Ноутбук есть дежурка нет запуска
Зачастую диагностика неисправности материнской платы ноутбука осложняется тем,что в схеме нет последовательности запуска (Power Up Sequence).
В данной статье возьму за пример схему от ноутбука Lenovo ThinkPad Edge 14 LD-Note Calpella Discrete.
Как видим в этой схеме отсутствует последовательность запуска,что значительно осложняет представление о том, в какой момент тот или иной сигнал/напряжение должно появится.В этом случае можно найти схему от ближайшей модели в которой есть интересующая нас последовательность запуска и опираясь на неё провести диагностику.
Для этого я возьму схему от Lenovo Thinkpad E40 LD-Note AMD DIS.Итак,в схеме от LD-Note AMD DIS на странице 52 видим представленную в виде блок-схемы последовательность запуска.Давайте разберём что здесь к чему.
В красных кружках подписаны цифры от 1 до 30 что и является количеством шагов до полного запуска платы.
Я распишу каждый из данных шагов и представлю их на схеме от Lenovo ThinkPad Edge 14 LD-Note Calpella Discrete где у нас последовательность запуска отсутствет.
Первый шаг это входные напряжение блок питания(БП) и/или батарея(АКБ).1a и 1b это напряжение от которого будет запитана плата.В зависимости от подключенного источника питания Charger(контроллер заряда) открывает входные ключи,например если плата запитана от БП(1a),то Charger выберет 1AC и откроет входной ключ PQ75(Lenovo Thinkpad E40),на схеме Lenovo ThinkPad Edge 14 это PQ54,тем самым пропуская напряжение с БП на общую шину питания VIN.При питании только от батареи выбор Chargerа 1BAT и он открывает PQ74(Lenovo Thinkpad E40),на схеме Lenovo ThinkPad Edge 14 это PQ3,тем самым так же пропуская напряжение с АКБ на общую шину питания VIN.На рисунке 1 показан участок схемы где 19V с БП попадают на шину VIN.
Давайте разберёмся как это происходит.Сперва нужно разобраться с названиями ножек самого транзистора и его структуры.На большинство транзисторов в интернете есть документация.В нашем случае в схеме указано что это TPCA8109.На первой странице даташита на него,указано что это P-канальный транзистор.
Как известно P-канальные транзисторы открываются в том случае если на его затвор(GATE)подать отрицательное напряжение.
На рисунке 1.1 я обозначил где у него находится ключ(первая ножка),на самом транзисторе так же ключ обозначается точкой в углу.На этом же рисунке снизу указана распиновка ножек:
1,2,3 - SOURCE(Исток)
4 - GATE(Затвор)
5,6,7,8 - DRAIN(Сток)
Итак,мы разобрались с типом транзистора и его распиновкой.Теперь перейдём к схеме.
Сначала рассмотрим вариант при питании от БП и АКБ.На рисунке 2 мы видим PQ54,(хотя в схеме он и находится в перевёрнутом виде,это не столь важно так как в открытом виде напряжение через себя он все равно пропускает).
Для того чтобы он открылся нужно что бы на затворе(GATE)появился 0(за счёт этого PQ54 откроется,чтобы там появился 0,транзистор PQ56 должен быть открыт,таким образом подтягивая напряжение на затворе к земле и открывая PQ54.PQ56 это N-канальный транзистор и открывается положительным напряжением на затворе,в данном случае это сигнал ACOK,когда он появится на затворе PQ56,тот в свою очередь откроется и подтянет к земле 19V на затворе PQ54,таким образом открывая его и пропуская 19V на плату.Сигнал ACOK выходит с Chargera и равен напряжению от 3 до 5 вольт.Транзистор PQ3 при этом должен быть закрыт,так как через него шина VIN запитывается от АКБ.Для того чтобы PQ3 был закрыт на его затворе должно быть напряжение БП 19V.Что бы оно там появилось транзистор PQ6 так же должен быть открыт.Таким образом он пропустит через себя напряжение БП,его выход подключен к затвору PQ3,таким образом на затворе PQ3 появляется напряжение БП не давая ему открыться.При питании только от БП всё должно происходить так же.
Итак,на этом этапе мы разобрались как напряжение с БП попадает на общую шину VIN.
На рисунке 3 мы видим PQ3,через него запитывается шина VIN при питании только от АКБ.
PQ54 при этом должен быть закрыт.При питании только от АКБ сигнал ACOK равен 0.Соответственно PQ56 будет закрыт.
Напряжению на затворе PQ3 в этот момент будет отсутствовать,так что он будет находится в открытом состоянии.За счет того что в данный момент PQ56 закрыт,напряжение с PQ3 попадает на затвор PQ54 и он находится в закрытом состоянии.
Теперь когда мы разобрались как питание попадает на общую шину VIN,можно перейти к следующему шагу.
Второй шаг последовательности запуска это VIN,аббривеатура расшифровывается как Voltage Input - входное напряжение.В принципе как формируется VIN мы уже рассмотрели так что переходим к шагу под номером три.
Третий шаг ACIN,аббривеатура расшифровывается как Alternating Current Input - подключен адаптер переменного тока.
На этом этапе Charger сообщает EC контроллеру о том что подключен или не подключен БП.
Если сигнал ACIN имеет низкий логический уровень,то это означает что БП не подключен,а если сигнал ACIN имеет высокий логический уровень,то это означает что подключен БП.
Четвертый шаг это формирование дежурных напряжений 5VPCU и 3VPCU,VPCU это Voltage Pulsed Current - Напряжение Импульсного Тока.За дежурные напряжения отвечает микросхема ISL6237IRZ-T,которая из напряжения VIN формирует +5VPCU и 3VPCU,давайте рассмотрим какие сигналы она должна получить для включения дежурных напряжений.
Во первых она должна быть запитана.Для этого на 6ю ножку микросхемы должно приходить напряжение VIN.Следующее что должно быть это сигнал включения линейного регулятора EN_LDO(4я ножка),этот вывод так же подключён к шине VIN,но через резистивный делитель и напряжение на самом контакте EN_LDO будет около 5ти вольт.После получения сигнала EN_LDO должен включиться линейный регулятор и на 7й ножке микросхемы должно появиться напряжение 5V_AL(5 Volt Always),из этих 5V_AL формируется сигнал 3V5V_EN(3V5V Enable) сигнал включения 5VPCU и 3VPCU.Так же здесь формируется напряжение +15V(+15V_ALWP) при помощи умножителя напряжения на диодах и конденсаторах делая из 5ти вольт 15ть.
На пятом этапе присходит запитка EC контроллера от 3VPCU.Тут добавить нечего.
этот же сигнал подключен к 125й ножке EC контроллера как видно на рисунке 5,
Седьмой шаг это сигнал S5_ON,(94я ножка EC контроллера показанная на рисунке 6),
появляется этот сигнал после нажатия кнопки включения и равен он напряжению 3.3V.Этот сигнал как видим в последовательности запуска от Lenovo Thinkpad E40 нужен для запуска +3VS5,+5VS5 и +1.1VS5.На плате Lenovo ThinkPad Edge 14 напряжение +1.1VS5 не относится к сигналу S5_ON.Поиск по схеме Lenovo ThinkPad Edge 14 по сигналу S5_ON привёл меня к следующим напряжениям 3V_S5,5V_S5.Здесь они называются не +3VS5,+5VS5(Lenovo Thinkpad E40),а 3V_S5,5V_S5(Lenovo ThinkPad Edge 14) и формируются они из уже имеющихся дежурных 5VPCU и 3VPCU.Больше ни к чему этот сигнал не идёт.Давайте разберёмся как появляются эти напряжения.
На рисунке 7 я обозначу что происходит когда сигнал S5_ON отсутствует,а на рисунке 8 когда он есть.
Как видим на рисунке 7
транзистор PQ42 закрыт так как на затворе у него 0V.Таким образом напряжение 5VPCU открывает транзистор PQ77,и подтягивает 15V к земле,за счёт этого на втором выводе резистора PR254 будет 0V как и на затворах PQ67,PQ83,а учитывая то что это N-канальные транзисторы они не откроются и напряжения 3V_S5,5V_S5 не сформируются.
Замена материнской платы ноутбука
Добрый день, форумчане Хотел бы обратиться с вопросом, касательно замены материнской платы для.
ASUS A3E Ищу схему материнской платы ноутбука
Необходима схема материнской платы ноутбука Asus A3E. Есть здесь, но за деньги. Может у кого.
Добрый день. Поделитесь, пожалуйста, схемой материнской платы ноутбука hp 15-p105er, модель платы DAY23AMB6C0 REV. C
Добрый день. Поделитесь, пожалуйста, схемой материнской платы ноутбука hp 15-p105er, модель платы.
Неизвестный компонент материнской платы ноутбука asus n53sv
Напишите название(маркировку) или скиньте четкое фото крупным планом данного компонента.
сигнал S5_ON есть и открывает транзистор PQ42 подтягивая к земле напряжение 5VPCU.Таким образом на втором выводе резистора PR112 будет 0V.За счёт этого и на затворе PQ77 будет 0V и он будет закрыт давая возможность напряжению 15V попасть на затворы Q67,PQ83,таким образом позволяя им открыться и сформировать напряжения 3V_S5,5V_S5.
Восьмым шагом собственно говоря было формирование 3V_S5,5V_S5,но так как мы это уже обсудили,то перейдём к шагу девять.
Итак,когда SUSON равен нулю,транзистор PQ38 будет закрыт,таким образом дежурные 5VPCU через резистор PR114 попадают на затвор PQ78 и он находится в открытом состоянии подтягивая 15V к земле,за счёт этого на втором выводе резистора PR257 имеем 0,как и на затворах PQ66 и PQ85 которые по понятным причинам будут находиться в закрытом состоянии.
На рисунке 10
сигнал SUSON есть и за счёт этого транзистор PQ38 открыт и подтягивает 5VPCU к земле,за счёт этого на втором выводе резистора PR114 будет 0 и этот же 0 будет на затворе PQ78 и он будет закрыт,при этом 15V смогут через резистор PR257 попасть на затворы PQ66 и PQ85 открывая их и формируя 5VSUS,3VSUS из уже ранее появившихся 5VPCU и 3VPCU.
Напряжение 1.5VSUS формируется по другому,за него отвечает микросхема UP6163AQAG с позиционным номером PU10.
1.5VSUS это напряжение оперативной памяти,на рисунке 11
показано как сигнал SUSON становится сигналом S5.Этот сигнал приходит на 11ю ножку PU10 и служит для запуска VDDQ и VTTREF напряжений.Когда появится S5 на 11й ножке PU10,то включится напряжение 1.5VSUS.Для запуска VTT нужен сигнал S3 который приходит на 10ю ножку PU10 и формируется из сигнала MAINON как видно на том же рисунке 11.Когда появится MAINON,то появится напряжение VTT(0.75VSMDDR_VTERM),это напряжение терминации и равняется оно половине напряжения оперативной памяти,так как напряжение оперативной памяти у нас 1.5V,то напряжение терминации составит 0.75V.
На рисунке 12
представлена таблица состояний и логические уровни сигналов S3 и S5 в том или ином состоянии,то есть в состоянии S4/S5 сигналы S3 и S5 будут иметь низкий логический уровень "0",или 0 вольт,и напряжений VDDQ,VTTREF и VTT не будет.В состоянии S3 сигнал S3 будет иметь низкий логический уровень "0",или 0 вольт,а сигнал S5 будет иметь высокий логический уровень "1" или 3.3 вольта,в таком состоянии напряжения VDDQ,VTTREF будут присутствовать,а напряжение VTT нет.В состоянии S0 сигналы S3 и S5 будут иметь высокий логический уровень "1" и все напряжения будут включены.Когда это произойдёт PU10 должна выдать сигнал PGOOD(Power Good) с 13й ножки,этот сигнал означает что с питанием формируемым данной микросхемой всё в порядке и напряжение этого сигнала должно составлять 3 вольта.
Четырнадцатый шаг это сигнал MAINON который выдаёт EC контроллер с 96й ножки и этот сигнал является сигналом на включение таких напряжений как 0.75VSMDDR_VTERM,+5V,+3V,+1.8V,+1.5V,+1.05V_VTT.
Разберёмся по порядку.
0.75VSMDDR_VTERM напряжение терминации мы уже рассмотрели,когда сигнал MAINON становится сигналом S3 и запускает напряжение 0.75VSMDDR_VTERM,так что будем смотреть как получаются +5V,+3V.
Здесь всё так же как и с другими уже сформировавшимися напряжениями при помощи сигнала SUSON,поэтому объясню на словах.
Когда сигнал MAINON попадёт на затвор PQ39 тот в свою очередь откроется и подтянет к земле 5VPCU,таким образом на затворе PQ76 появится 0 и он будет закрыт,давая возможность 15ти вольтам попасть на затворы PQ79 и PQ65 после чего появятся напряжения +3V,+5V.
Теперь посмотрим как появляется 1.8V.За это напряжение отвечает микросхема OZ8116LN с позиционным номером PU8.Для того что бы это напряжение появилось,PU8 должна быть запитана.Для этого на 2ю ножку данной микросхемы должно приходить напряжение VIN,а так же дежурные 5VPCU на 5ю и 16ю ножку.Если с этим всё в порядке,то на данном этапе на её 3ю ножку(ON/SKIP)поступит сигнал MAINON,который и даст данной микросхеме команду на запуск и она сформирует напряжение 1.8V,после чего она должна выдать сигнал PGD(Power Good)c 4й ножки.
Теперь посмотрим как появляется 1.5V.Здесь всё так же просто как и с уже рассмотреными ранее напряжениями.MAINON имея высокий логический уровень откроет транзистор PQ26 и просадит 5V на землю.За счёт этого на затворе PQ27 будет выставлен 0 и он будет закрыт,позволив напряжению 15V попасть к затвору PQ29 и таким образом откроет его для формирования +1.5V.
Теперь напряжение +1.05V_VTT.За него отвечает микросхема RT8204CGQW с позиционным номером PU6.Здесь всё так же как и с PU8.На 16ю ножку должно прийти питание VIN,на 2ю и 9ю питание 5VPCU и сигнал MAINON (15я ножка - EN/DEM),после чего данная микросхема запустится и сформирует +1.05V_VTT и если на этом этапе всё пройдёт нормально,то она так же как и предидущие микросхемы выдаст сигнал PGOOD с 4й ножки.
Пятнадцатым и шестнадцатым шагом было включение напряжений за которые отвечают сигналы SUSON и MAINON.
А именно:
SUSON - 5VSUS,3VSUS,1.5VSUS.
MAINON - 0.75VSMDDR_VTERM,+5V,+3V,+1.8V,+1.5V,+1.05V_VTT.
Это можно увидеть на рисунке 13 или на странице 2 схемы на Lenovo ThinkPad Edge 14.
Так же есть шаги 15а и 16а,это как и говорилось ранее сигналы Power Good которые в последующем становятся сигналами HWPG.Но об этом далее.
В этой статье пойдет речь о микросхеме, которая управляет работой всего ноутбука, в том числе, его включением. Её неисправности приводят к значительным последствиям для пользователя и чаще всего требуют ремонта материнской платы в сервисе.
Задачи мультиконтроллера
Мультиконтроллером, или, по-английски Super I/O (SIO) или Multi I/O (MIO), на сленге «мультик» (еще в документации встречается EC-контроллер), называется микросхема, обеспечивающая мониторинг напряжений и температур, работу с периферийными устройствами. Такими устройствами могут быть клавиатура, мышь, кнопка включения, датчик закрытия крышки и тп. Основным его предназначением является управление клавиатурой (даже в схемах он обозначается как KBC-контроллер), однако со временем производители начали нагружать его множеством дополнительных функций, таких, например, как индикация работы жесткого диска (светодиод на передней панели ноутбука) или управление частотой работы кулера. Именно на эту микросхему «приходят» все контактные дорожки шлейфа клавиатуры ноутбука. На самом деле на ножки мультиконтроллера приходят сигналы практически со всех устройств и микросхем ноутбука. Уровень сигнала может быть постоянный 3.3V (высокий логический уровень), либо изменяющийся в случае обмена данными (измеряется осциллографом).
В запуске ноутбука он вообще играет первостепенную роль, так как именно на него приходит сигнал с кнопки включения, и именно он запускает все источники напряжений и затем отдает сигнал южному мосту для начала инициализации.
Мультиконтроллер управляет включением ШИМ-контроллеров, вырабатывающих необходимые для работы узлов ноутбука напряжения, ключами, коммутирующими эти напряжения. Через мультиконтроллер по протоколу Firmware HUB или SPI подключена микросхема Flash c программным обеспечением (которую иногда приходятся прошивать). В состав мультиконтроллера могут входить контроллеры часов реального времени, жестких дисков, USB, интегрированный аудиоинтерфейс, интерфейс LPC.
Разновидности мультиконтроллеров
Мультиконтроллеры выпускают следующие фирмы: ENE; Winbond; Nuvoton; SMCS; ITE; Ricoh.
Сильно отличаются только последние, хотя бы методом пайки, они BGA.
На современных мультиконтроллерах имеется по 128 ножек, но их назначение сильно отличатся в зависимости от модели мультиконтроллера и даже от его ревизии. К примеру, KB926QF-D2 и KB926QF-C0. — два совершенно разных мультиконтроллера.
Неисправности мультиконтроллеров и их симптомы
Мультиконтроллер часто выходит из строя при залитии ноутбука жидкостью или вследствие выгорания ключей, формирующих 3.3В. Второе случается при скачках питания в сети.
К основным симптомам неисправности мультиконтроллера можно отнести некорректную работу клавиатуры и тачпада и отсутствие запуска как такого. Также, следствием неправильной работы «мультика» являются и глюки периферии — неправильная работа датчиков, кулера. Также по вине SIO может не определяться жесткий диск и другие накопители (работа USB при этом завязана на южный мост).
В диагностике и ремонте ноутбуков мультиконтроллер имеет ключевое значение, поскольку отсутствие на мультиконтроллере важных сигналов, приходящих с микросхем ноутбука, позволяет выявить неисправные микросхемы и произвести их замену. На мультиконтроллер приходит LPC шина, по который идет обмен с южным мостом, и с которой можно считать всем известные POST-коды. Для этого, кстати, в ремонте часто подпаиваются на прямую к ножкам мультиконтроллера тоненькими проводками и выводят коды на индикаторы.
Также иногда во время самостоятельной замены матрицы ноутбука забывают отключить аккумулятор. Это тоже может привести к выгоранию мультиконтроллера. Но, к счастью, микросхемы эти не очень дорогие и ремонт такой неисправности обходится дешевле, чем, например, замена южного моста или видео. Многие микросхемы взаимозаменяемы, а перепайка их — 15 минут (если не потребуется прошивать флэш память).
Диагностика запуска (или отсутствия старта) ноутбука
Для правильной диагностики старта ноутбука необходимо понимать его последовательность и участие в нем мультиконтроллера.
Последовательность включения ноутбука
При включении ноутбука дежурное напряжение через кнопку подается на мультиконтроллер, который запускает все ШИМ-контроллеры, вырабатывающие все напряжения (их много), и, при нормальном исходе, вырабатывают сигнал PowerGood. По этому сигналу снимается сигнал RESET с процессора и он начинает выполнять программный код, записанный в BIOS с адресом FFFF 0000.
Затем BIOS запускает POST (Power-On Self Test), который выполняет обнаружение и самотестирование системы. Во время самотестирования обнаруживается и инициализируется видеочип, включается подсветка, определяется тип процессора. Из данных BIOS определяется его тактовая частота, множитель, настройки. Затем определяется тип памяти, ее объем, проводится ее тестирование. После этого происходит обнаружение, инициализация и проверка подключенных накопителей – привода, жесткого диска, карт-ридера, флоппи дисковода и др., а после проверка и тестирование дополнительных устройств.
После завершения POST управление передается загрузчику операционной системы на жестком диске, который и загружает ее ядро.
Из описания выше видно, что мультиконтроллер вступает в работу на самой ранней стадии, и без его нормального запуска не сформируются управляющие напряжения. Вот условия, необходимые для того, чтобы мультиконтроллер дал команду на старт:
Для инициализации мультиконтроллера необходима микропрограмма, которая хранится либо в той же микросхеме флеш-памяти, что и прошивка BIOS (UEFI), либо в отдельной микросхеме меньшего объема, либо внутри самого мультиконтроллера. В первых двух случаях восстановить прошивку не представляется сложным. А вот прошить непосредственно мультиконтроллер пока могут не любые программаторы. Да и подключиться к нужным его выводам не всегда просто. Прошиваемые мультиконтроллеры — NPCE288N/388N, KB9010/9012/9016/9022, IT8585/8586/8587/8985/8987.
Лучше всего найти документацию и описание сигналов по мультикам IT, которые используются во многих бюджетных ноутбуках, в том числе ASUS и Dell. Благодаря схемам можно понять и отследить, где находятся выше указанные сигналы. Например, в случае IT8752 и аналогичных (используется, например, в семействе ASUS K40 и K50) для диагностики вас должны интересовать, помимо выше указанных, следующие сигналы на мультике:
Питание на IT85xx мульты поступает следующее: +3VA_EC, +3VPLL, +3VACC, без них микросхема не запустится.
Последовательность диагностики мультиконтроллера
Рассмотрим схему последовательности включения ноутбука:
Процедура включения материнской платы
Для диагностики в целом, вам нужно рассмотреть две ситуации:
1. Питание не появляется, светодиод питания не горит.
Ищем неисправность в схеме управления питанием. Проверяем 19 V со входа , приходящие на микросхему зарядки (charger), например, MAX. Проверяем наличие дежурных напряжений +3VSUS и т.п. Через форфмирователи +3 V питание поступает на мультик — проверяем это питание на входе. Проверяем выходные сигналы мультика. В некоторых случаях слетает прошивка микроконтроллера. В этом случае, при наличии входных напряжений, нужные управляющие сигналы с микросхемы контроллера не формируются при нажатии кнопки питания.
2. Питание есть, светодиод питания горит, но ноутбук не включается, экран темный. Индикатор жесткого диска сначала включается и гаснет, затем не горит.
Очевидно, мультик работает, управляющие сигналы формируются, однако, дальнейший запуска не происходит или он обрывается. Чаще всего виноваты в этом микросхемы чипсета, сам процессор или тактирующие генераторы, которые срывают генерацию сигналов. Для быстрой диагностики прогреваем микросхемы чипсета по-очереди. После каждого прогрева пробуем на включение. Если ноутбук включается, то виноват конкретный чип. Очень важна предыстория поломки — например, если до поломки перестали работать USB порты, то скорее всего вышел из строя южный мост. Если были артефакты на встроенном видео, то виноват северный мост.
Если же мы видим, что питающие напряжения присутствие, а сигналы с мультика нет (например, не снимается сигналы RESET), то изучаем все сигналы более подробно.
Вот обобщенный порядок следования сигналов при запуске EC:
<- входящий сигнал
-> исходящий сигнал
Вот алгоритм проверки популярного мульта KB3926, его можно применить и к аналогам:
- Проверить питание мульта 3,3v (9 нога)
- Проверить генерацию кварца (123 нога)
- Проверить сигнал с кн.вкл. ON/OFF 3,3v/0,5v (32 нога)
- Проверить АCCOF 0V (27 нога)
- Проверить ACIN 3.1V (127 нога)
- Проверить PBTN_OUT 0v/3,3v (117 нога)
- Проверить сигнал 0v/3,3v (14 нога)
- Проверить RSMRST 0v/3,3v (100 нога)
- Проверить PWROK 0v/3,3v (104 нога)
- Проверить SYSON 0v/3,3v (95 нога)
- Проверить VRON 0v/3,3v (121 нога)
- Проверить обмен мульта с югом 3,3v (77,78 нога)
- Проверить обмен мульта с югом 0v/3,3v (79,80 нога)
- Проверить генерацию PCICLK (12 нога)
- Проверить сигнал 0v/3,3v (1,2,3 нога)
- Проверить TP_CLK 0v/0,1v (87 нога)
- Проверить TP_DATA 0v/5v (88 нога)
- Проверить SUSP 0v/3,3v (116 нога)
- Проверить VGA_ON 0v/3,3v (108 нога)
Вот дополнительные контрольные значения напряжения:
Программатор от Сергея Вертьянова
Шим sc6105b на двадцать ног, на зеленом проводе 4.8 вольта, на фиолетовом 5 вольт. Нет запуска при замыкании зеленого провода на черный. Визуально были замечены вздутые конденсаторы на линии 12 и 5 вольт, также дроссель черный прожаренный. Заменил конденсаторы, протестил транзисторы, резисторы и диоды рядом с дросселем, все живые. Запуска нет. Грешу на дроссель, как протестить его на работоспособность ?
А зачем его тестировать? Он выгорел. Менять на аналогичный с донора.
Проверил дроссель на межвитковые, замыканий нет и обрыва тоже нет.
Точно такого же дохлого бп нет. Есть другие но там дроссели отличаются по количеству контактов и толщине дросселя. Есть ли какие то нюансы по подбору замены дросселя на выходе бп ?
ДГС однозначно менять! Берете ДГС с любого БП, внимательно рассматриваете на плате и определяете-где какие выхода, может надо будет переместить проводки под вашу плату. Главное - не меньше размер и не тоньше провод(может быть намотка двойным проводом). Я брал ДГС даже с АТ. Перепутаете провода ДГС, тогда возможно - блок не запустится; - блок запустится, но напряжения не будут соответствовать номинальным.
В общем взял ДГС с другого БП. Сопоставил где 12 вольтная линия где 5 вольтная и две линии идут на диоды. В общем схема соединения идентичная, просто порядок другой. Бп так и не запустился. То бишь ничего не изменилось. Может шим ?
Что за модель блока питания ?
Если будете менять дроссель (ДГС) на другой выпаянный с БП, то там количество витков и сечение проводов не особо критично.
Из личной практики моей, смотрите на фазировку обмотки -12 вольт, она бывает в противоположную сторону в разных БП. Просто линия -12 запаивается наоборот если то нужно иначе при попытке включения БП по линии -12 станет не -12 а -24 вольта, и это не возможно будет заметить мультиметром так как ШИМ SG6105 (6109) среагирует молниеносно (у неё встроенный супервизор по всем линиям питаний).
Вообще если ДГС почернел то под замену 100% даже если нет КЗ между обмотками (они будут при включении БП возможно).
Модель БП POWER SUPPLY ATX P4-400W по ходу 400ватт здеся нет. Выпаял микруху и проверил сопротивления на ногах относительно 15 ноги
1-440к, 2-400к, 3-615к, на 4,5,6,10,11,12,13,14,16,17,18,19 воще ничего, 7,8,9,20 -420к мерил цифровым мультиметром на пределе 2Мом. Стрелочника к сожалению нет. По ходу микруха дохлая. Ну и проверил вентилятор на бп, цельнолитая, лопасть воще не шевелится, может ли изза перегрева все это произойти ? Попробую найти замену шиму.
SG6105 вряд ли дохлая, они вообще редко ломаются. Тем более питание на неё не было завышено. А то что 4.8 вольта поступало, так это берётся с дежурки для старта, а просадка, это из за падения напряжения так как от дежурки идёт ещё диод к ней 1n4148. Ей для старта хватает того напряжения.
Надо смотреть прежде всего на перво причину. Был в блоке питания перегрев. Заменить дроссель обгоревший а также подозрительные конденсаторы. Так же в силовой части у силовых ключей должны быть два конденсатора 50вольт 1-10 микрафарад. Их автоматом под замену на 100% нормальные с хорошим ESR, а емкость от 1 до 10 мкФ это не важно, главное что бы были одинаковые. Без них (вернее если с ними что не так) БП никогда нормально работать не будет либо не запуститься.
Всем доброго времени суток!
Поломка ноутбука, чаще всего, происходит внезапно, когда мы ее не ждем. Вроде бы только вчера с ним было всё в порядке, работал, а на утро ни с того ни с чего не включается.
Вопросов этой категории достаточно много (особенно сейчас, когда ноутбуки стали популярнее обычных стационарных ПК). Вообще, т.к. многие пользователи обычно не очень конкретно описывают проблему, сразу хочется сказать, что ноутбук может "не включаться" по-разному:
- может вообще не реагировать ни на какие нажатия, не "моргать" светодиодами и пр.;
- а может реагировать на кнопку питания, доходить до загрузки ОС и показывать какую-нибудь ошибку.
Собственно, исходя из этого и построю статью. Рассмотрю ниже различные варианты, и что можно в каждом предпринять для восстановления работы. Статья, если уж и не отремонтирует вашу технику, так поможет разобраться в проблеме и сэкономить энную сумму денег.
И так, что делать, если не включается ноутбук
Важная заметка
Для начала не паниковать ! Гораздо больший вред можно нанести поспешными действиями. В ряде случае удается решить проблему самостоятельно. Попытайтесь вспомнить, после чего это произошло, что было накануне, были ли ошибки, устанавливали какой-нибудь софт и т.д. Порой, это очень помогает в решении!
Кстати, сразу добавлю, что, если ваш ноутбук на гарантии - не рекомендую вскрывать его, извлекать жесткий диск, и вообще проводить какие-то ни было манипуляции. Все это может стать причиной в отказе гарантийного обслуживания!
Важная заметка!
Очень часто ноутбук не включается из-за севшей аккумуляторной батареи.
Причем, замечу, что даже если вы только-только пару часов назад ее зарядили - это не гарантия, что она не могла сесть (например, ноутбук мог самостоятельно выйти из спящего режима, запустить обновление системы, и в процессе работы посадить аккумулятор. К сожалению, это не редкость).
Я уж не говорю о том, что аккумулятор может быть просто изношенным и не обеспечивать нужных токов для полноценной работы устройства.
Если ноутбук вообще не реагирует ни на какие нажатия, ни один из светодиодов не горит.
Данная проблема часто возникает из-за отсутствия питания. Пройдусь по шагам, что нужно проверить и сделать:
- если вы пытаетесь ноутбук запустить на работе от аккумулятора - то подключите его к сети питания и попробуйте вновь включить устройство;
- обратите внимание, горит ли индикатор (светодиод) питания, при подключении ноутбука к сети. Если нет - то это может быть причиной вышедшего из строя зарядника (перебитого провода, разбитого разъема и т.д.). Попробуйте вынуть штекер питания из разъема и подключить его вновь;
Индикатор питания, батареи, Wi-Fi и др. на корпусе устройства
Lenovo B70 - кнопка для входа в BIOS рядом с входом для питания. Нажимать удобнее всего карандашом или ручкой
В принципе, если все из вышеперечисленного не помогло, то посоветовать что-то еще в данном случае затруднительно. Рекомендую нести ноутбук в сервис на диагностику. Причиной поломки может быть, как и полная ерунда (отошедший проводок питания - ремонт копеечный), так и довольно серьезная причина, например, сгоревшая микросхема на мат. плате.
Если светодиоды загораются, ноутбук шумит, но изображения на экране нет
- в первую очередь рекомендую подключить к ноутбуку внешний экран и посмотреть, будет ли на нем изображение. Если будет - проблема вероятно связана с монитором ноутбука, если не будет - то вероятнее всего есть проблемы с видеокартой или мат. платой устройства. О том, как подключить к ноутбуку внешний монитор
- затем обратите внимание : экран всегда черный, или при включении он все-таки моргает (на секунду-другую), а потом изображение пропадает. Если сначала изображение видно, а как только начинается загрузка Windows - пропадает, скорее всего, проблема кроется в "битой" системе (см. следующий подраздел этой статьи);
- далее внимательно посмотрите на поверхность экрана : часто сгорает подсветка, и из-за этого на экране ничего не видно. Попробуйте посветить на экран фонариком или настольной лампой - возможно вы увидите картинку (пример представлен ниже). В среднем, ремонт подсветки не так дорог (к тому же не редко, когда причина этого кроется в износе шлейфа, стоимость которого копейки. ).
Сгорела подсветка экрана - изображение видно только при свечении настольной лампы на поверхность монитора
Ноутбук ASUS - отключение экрана (функциональная клавиша)
Артефакты на экране ноутбука
Если вместо загрузки Windows показывается черный экран с какими-то надписями (ошибками)
- для начала посмотрите, что за ошибка выводится . Если успели ее записать (сфотографировать) - то можно попытаться поискать ее решение. Например, нередко возникают проблемы с поиском загрузочного диска (часто бывает при подключении второго HDD или SSD, при обновлении или при переустановке Windows, при некорректном завершении работы ноутбука и пр.);
Ошибка при загрузке Windows на фоне черного экрана
Восстановление при загрузке. Устранение неполадок, мешающих загрузке Windows
Если после включения, ноутбук сразу же выключается или перезагружается
Конечно, многого я не рассмотрел, но по такому обтекаемому вопросу, наверное, это сделать достаточно трудно. Пробежавшись по вариантам, представленным выше, вы сможете отсечь и устранить часть причин, из-за которых ноутбук мог не включиться.
Читайте также: