материнских плат:
- Небольшой радиатор от ASUS ROG Strix Z370-I Gaming.
- Радиатор от ASUS ROG Maximus X Hero.
- Радиатор от ASUS TUF X299 MARK 1.
- Самый большой вариант, от ASUS ROG Strix X299-XE Gaming, представляющий собой охладитель одновременно для накопителя и чипсета.
- Скромная по размерам, тонкая железочка от Gigabyte, на которой присутствуют несколько небольших ребер.
- Еще более скромный вариант M.2 Shield компании MSI.
- И более солидный вариант того же производителя, называемый «M.2 Shield Frozr».
Радиаторы EK
Сделаю небольшое отступление, чтобы познакомиться с недавно появившимися радиаторами для NVMe накопителей словенской компании EKWB. Конструкция представляет собой две алюминиевые пластины. Задняя – простой алюминиевый прямоугольник. Передняя часть, которая контактирует с чипами на накопителях, имеет основу толщиной 0.5 мм, на которой располагаются ребра высотой 3 мм и с шагом 2 мм.
Соединяются между собой эти две пластины стальными защелками. С элементами на SSD M.2 радиатор контактирует через термопрокладки, причем устанавливаются они на обе поверхности накопителя.
Радиатор совместим с SSD M.2 размером 2280. На данный момент доступны радиаторы в нескольких цветах: черный, серый, красный, синий, зелёный и пурпурный. Стоимость – порядка 10 евро.
Результаты тестирования
Для проверки использовалась программа Atto Disk Benchmark, в которой производилась запись данных объемом 32 ГБ с очередью равной 8, чтобы добиться максимальной нагрузки. Измерялись температуры контроллера и чипов NAND. Все тесты проводились как без обдува, так и с использованием имитирующего корпусного вентилятора диаметром 92 мм.
В случае без принудительного обдува самый слабый результат показал радиатор MSI M.2 Shield, что, впрочем, не удивительно, учитывая размеры этой железочки. Серьезных возможностей от нее ждать не приходится, и все же бесполезной ее также не назвать. Более 20 «сброшенных» градусов – это в любом случае полезно.
Лучший результат ожидаемо показал самый массивный радиатор от материнской платы ASUS ROG Strix X299-XE Gaming. Все же размер имеет значение, как ни крути. Правда, тут не все так однозначно, но об этом позже. Изделие EK показывают средние результаты.
При подключении вентилятора температура заметно снижается. При этом в распределении мест существенных изменений не происходит. Самое слабое охлаждение – у M.2 Shield, ну а здоровенный радиатор от Strix X299-XE опять лучше всех. Радиатор EK остается в середняках, но проигрыш лидеру существенно уменьшается. Видимо, большие грани хорошо работают при обдуве.
Измеренная скорость чтения/записи во время тестирования показывала существенное снижение при повышении температуры в случае использования SSD без радиатора. С установленными системами охлаждения результаты весьма близки и, видимо, разница обусловливается не эффективностью охлаждения, а разбросом значений при тестированиях.
Из этого можно сделать вывод, что даже самый «хилый» радиатор позволяет использовать накопитель на полную мощность. Температура, конечно, будет выше, нежели в случае применения более эффективных решений, но, как говорится, в данном случае на скорость это не влияет, если дело не доходит до троттлинга.
Заключение. Тестирование радиаторов охлаждения для SSD – охлаждать надо
На вопрос «надо ли охлаждать высокопроизводительные NVMe SSD M.2» можно с уверенностью дать утвердительный ответ. Даже самый простой радиатор позволяет существенно снизить температуру, удерживая ее в допустимых пределах. Естественно, разные модели этих охладителей имеют разную эффективность.
При этом разница между ними только в фактических значениях нагрева элементов на накопителе. Скорость работы при использовании всех протестированных моделей оказывается одинаковая. Естественно, если расположение накопителя на материнской плате не очень удачное в плане охлаждения, да еще и с «подогревом» расположенной в непосредственной близости мощной видеокарты (или двух), то имеется смысл в использовании более эффективного радиатора.
Единственно, о чем следует сказать, это о не совсем справедливых результатах самого большого радиатора материнской платы Strix X299-XE Gaming. С одной стороны, габариты существенно отличаются от конкурентов, с другой – в тесте он использовался только с накопителем, хотя в обычной жизни он охлаждает еще и чипсет, т. е. наверняка реальная температура накопителя окажется выше. И все же это никак не противоречит выводам.
Владельцам материнских плат, на которых такие радиаторы уже установлены изначально, смысла менять их на что-то иное нет, как и отказываться от их использования. Тем же, у кого не предусмотрено никакое охлаждение, или если плата старой модели, все же желательно приобрести радиатор для SSD.
Разумеется, это справедливо только при наличии двух факторов. Во-первых, у вас действительно топовый, высокопроизводительный накопитель. И во-вторых, вы используете его на всю мощь.
Нагрев комплектующих компьютера — вечная проблема. В то время, как мы уделяем внимание охлаждению процессора и видеокарты, оказывается, что и твердотельные накопители способны накаляться до 100 °C. Это не соответствует концепции «тихо и прохладно», которой придерживаются сборщики современных производительных систем. Стоит ли волноваться по этому поводу и как остудить пыл накопителя подручными средствами — разбираемся.
В игровых сборках в качестве системных дисков преобладают твердотельные накопители. Они быстрые, компактные, бесшумные и устойчивые к износу — SSD не имеют подвижных и механически взаимодействующих между собой элементов. Поэтому часто показателем долголетия накопителя становится лимит количества циклов перезаписи.
И все же, исчерпание ресурса микросхем — не единственная проблема. Пользователи часто сталкиваются с нагревом — некоторые узнают об этом из обзоров, другие «обжигаются» на собственном опыте. Тепловыделением обладает большинство комплектующих — процессор, видеокарта, оперативная память и даже модули беспроводной связи. Но перечисленные узлы работают с активной или пассивной системой охлаждения — радиаторы, вентиляторы и системы жидкостного охлаждения. В случае с SSD не все так радужно — они тоже греются, но редко комплектуются системой отвода тепла.
Горячие штучки
В конструкции твердотельных накопителей находятся несколько греющихся элементов — микросхемы памяти, чип кэш-памяти и контроллер. Причина нагрева одинакова для всех — протекающий через транзисторы ток, величина которого зависит от режима работы накопителя. Быстрее и сильнее всего нагревается контроллер — миниатюрный процессор, который управляет жизнью диска и информацией, попадающей в ячейки запоминающего устройства. Половина качественных и количественных характеристик SSD зависит от этого чипа — накопители с одинаковыми микросхемами памяти и разными контроллерами могут показывать отличные друг от друга результаты производительности и надежности. В то же время, замена чипов памяти на улучшенные может заставить один и тот же контроллер трудиться с удвоенной силой.
Удачный пример — Samsung 970 EVO и Samsung 970 EVO Plus. Оба накопителя устроены на идентичных контроллерах, но комплектуются разными микросхемами памяти — 970 EVO работает на 64-слойной V-NAND со скоростью 800 Мбит/с, а 970 EVO Plus получил в распоряжение 92-слойные NAND со скоростью обмена данными до 1,4 Гбит/с. С переходом на многослойную технологию компоновки транзисторов температурный режим новых чипов не изменился, так как они выполняются на усовершенствованном техпроцессе и работают на сниженном напряжении. Зато контроллеру приходится туго — вместе с увеличенными плотностью и скоростью обмена данными появилось больше работы. Отсюда не только возросшая производительность в IOPS и мегабайтах в секунду, но также и запредельные температуры.
Опасен ли перегрев?
В долговременной нагрузке некоторые твердотельные накопители нагреваются свыше 100 °C — в основном это касается устройств NVMe. Известно, что завышенные температуры приводят к деградации кремниевых компонентов, поэтому могут стать причиной преждевременного выхода накопителя из строя. В основном от перегрева страдает контроллер — даже в простое он всегда что-то делает, а в сильной нагрузке может разогреться до значений, при которых можно получить ожог. Естественно, это не идет на пользу окружающим компонентам, а также близлежащим микросхемам памяти, для которых и 60–70 °C оказываются испытанием.
Поэтому иногда производители кладут в комплект радиатор и термопрокладки, хотя это лишь частично решает проблему с сильным нагревом. Для правильного отвода тепла необходимо оголить микросхемы — снять наклейку с уникальными данными, которая мешает проводить тепло. Это автоматически лишает устройство гарантии, поэтому только усугубляет ситуацию с обслуживанием неисправных SSD.
Можно установить радиатор вместе с этикеткой и радоваться сохраненной гарантии. Конечно, в таком случае эффективность системы охлаждения окажется уменьшенной ровно до того уровня теплопроводности, которым обладает пластиковая наклейка. Для каждого материала это разное значение — пользователи отмечают, что прослойка из заводского «целлофана» скрадывает всего 3-4 °C.
Другое дело, если накопитель сутками трудится на износ и троттлит — скидывает тактовую частоту и напряжение, чтобы снизить нагрев. Троттлинг — это заводская технология защиты устройства от перегрева и выхода из строя. Он бьет по производительности, но не позволяет накопителю вылететь из системника с дымом и искрами. Тогда пользователю приходится идти на все, чтобы удержать скорость чтения и записи на максимуме — и даже на потерю гарантии.
Проверка боем
Проверим теорию на практике — нагреем твердотельный накопитель и попытаемся довести его до троттлинга. Интерес данного опыта заключается в том, что используемый SSD считается одним из самых горячих среди одноклассников и должен разогреться до красна. Или не должен — это мы и узнаем.
Для тестирования используется следующая система:
- Материнская плата Asus Maximus VIII Hero — топовая модель с чипсетом Intel Z170. Обладает качественной подсистемой питания процессора и неплохим каскадом управления PCIe.
- Процессор Intel Core i7 9700K — восьмиядерный процессор девятой серии. Пусть читателя не смущает тандем процессора и МП разных поколений — в народе это называют «кофемодом».
- Твердотельный накопитель Samsung 970 EVO Plus 500 ГБ — средняя модель по рынку и просто хороший SSD с горячим нравом. То, что нужно для экспериментов.
Работая системным накопителем, Samsung 970 EVO Plus почти всегда находится в безопасном температурном режиме, даже учитывая то, что температура впускного воздуха равна 29 °C — об этом говорят показания выносного датчика T_Sensor. Как правило, в таком состоянии нагрев составляет 50–55 °C для микросхем памяти и 65–70 °C для контроллера.
Эта модель накопителя снижает производительность при температуре около 80 °C. Нагрузим диск и проверим, как быстро нагреваются чипы и контроллер без дополнительного охлаждения. Для этого воспользуемся встроенным тестом дисковой подсистемы AIDA64. Например, включим на 10 минут линейное чтение:
В таком режиме устройство нагрелось до 76°C, при этом микросхемы остались в пределах 58 °C. Слишком просто для скоростного накопителя — примерно 30–40 % места на диске занимают системные файлы, программы и игры. Это не дает микросхемам раскрыться, поэтому скорость чтения колеблется на уровне 140 МБ/с, и температура двигается неохотно.
Проверим нагрев во время записи 300 файлов общим объемом 100 ГБ:
Контроллер — 77 °C, микросхемы — 62 °C. Уже интереснее, но все еще не дотягивает до критических значений, при которых накопитель включит троттлинг. Вывод — NVMe не требует охлаждения, а зашкаливающие под 100 °C накопители оказались мифом? Проверим еще один сценарий.
Поймали — контроллер нагрелся до 98 °C, а микросхемы раскалились до 74 °C. Но, как мы убедились ранее, такой нагрев — редкость для накопителей, которые используются в работе, а не для издевательств. Работа — это повседневные задачи, а издевательство — это проверка производительности SSD с помощью бенчмарков или стресс-тестов, а также безостановочные чтение и запись терабайтов информации. Впрочем, в таком режиме диск скорее «убьется» из-за износа ячеек памяти, нежели плавящегося контроллера.
И все же, многих юзеров раздражает, если комплектующие нагреваются выше 36.6 °C. Для таких случаев предусмотрено решение — можно снизить температуру с помощью комплектного или универсального радиаторов. Или что-нибудь «приколхозить» — чем мы и займемся.
Kolhozim — проверим эффективность радиаторов
Нет специального радиатора, но есть подручные средства и желание что-то улучшить — время колхозинга.
Дано: нагревающийся накопитель до 68 °C в простое, до 76 °C в режиме офиса и под 100 °C в максимальной нагрузке.
Задача: снизить температуру контроллера и микросхем.
Используемые средства: то, что найдется под рукой — а именно, процессорный кулер в формате башни с тепловыми трубками, блэк-джеком и пряниками.
Попробуем установить его на горячую часть твердотельного накопителя через термопрокладку — применять термопасту в этом случае не имеет смысла, так как нормальной теплопроводности мешает гарантийная наклейка.
Освобождаем место в системнике под импровизированную систему охлаждения и продумываем способ крепления радиатора к SSD — как временное решение можно использовать денежные резинки или стяжки.
Наша «колхозная» система охлаждения несовершенна — теплосъемная подошва имеет ограниченную площадь и не накрывает собой все элементы накопителя. Поэтому придется выбирать самое горячее место и лепить этого монстра ближе к эпицентру нагрева.
Для этого взглянем на работающий диск через тепловизор. Объект найден — самым горячим оказался контроллер.
Позиционируем кулер в соответствии с тепловой картой — то есть, в районе контроллера. Перед нанесением термоинтерфейса не забываем обезжирить соприкасающиеся поверхности:
Радиатор установлен, накопитель на своем месте — пора тестов и сравнений.
Тестируем
Для честного сравнения будем использовать аналогичный набор тестов, а также вручную отключим вентиляторы видеокарты, которые «дышат» прямо над радиатором SSD. Включаем систему, пользуемся 10–15 минут и проверяем температуру накопителя:
Микросхемы памяти остановились на 36 °C, а контроллер нагрелся до 39 °C. Подозрительно — ранее накопитель в аналогичных условиях работал при 55 °C. Продолжим — включим тест чтения AIDA64 на десять минут:
41/45 °C — не так уж и горячо. В прошлый раз здесь было 58/76 °C. Минус 30 °C с контроллера и почти 20 с микросхем — аномалия? Пока без комментариев. Забросим на диск 100 ГБ мелкими файлами:
Снова аномалия — 45/46 °C. До установки радиатора задание на запись разогрело NAND до 62 °C, а контроллер — до 77 °C. Наверно, SSD просто не успел хорошо прогреться — сейчас бенчмарк DiskMark покажет настоящие цифры:
49/49 °C против 74/98 °C — импровизированная система охлаждения, которая накрывает подошвой только часть накопителя, позволила скинуть 50 °C с контроллера. При этом накопитель прочно держится на 49 °C и ни разу не нагрелся выше этого значения.
Для удобства восприятия информации перенесем результаты в таблицу:
В результате тестирования самодельной системы охлаждения мы пришли к выводу, что кулер, выполненный «на коленке», способен значительно снизить нагрев твердотельного накопителя. Разумеется, вместо топорного кустарного кулера можно использвоать готовый заводской радиатор, который продается в магазине.
Другие способы снизить нагрев
В некоторых сценариях охладить твердотельный накопитель с помощью радиаторов невозможно — этому может препятствовать характерное расположение устройства, выступающие рядом с SSD элементы или банальная нехватка места в корпусе. В таком случае остается плюнуть на нагрев и оставить все, как есть или оптимизировать ситуацию на свой лад.
- Распределить нагрузку. Не загружать накопитель работой 24/7, оставлять время на отдых. Не устанавливать на SSD программы, которые усиленно используют ресурсы — майнеры, видеоконверторы, архиваторы, базы данных.
- Выбрать «холодный» разъем. Если на материнской плате распаяно несколько разъемов, то самый нагруженный накопитель желательно установить в тот разъем, рядом с которым нет дополнительных источников нагрева. Например, подальше от радиатора чипсета или видеокарты.
- Снизить напряжение. Если устройство приходится устанавливать рядом с горячими компонентами, то можно снизить нагрев комплектующих с помощью андервольтинга.
- Настроить вентиляторы. Некоторые пользователи забывают настроить скорость вращения вентиляторов в системе. Правильная настройка впуска и выпуска поможет скинуть несколько градусов не только с накопителя, но и с других комплектующих.
- Установить фильтры. Пыль — одна из причин перегрева техники. Чтобы исключить попадание «войлока» в систему охлаждения и на поверхность компонентов, можно приобрести корпус с защитой от пыли или установить фильтры самостоятельно.
Горячо или кажется?
В последнее время нагрев комплектующих больше всего беспокоит даже владельцев маломощных сборок. В некоторой степени гонка за десятыми долями градусов превратилась в моду и даже зависимость. Частично в этом замешаны и сами производители — системы охлаждения становятся частью дизайна с подсветкой и уникальными стилями.
В большинстве случаев нагрев — это субъективное ощущение. Среднестатистический пользователь измеряет температуру компонентов наощупь, поэтому даже 45 °C могут показаться опасным нагревом. На деле, кремний, из которого изготовлены микросхемы, выдерживает нагрев до 200 °C. Конечно, это не значит, что процессор или графический чип будут безопасно работать с таким нагревом — но «страшные» для пальцев 80 °C оказываются вполне прохладными для настольного процессора, а мобильные чипы, и вовсе, живут по десятку лет, нагреваясь до 90 °C в нагрузке.
Если вы любите свой ПК, то наверняка оснастите его твердотельным накопителем стандарта NVMe. Но во время работы такие диски очень быстро нагреваются, из-за чего сбрасывают скорость. Проблему решат специальные системы охлаждения.
Изобретение твердотельных накопителей произвело настоящую революцию на рынке памяти. С тех пор жесткие диски перестали быть узким местом, тормозящим вычислительную мощность современного аппаратного обеспечения ПК.
Вторая волна этой революции началась два года назад, когда на рынке появились первые накопители, работающие на базе спецификации NVMe, скорость которых во много раз превышает скорость SSD, подключаемых по интерфейсу SATA.
Скорость последовательного чтения современного диска NVMe (например, Samsung 960 EVO) составляет примерно 3 Гбайт/с, последовательная запись того же диска достигает 1,7 Гбайт/с. А ведь предел скорости самых лучших твердотельных накопителей SATA составляет 600 Мбайт/с, что определяется пропускной способностью SATA-интерфейса. Одним словом, диски стандарта NVMe — это самое верное решение для всех высокопроизводительных ПК.
Но подобные накопители являются «горячей штучкой», причем в самом прямом смысле. Высокие скорости передачи данных по время чтения и записи требуют больше энергозатрат, чем у твердотельных накопителей SATA, в результате чего диски NVMe быстро нагреваются. Так, при тестировании накопителя Corsair MP500, он нагревался до 90 °C во время передачи больших объемов данных.
SSD-накопители NVMe и проблема теплоотвода
Существуют твердотельные диски NVMe, которые во избежание перегрева в процессе записи сбрасывают скорость уже через 20 с. За это время наш тестовый SSD успел записать примерно 30 Гбайт данных. Вроде как и много, но ведь 30 Гбайт может занимать всего один фильм в 4K или одна современная компьютерная игра.
Samsung оснащает новые SSD-накопители, (например, 960 EVO) дополнительной медной накладкой, предназначенной для отвода тепла.
Другие накопители NVMe (например, из серии Samsung 960) благодаря дополнительному слою меди, предназначенному для теплоотвода, выдерживают около полутора минут до срабатывания температурного троттлинга.
Ситуация осложняется тем, что новое поколение твердотельных накопителей, как правило, выпускается в виде компактных тонких карт расширения форм-фактора M.2. Их габариты составляют примерно три миллиметра в высоту и в среднем восемь сантиметров в длину, и они устанавливаются в соответствующий разъем параллельно материнской плате.
В этом положении тепло отводить не так просто, как, например, на видеокарте, установленной в разъем PCIe. Но разъем PCIe является альтернативным вариантом монтажа твердотельного накопителя NVMe с помощью переходника, на который крепится карта M.2, — так накопление тепла можно сделать более умеренным.
Тем не менее обычные китайские адаптеры за 100–200 рублей практически не решают проблему теплоотвода, поэтому мы рассмотрели специальные решения по охлаждению для накопителей M.2 и измерили то, насколько долго они позволяют накопителю работать на пике производительности, если позволяют вообще.
Сборка радиатора в несколько этапов
Радиаторы PCIe (типа Eisblock HDX-2 от Alphacool) выпускаются в виде наборов. Кроме адаптера, к основным деталям относятся пластины радиаторов и теплопроводящие прокладки.
Сначала на карту-адаптер накладывается термопрокладка, на нее устанавливается твердотельный накопитель, на который, в свою очередь, накладывается вторая термопрокладка.
В заключение на адаптер при помощи винтиков крепятся пластины радиаторов. Готово! Теперь можно использовать устройство в слоте PCIe, обеспечив компьютеру высокую скорость работы.
Стресс-тест радиаторов для твердотельных накопителей
Охладители для NVMe существуют в двух исполнениях: как адаптеры PCIe и как охлаждающие ребра, которые устанавливаются непосредственно на плату M.2. На рынке предлагаются два охладителя второго типа: Alphacool HDX M.2 примерно за 2000 рублей и kryoM.2 micro производства Aqua Computer, который стоит около 700 рублей. Однако рекомендовать непосредственно устанавливаемые радиаторы мы можем только условно, поскольку их установка весьма затруднительна (см. выше).
Для владельцев ПК, на наш взгляд, более удобным вариантом является адаптер PCIe. Для тестирования мы подобрали три продукта: Aqua Computer kryoM.2 evo примерно за 2500 рублей, Eisblock HDX-2 производства Alphacool (около 6000 рублей) и Angelbird Wings PX1 почти за 5000 рублей.
Твердотельные накопители форм-фактора M.2 бывают разной длины. На охладителе Wings PX1 для этого предусмотрены соответствующие отверстия под винты.
Все три адаптера поставляются в виде небольшого комплекта (см. блок вверху) с одними и теми же деталями: на карту M.2 накладывается термопрокладка: для Wings PX1 — с одной стороны, в случае с Eisblock и kryoM.2 evo — с обеих, и только затем с помощью винтиков на них монтируются радиаторы.
Проще всего устанавливать kryoM.2, в том числе и потому, что используется только один тип винтиков. С Eisblock придется немного повозиться. Но все же монтаж радиаторов несложен, в особенности с учетом того, что к каждому из них прилагается обстоятельное руководство с иллюстрациями.
Радиаторы типа kryoM.2 micro при помощи клипс крепятся прямиком на карту M.2. Во время монтажа требуется соблюдать осторожность: некоторые накопители могут погнуться.
Испытания в лаборатории Chip
В тестировании использовался сильно нагревающийся во время работы твердотельный накопитель Corsair MP500 480GB. Кроме того, мы проверили, как срабатываются внешние радиаторы с уже встроенным охлаждением на Samsung 960 EVO. Тестирование было проведено с помощью программы для измерений DiskBench, которую мы обычно используем для определения скоростей твердотельных накопителей.
Чтобы в буквальном смысле разогреть накопители, мы запустили пять прогонов по сто секунд последовательного чтения, сразу за которыми следовали сто секунд последовательной записи, и в заключение еще раз пять прогонов по двести секунд чтения. Для проб мы использовали ту же материнскую плату, которую обычно берем для тестирования SSD-накопителей. Она установлена в хорошо вентилируемый корпус ПК.
В целях эксперимента мы частично заклеили вентиляционную решетку, так что поток воздуха хоть и проходил, но был ограничен — это тоже должно было поспособствовать нагреву накопителя. Результаты мы сравнивали с показателями по передаче данных, которых Corsair достигал без охлаждения.
Во время чтения и записи больше всего тепла производит не флеш-память, а контроллер. Эта микросхема отвечает за получение данных, их запись в кеш или во флеш-память, а также их считывание оттуда. Из всего перечисленного наиболее сложную задачу представляет запись данных; данную операцию контроллер выполняет дольше, чем чтение. Это же показывают результаты наших измерений.
SSD-накопитель NVMe Corsair MP500 без охлаждения после 20 секунд работы постепенно сбрасывает скорость записи. Адаптеры PCIe с охлаждением удерживают ее на постоянно высоком уровне.
Без охлаждения скорость передачи данных Corsair во время записи с 20-й секунды падает с 1,3 Гбайт/с до 1 Гбайт/с после 27-й. Потом кривая сглаживается, и к 100-й секунде Corsair записывает уже со скоростью всего около 800 Мбайт/с. Если же накопитель в процессе записи охлаждается, скорость в пределах 1,3 Гбайт/с сохраняется на протяжении всего процесса записи. В этом сценарии все наши испытуемые продемонстрировали отличную работу.
На высоких скоростях: с охлаждением и без него
А вот с чтением ситуация немного другая. Без охлаждения скорость передачи данных Corsair почти сразу же после холодного старта периодически резко снижается и тут же поднимается. В первый период скорость после восьми секунд работы неожиданно падает с 2,5 Гбайт/с до 2 Гбайт, а с 70-й секунды, когда накопитель остывает, снова «прыгает» до 2,3 Гбайт/с.
Следующие периоды протекают так же, только скорость продолжает падать и устанавливается на уровне 1,7 Гбайт/с — и лишь в отдельных случаях срывается до 1,5 Гбайт/с. Corsair осиливает 2 Гбайт/с и потом борется за 2,3 Гбайт/с, прежде чем снова сдаться.
Corsair MP500 во время чтения быстро нагревается, и без охлаждения скорость передачи уже через несколько секунд падает. Радиаторы поддерживают скорость. Лучше всех справляется Wings PX1.
Сразу после холодного старта наилучшим образом проявляет себя радиатор Wings PX1. Адаптер PCIe выравнивает Corsair на уровне 2,2 Гбайт/с и быстрее его «встряхивает» — и накопитель вновь достигает 2,4 Гбайт/с. Оба других адаптера устанавливают скорость на уровне 2,1 Гбайт/с, но позже, чем Wings, достигают 2,4 Гбайт/с.
Тестовый прогон с Corsair показывает, что в целом радиаторы в значительной степени влияют на скорость передачи данных. При записи их работа ощущается уже после седьмой секунды, в течение которых Corsair успевает записать около 9 Гбайт данных. При чтении же радиаторы принимаются за дело практически сразу, поскольку твердотельный накопитель без охлаждения не может достичь пика, за исключением нескольких секунд после запуска.
Когда радиатор неправильно охлаждает
С тестовыми прогонами на Samsung 960 EVO дела обстоят по-другому, поскольку радиаторы, по всей видимости, не вполне могут поддерживать процесс отвода тепла. Кроме того, адаптеры PCIe Eisblock и kryoM.2 evo не позволяют накопителю достичь максимальной скорости: без радиаторов в самом начале Samsung выдает скорость более 3,1 Гбайт/с, а с этими двумя охладителями — только около 3 Гбайт/с в среднем.
Эффекта торможения не производит только Wings PX1. Но если Samsung нагревается во время работы, ни один из радиаторов не оказывает существенного положительного воздействия. Скорее наоборот: даже PX1 сохраняет уровень около 3 Гбайт/с, в то время как нагретый EVO и без радиатора достигает 3,1 Гбайт/с.
В скорости передачи данных у EVO тоже наблюдаются колебания: она может упасть до 2,9 Гбайт/с, и радиаторы не могут предотвратить такие падения. Они могут только выравнивать отдельные отклонения: иногда EVO без радиаторов кратковременно снижает скорость примерно до 2,7 Гбайт/с, а с радиаторами такого не случается.
С такой же скептической позиции нужно подходить к рассмотрению охладителей, которые устанавливаются на карту M.2 непосредственно, без адаптера. Несмотря на то что они оказывают такое же охлаждающее воздействие на карты, как и адаптеры, их установка сопровождается некоторыми рисками.
Радиаторы, теплопроводящие прокладки и накопитель крепятся друг к другу с помощью клипс. Если накопитель немного выше или если его поверхность неровная, например, если чипы установлены по обеим сторонам карты, как на нашем тестовом Corsair, радиатор загоняется в крепление с трудом, и если на секунду потерять бдительность, можно погнуть или вообще повредить накопитель.
Советы по увеличению скорости накопителей NVMe
Если вы являетесь счастливым обладателем накопителя NVMe, вам следует обратить внимание на некоторые детали. Высокоскоростные твердотельные накопители передают данные через PCI-Express. На современных материнских платах линии PCIe проходят к процессору либо напрямую, либо через чипсет.
Для оптимального прохождения данных предпочтительнее вариант с прямым соединением. На современных материнских платах, как правило, предусмотрены два слота PCIe для видеокарт. Если вы используете только одну видеокарту, на второй слот можно установить накопитель NVMe.
Материнские платы с охлаждением для M.2
На проблему нагрева твердотельных накопителей постепенно стали отзываться и производители материнских плат. Так, компания MSI на некоторые платы Kaby Lake, предназначенные для мощных ПК, поместила специальную защитную пластинку M.2 Shield, призванную охлаждать накопитель M.2. В скором времени ожидается появление материнских плат от Gigabyte, оснащенных охлаждением Aorus M.2 Thermal Guard. Но точную дату производитель пока не объявлял.
На материнскую плату Z270 Gaming M 7 от MSI предустановлено охлаждение для SSD M.2.
Преимущество в скорости с драйверами от производителя
«Правильный» драйвер обеспечивает большой выигрыш в скорости. Несмотря на то что Microsoft интегрировала в Windows 10 собственные драйверы для NVMe, в результате чего проблем с установкой ОС не возникает, они не оптимизированы под отдельно взятый накопитель и не могут «выжать» из него максимальной мощности. А для накопителей Samsung использование драйверов производителя во многих случаях увеличивает скорость до двух раз — их можно скачать прямо с сайта компании.
Тем не менее, если вы владелец готового ПК или ноутбука, на который установлен накопитель NVMe производства Samsung, это не значит, что вам будет просто найти нужный драйвер. Многие свои диски Samsung продает в виде версий OEM, которые вносятся в Windows под загадочными аббревиатурами вроде MZFLV.
Улучшить работу накопителей NVMe могут только драйверы производителя. К сожалению, Samsung для OEM-накопителей их не предлагает. Выручить могут драйверы для 950 Pro или переписанный «чистый» драйвер Samsung с форума Win-RAID.
На рисунке сверху представляем расшифровку наиболее популярных моделей и подходящие к ним драйверы, поскольку для OEM-моделей Samsung не обеспечивает прямой поддержки. Для OEM-накопителей серии 950 можно, например, использовать драйверы для Samsung 950 Pro, доступного в розничной торговле.
Установить «чистый» драйвер просто. Нужно запустить Диспетчер устройств Windows 10 и в списке «Контроллеры запоминающих устройств» выбрать «Стандартный контроллер NVM Express» в «Контроллерах запоминающих устройств», после чего в меню «Действие» выбрать «Обновить драйвер», указав папку с распакованными «чистыми» драйверами.
Читайте также: