Не заряжается фонарик от usb
Привет всем! Поговорим о светодиодных фонариках. Кто не знает их? Они пришли на замену устаревшим батарейным фонарикам. В них стояли простые батарейки и лампочки накаливания, которые быстро разряжали батареи фонарика и он переставал радовать нас своим ярким светом. Жизнь не стоит на месте, так как и технологии. Все развивается, что то придумывается более совершенное. Это не обошло стороной и светодиодные фонарики. Что представляет собой такой фонарик?
В принципе ничего особо не изменилось, только вместо энергоемких лампочек накаливания стали использовать экономичные сверхяркие светодиоды. У нас на рынке они появились в китайских зажигалках с подсветкой. Это многие помнят. Ну а потом все пошло и поехало. Первые светодиодные фонарики с сухими батарейками, потом с заряжаемыми аккумуляторами от сети. Потом уже стали выпускать лампы уличного освещения, составленные из нескольких десятков сверхярких светодиодов.
Светят такие фонарики своеобразным светом, который соответствует определенному спектру. Но в прочем я думаю они создавались не для того, чтобы под их освещением читать книги. Скорее всего вы испортите глаза. Самое главное достоинство таких фонариков, это то что они имеют меньшее энергопотребление от источника тока и большой срок службы. Думаю за светодиодными светильниками большое будущее. Только осталось подобрать спектр, не вредящий нашему с вами зрению.
Ну а теперь практически давайте попробуем сделать ремонт светодиодного фонарика. Для начала приведу упрощенную электрическую схему карманного фонарика с подзаряжаемым аккумулятором от сети.
Как видно, схема простая. Основные элементы: токоограничивающий конденсатор, выпрямительный диодный мост на четырех диодах, аккумулятор, выключатель, сверхяркие светодиоды, светодиод индикации зарядки аккумулятора фонарика.
Ну а теперь по порядку о назначении всех элементов в фонарике.
Токоограничивающий конденсатор. Он предназначен для ограничения тока заряда аккумулятора. Его емкость для каждого типа фонарика может быть разной. Применяется неполярный слюдяной конденсатор. Рабочее напряжение должно быть не меньше 250 вольт. В схеме он должен обязательно шунтирован, как показано, резистором. Он служит для разряда конденсатора после того, как вы вытащите фонарик с зарядки из розетки. В противном случае вас может ударить током, если вы случайно прикоснетесь к сетевым выводам 220 вольт фонарика. Сопротивление этого резистора должно составлять не менее 500 кОм.
Выпрямительный мост собирается на кремниевых диодах с обратным напряжением не менее 300 вольт.
Для индикации зарядки аккумулятора фонарика применяется простой светодиод красного или зеленого свечения. Он подключен параллельно одному из диодов выпрямительного моста. Правда в схеме я забыл указать указать резистор, включенный последовательно с этим светодиодом.
Про остальные элементы говорить не имеет смысла, так все и так должно быть понятно.
Хочется обратить ваше внимание на основных моментах ремонта светодиодного фонарика. Рассмотрим основные неисправности и способы их устранения.
1. Фонарик перестал светить. Здесь вариантов не так уж и много. Причиной может служить выход из строя сверхярких светодиодов. Это может произойти к примеру в следующем случае. Вы поставили фонарик на зарядку и нечаянно включили выключатель. В этом случае произойдет резкий скачок тока и один или несколько диодов выпрямительного моста могут быть пробиты. А за ними может быть и конденсатор не выдержит и замкнет. Напряжение на аккумуляторе резко возрастет и светодиоды выйдут из строя. Так что ни в коем случае не включайте при зарядке фонарик, если не хотите его выбросить.
2. Фонарик не включается. Ну здесь нужно проверить выключатель.
3. Фонарик очень быстро разряжается. Если ваш фонарик со “стажем”, то скорее всего аккумулятор отработал свой срок службы. Если вы активно пользуетесь фонарем, то после одного года эксплуатации аккумулятор уже не держит.
4. Фонарик не заряжается. Светодиод индикации зарядки не светиться. Разберите фонарик и проверьте электромонтаж на обрыв. Если обрыва не найдено, то тогда осмотрите токоограничивающий конденсатор. На внешний вид он может быть раздут или быть не поврежденным. В любом случае он подлежит замене, так как может иметь внутренний обрыв. Устанавливайте такой емкости и рабочим напряжением не меньше 250 вольт. При повреждении конденсатора проверьте все диоды выпрямительного моста мультиметром в режиме проверки диодов.
Подскажите. Уменя не стало зарядки. Разобрал, выяснил что вышел из строя диод 1N4148 и не работает светодиод. Заменил 1N4148 и опять он вышел из строя. Вопрос: вляет ли светодиод на работу? Все остальное цело(емкость и 2 сопр).
Подскажите. Уменя не стало зарядки. Разобрал, выяснил что вышел из строя диод 1N4148 и не работает светодиод. Заменил 1N4148 и опять он вышел из строя. Вопрос: вляет ли светодиод на работу? Все остальное цело(емкость и 2 сопр).
Последний раз редактировалось Admin; 01.08.2006 в 21:11 .
Приглашаем всех желающих 25/11/2021 г. принять участие в вебинаре, посвященном антеннам Molex. Готовые к использованию антенны Molex являются компактными, высокопроизводительными и доступны в различных форм-факторах для всех стандартных антенных протоколов и частот. На вебинаре будет проведен обзор готовых решений и перспектив развития продуктовой линейки. Разработчики смогут получить рекомендации по выбору антенны, работе с документацией и поддержкой, заказу образцов.
причиной может быть (переходной процес конденсатора,большой ток в момент включения) или глубокый разаряд аккумляторов или КЗ,попробуй заряжай аккумляторы с другого источника а потом включай от сети
Приглашаем всех желающих ознакомиться с материалами вебинара, на котором была рассмотрена новая и перспективная продукция компании Traco. Мы подробно рассмотрели сильные стороны и преимущества продукции Traco, а также коснулись практических вопросов, связанных с измерением уровня шумов, промывкой изделий после пайки и отдельно разобрали, как отличить поддельный ИП Traco от оригинала.
Подскажите. Уменя не стало зарядки. Разобрал, выяснил что вышел из строя диод 1N4148 и не работает светодиод. Заменил 1N4148 и опять он вышел из строя. Вопрос: вляет ли светодиод на работу? Все остальное цело(емкость и 2 сопр).
Да, влияет.
Через него протекает ток обратной полярности переменного сетевого напряжения (по отношению к току зарядки), нужный для перезарядки конденсатора.
Если светодиода нет или он оборван, то этот обратный ток будет протекать через аккумуляторы и диод 1N4148, который быстро сгорит от перегрева, ведь его допустимое обратное напряжение 50В (реальное 100-150В), что значительно ниже сетевого, к которому еще прибавляется и напряжение заряженного за предыдущий цикл конденсатора.
Учитывая критичность работы схемы к обрыву светодиода его можно шунтировать резистором около 100-300ом.
Предисловие
Началось все с предновогодних распродаж, когда, лазая по многочисленным скидкам, я случайно увидел этот фонарик за 150 руб. У меня есть в хозяйстве Nitecor Tini и Convoy S2+ и я представляю себе, как должен светить фонарик. От этой железки я света не ожидал от слова «совсем», а взять решил ради батарейки и встроенного в корпус USB штекера. Если совсем плохо, даже выкинуть не жалко. Когда же получил его, решил, что он вполне сгодится как «фонарик для ребенка». Внутри литиевый, а не кадмиевый аккумулятор, корпус неломучий, крышка на USB металлическая, есть даже темляк на руку. Решил подарить ребенку — заряжать сам сможет, худо бедно, но светит. Но, конечно, не с родным синюшным диодом. Его надо заменить. А вот на что, я сам боюсь ошибиться с выбором, поэтому прошу у читателей помощи. Вот, например, нашел такой лот, но не уверен подойдет ли… Кто разбирается, киньте ссылку в комментах на доступный по цене, среднего качества диодик с белым или теплым белым светом и подходящий по размерам для перепайки.Спасибо!
А теперь посмеемся
Характеристики с сайта продавца:
Супер яркий, ослепляющий…
Световой поток — 2000 лм
Режимы — hi/mid/strob (SOS по долгому нажатию)
Время жизни — 100 000 часов
Расстояние — 100 м
Диод — Q5
Батарея — 2000 мА/ч
Водонепроницаемый
Размеры — 26 х 93. 105 мм
Что-ж, с размерами продавец не обманул
Что мы имеем
«Голова» с выпуклой линзой фокусирует свет от диода без всяких рефлекторов. Рефлектор, к слову, есть, но он плоский и отражает лишь свет, падающий в фонарик извне. Голова с линзой просто елозит за счет резинового уплотнительного кольца и может быть вытащена на любое положение (в пределах 93-105 мм) без всяких ступенек. Выглядит так:
При этом пятно света (не обращайте внимание на яркое пятно на кругах засветки — это отражение от гладкой стены, глазами засветка равномерная по всему кругу) от довольно широкого сужается до проекции излучающего диода:
Вот последний кадр крупно:
Как видите, все бы ничего, если бы не цвет… освещал, кстати, белую стену.
Разборка
Фонарик развинчивается без особых усилий. Голова и попа на резьбе, кнопка прижимается кольцом, которое просто впрессовано в корпус. Все детали корпуса из алюминия, часть крашеная в черный, часть без покрытия. Ну и резиновая кнопка.
Изнутри вынимается пластиковый тубус, в котором собраны USB разъем, аккумулятор и плата управления.
Плата управления двусторонняя, со стороны АКБ микросхема II7T1, найти даташита не смог. Положим, что это контроллер заряда.
Со стороны диода микросхемка еще смешнее, с маркировкой 17. Это стало быть драйвер светодиода.
Ну и диод с рефлектором, на плате и под микроскопом. Теплоотвод происходит за счет контакта подложки диода с алюминиевым цилиндром, который тоже контачит с корпусом фонарика.
Диаметр самой подложки 16 мм, диаметр капельки диода 2.5 мм
Энергопотребление
Режим HIНапряжение на диоде: 3 В
Ток: 0.5 А
Мощность: 1.5 Вт
В этом режиме фонарик в руках греется примерно до 38°, работает минут 40.
Режим MED (тут все таки ШИМ, измерения цифровым прибором приблизительны)
Напряжение на диоде: 2 В
Ток 120 мА
Мощность: 250 мВт
В этом режиме фонарик почти не греется, если положить на стол, становится холоднее руки, примерно градусов 30°…
Режим зарядки
Ток заряда АКБ: 0.55 А
Фонарик никак не показывает разряд АКБ, просто становится тусклее свет. В процессе заряда на плате под кнопкой включения горит красным светодиод, по окончании зеленым. Зарядка длится меньше часа, так как АКБ в фонарике на 300 мА/ч. Режим максимальной яркости
Режим средней яркости
Заряд аккумулятора
Китайские фонарики заполонили рынок, став важной частью быта множества людей. Они дешевы, функциональны и не требуют обслуживания. Однако есть риск неожиданного выхода аппарата из строя. На помощь придет знание, как разобрать и осуществить ремонт светодиодного фонарика.
Какие бывают неисправности фонарика
К распространенным причинам поломки относят следующие факторы:
- окисление и засорение контактов элементов питания;
- нарушение целостности проводов;
- неисправность выключателя;
- отсутствие питания в цепи;
- проблемы с зарядкой аккумуляторов;
- поломка светодиодов.
Видео по теме: 3 основные поломки налобных фонарей
Часто нарушение работы связано с окислением. Особенно это характерно для старых устройств, использующихся в сложных погодных условиях с высокой влажностью или перепадами температур. Продукты окисления остаются на металлических контактах и не позволяют току проходить от одного элемента к другому. При этом аппарат может мигать или не включаться.
Как разобрать фонарик своими руками
Первый этап ремонта - разборка. Большая часть моделей имеет сходную конструкцию и разбирается по одним принципам. Отдельно стоит рассмотреть ручные и налобные устройства.
Ручной
- Рукоятка откручивается от основной части. Иногда корпус состоит из трех частей и тогда придется отсоединить сначала верхнюю часть с линзой, а затем рукоятку.
- Из оставшейся части выталкивается микросхема с диодом.
- Для получения доступа к светодиоду и драйверу может потребоваться открутить шайбу пинцетом.
- Вынимается сама плата со светодиодным элементом.
Собирается конструкция в обратном порядке.
Налобный
Инструкция по разборке:
- Открывается отсек с элементами питания.
- Извлекаются батарейки или аккумуляторы.
- В открывшейся области потребуется открутить шурупы отверткой.
- Непосредственно под поддоном для батарей находится печатная плата со светодиодом и всеми сопутствующими элементами.
Обычно после откручивания винтов плату можно извлечь из корпуса лампы для последующего рассмотрения или ремонта. Иногда может потребоваться отсоединить защелки или крепления.
Сборка осуществляется в обратном порядке по тем же правилам.
Как починить фонарик
Если фонарик перестает работать, нередко проблема решается своими силами без особых знаний и инструментов. Первым делом необходимо проверить источники питания. Лучше попробовать вставить заведомо заряженные батареи.
Далее нужно внимательно осмотреть контакты. Желательно очистить все доступные места спиртом, чтобы устранить продукты окисления.
Будет полезно ознакомиться: Заметки о ремонте фонариков
В переключателе не должно быть никаких посторонних предметов или загрязнений. Докрутите резьбу, обеспечив таким образом более плотный контакт. Если это не помогло, можно попробовать припаять переключатель от другого фонарика с аналогичной конструкцией.
В ряде случаев причиной неисправности является перегорание элементов микросхемы. Иногда проблему можно решить прозвоном и последующей перепайкой вышедших из строя деталей. Но такая работа достаточно сложна и требует от пользователя определенных навыков. С учетом невысокой стоимости китайских моделей процедура и вовсе бессмысленна.
Рекомендуем к просмотру: Доработка фонарика
Как не допустить поломку
Чтобы фонарь мог прослужить максимально долго без неполадок, рекомендуется придерживаться некоторых правил:
- Покупать изделия только от надежных изготовителей с хорошей репутацией. Выбор в пользу дешевых китайских моделей с высокой долей вероятности приведет к быстрому выходу из строя.
- Условия эксплуатации прибора должны соответствовать конструкции. Если не предусмотрено качественной защиты от влаги или пыли, подвергать аппарат воздействию этих сред не рекомендуется. Это же касается температурного режима.
- Аккумуляторы или батареи питания должны быть также высокого качества. Любые перепады напряжения или тока негативно влияют на ресурс изделия.
- Желательно не оставлять устройство на долгое время включенным, если это не требуется. Каждая минута работы ускоряет деградацию кристалла, а также снижает емкость элемента питания.
- Желательно избегать физического воздействия на устройство и минимизировать риски разрушения корпуса.
Соблюдение описанных рекомендаций позволит обеспечить стабильную работу фонарика с сохранением всех его эксплуатационных характеристик. При этом деградация осветительного прибора неизбежна, однако она займет гораздо больше времени.
Отремонтировать вышедший из строя фонарик в ряде случаев можно своими силами без обращения к специалистам. Это связано с простотой конструкции и широкими возможностями по замене компонентов.
Поработав около года, мой налобный фонарь LED Headlight XM-L T6 стал включаться через раз, а то и вообще отключаться без команды. Вскоре перестал включаться совсем.
Первым делом я подумал, что отходит аккумулятор в батарейном отсеке.
Сам бокс рассчитан на литий-ионные аккумуляторы типоразмера 18650 с платой защиты. А я использовал аккумуляторы без защиты и заряжал их универсальной зарядкой Turnigy Accucell 6 (аналог IMAX B6).
Поэтому пришлось нарастить контакты каплей припоя. Как известно, припой сплав мягкий и со временем напайка на контакте могла поистереться, а соединение с аккумулятором нарушиться.
Но, после проверки выяснилось, что причина неисправности кроется вовсе не в плохом контакте, а электронной начинке фонаря.
Любой ремонт начинается с диагностики и разборки. Разбирается фонарь легко. Вынимаем литиевый аккумулятор из батарейного отсека. Далее выкручиваем четыре шурупа.
Под поддоном для аккумуляторов смонтирована небольшая печатная плата.
На печатке всего десять элементов. Функцию управления выполняет миниатюрная микросхема в корпусе SOT-23-6 с маркировкой 819L 24 (U1). Как оказалось, это микросхема FM2819 - специализированный контроллер (не драйвер!) для светодиодов. Называть эту микросхему драйвером как-то язык не поворачивается.
Данная микросхема поддерживает четыре режима управления светодиодом, в том числе строб, от которого все хотят избавиться. Режимы переключаются циклически по команде с тактовой кнопки без фиксации.
Если бы мой фонарь не сломался, то о четвёртом режиме SOS, который активируется долгим нажатием кнопки (около 3 секунд), я бы и не узнал. Когда покупал, на странице продажи упоминалось только три режима.
Когда же стал изучать даташит на FM2819, то оказалось, что эта микросхема поддерживает четыре режима.
О микросхеме FM2819 я расскажу чуть позднее, а пока разберёмся, за что отвечают остальные элементы схемы.
Жёлтый керамический конденсатор запаян вместо родного, который отвалился, когда я разбирал корпус батарейного отсека. Судя по фото аналогичных фонарей ёмкость конденсатора, который установлен между выводом KEY и минусом "-" питания, может быть в довольно больших пределах. В моём был установлен чип-конденсатор на 10pF (100), а в других фонарях могут быть запаяны и на 10nF (103), и на 100nF (104), а то и вовсе отсутствовать.
Функцию силового ключа, который подаёт напряжение питания от литиевого аккумулятора на мощный светодиод, выполняет P-канальный MOSFET транзистор FDS9435A в корпусе SO-8. На фото видно, что на его корпусе указана сокращённая маркировка 9435A.
Плюс питания со стока транзистора FDS9435A подаётся на мощный светодиод не напрямую, а через три токоограничивающих резистора (R200 - 0,2 Ом; R500 - 0,5 Ом; 2R0 - 2 Ом). Они соединены параллельно. Их общее сопротивление меньше наименьшего сопротивления в цепи (т.е. меньше 0,2 Ом). Если посчитать, то оно равно 0,13 Ом.
О том, как соединять резисторы и рассчитывать их общее сопротивление я рассказывал тут.
Для подсветки тылового индикатора LED HEADLIGHT используется обычный SMD-светодиод красного цвета свечения. На плате обозначен, как LED. Он подсвечивает пластину из белого пластика.
Так как батарейный отсек находится с тыльной части головы, то в ночное время суток такой индикатор хорошо заметен.
Явно не помешает при велопрогулках и ходьбе вдоль дорожных трасс.
Через резистор в 100 Ом плюсовой вывод красного SMD-светодиода подключается к стоку MOSFET-транзистора FDS9435A. Таким образом, при включении фонаря напряжение поступает и на основной светодиод Cree XM-L T6 XLamp, и на маломощный SMD-светодиод красного цвета свечения.
С основными детальками разобрались. Теперь расскажу, что же сломалось.
При нажатии на кнопку включения фонаря было видно, что красный SMD светодиод начинает светить, но очень тускло. Работа светодиода соответствовала штатным режимам работы фонаря (максимальная яркость, низкая яркость и стробоскоп). Стало ясно, что управляющая микросхема U1 (FM2819) скорее всего исправна.
Раз она штатно реагирует на нажатие кнопки, то, возможно, проблема кроется в самой нагрузке – мощном белом светодиоде. Отпаяв провода, идущие на светодиод Cree XM-L T6, и подключив его к самодельному блоку питания, я убедился в его исправности.
Далее решил замерить напряжение на самой плате, чтобы узнать, где потерялись драгоценные вольты от аккумулятора.
При замерах оказалось, что в режиме максимальной яркости, на стоке транзистора FDS9435A всего 1,2V. Естественно, этого напряжения не хватало для питания мощного светодиода Cree XM-L T6, а вот красному SMD-светодиоду его было достаточно, чтобы его кристалл начал тускло светиться.
Стало ясно, что неисправен транзистор FDS9435A, который задействован в схеме как электронный ключ.
В замену транзистору ничего подбирать не стал, а купил оригинальный P-канальный PowerTrench MOSFET FDS9435A фирмы Fairchild. Вот его внешний вид.
Как видим, на этом транзисторе присутствует полная маркировка и отличительный знак фирмы Fairchild (F), выпустившей данный транзистор.
Сравнив оригинальный транзистор с тем, что установлен на плате, мне в голову закралась мысль о том, что в фонаре установлена подделка или менее мощный транзистор. Возможно, даже брак. Всё-таки фонарь не успел отслужить и года, а силовой элемент уже "отбросил копыта".
Цоколёвка транзистора FDS9435A выглядит следующим образом.
Как видим, внутри корпуса SO-8 находится всего лишь один транзистор. Выводы 5, 6, 7, 8 объединены и являются выводом стока (Drain). Выводы 1, 2, 3 также соединены вместе и являются истоком (Source). 4-ый вывод – это затвор (Gate). Именно на него приходит сигнал с управляющей микросхемы FM2819 (U1).
В качестве замены транзистору FDS9435A можно использовать APM9435, AO9435, SI9435. Всё это аналоги.
Выпаять транзистор можно как привычными методами, так и более экзотическими, например, сплавом Розе. Также можно применить метод грубой силы – подрезать ножом выводы, демонтировать корпус, а затем отпаять оставшиеся на плате выводы.
После замены транзистора FDS9435A налобный фонарь стал работать исправно.
На этом рассказ о ремонте закончен. Но, не будь я любопытным радиомехаником, то так и оставил бы всё, как есть. Работает и ладно. Но мне не давали покоя некоторые моменты.
Так как изначально я не знал, что микросхема с маркировкой 819L (24) это FM2819, то вооружившись осциллографом, я решил посмотреть, какой сигнал подаёт микросхема на затвор транзистора при разных режимах работы. Интересно же.
При включении первого режима на затвор транзистора FDS9435A с микросхемы FM2819 подаётся -3,4. 3,8V, которое практически соответствует напряжению на аккумуляторе (3,75. 3,8V). Естественно, на затвор транзистора подаётся отрицательное напряжение, так как он P-канальный.
При этом транзистор полностью открывается и напряжение на светодиоде Cree XM-L T6 достигает 3,4. 3,5V.
В режиме минимального свечения (1/4 яркости) на транзистор FDS9435A с микросхемы U1 приходит около 0,97V. Это если проводить замеры рядовым мультиметром без наворотов.
На самом же деле в этом режиме на транзистор приходит сигнал ШИМ (широтно-импульсная модуляция). Подключив щупы осциллографа между "+" питания и выводом затвора транзистора FDS9435A, я увидел вот такую картину.
Картинка ШИМ-сигнала на экране осциллографа (время/деление - 0,5; V/деление - 0,5). Время развёртки - mS (миллисекунды).
Так как на затвор поступает отрицательное напряжение, то "картинка" на экране осциллографа переворачивается. То есть сейчас на фото в центре экрана показан не импульс, а пауза между ними!
Сама пауза длится около 2,25 миллисекунд (mS) (4,5 деления по 0,5mS). В этот момент транзистор закрыт.
Затем транзистор открывается на 0,75 mS. При этом на светодиод XM-L T6 поступает напряжение. Амплитуда каждого импульса составляет 3V. А, как мы помним, мультиметром я намерил всего лишь 0,97V. В этом нет ничего удивительного, так как мультиметром я мерил постоянное напряжение.
Вот этот момент на экране осциллографа. Переключатель время/деление установил на 0,1, чтобы лучше определить длительность импульса. Транзистор открыт. Не забываем про то, что на затвор приходит минус "-". Импульс перевёрнут.
Теперь можно посчитать скважность импульсов (S).
S = (2,25mS + 0,75mS) / 0,75mS = 3mS / 0,75mS = 4. Где,
S - скважность (безразмерная величина);
Τ - период следования (миллисекунды, mS). В нашем случае период равен сумме включения (0,75 mS) и паузы (2,25 mS);
τ- длительность импульса (миллисекунды, mS). У нас это 0,75mS.
Также можно определить коэффициент заполнения (D), который в англоязычной среде называют Duty Cycle (часто встречается во всяких даташитах на электронные компоненты). Обычно он указывается в процентах %.
D = τ/Τ = 0,75/3 = 0,25 (25%). Таким образом, в режиме пониженной яркости светодиод включен лишь на четверть периода.
Когда делал подсчёты первый раз, то коэффициент заполнения у меня вышел 75%. Но потом, увидев в даташите на FM2819 строчку про режим 1/4 яркости, понял, что где-то облажался. Я просто перепутал паузу и длительность импульса местами, поскольку по привычке принял минус "-" на затворе за плюс "+". Поэтому и вышло всё наоборот.
В режиме "STROBE" мне не удалось посмотреть ШИМ сигнал, так как осциллограф аналоговый и довольно старый. Синхронизировать сигнал на экране и получить чёткое изображение импульсов мне не удалось, хотя было видно его наличие.
Типовая схема включения и цоколёвка микросхемы FM2819. Может, кому пригодится.
Не давали мне покоя и некоторые моменты, связанные с работой светодиода. Со светодиодными фонарями я раньше, как-то не имел дела, а тут захотелось разобраться.
Когда я полистал даташит на светодиод Cree XM-L T6, который установлен в фонаре, то понял, что номинал токоограничительного резистора маловат (0,13 Ом). Да, и на плате одно посадочное место под резистор было свободно.
Когда шерстил по интернетам в поисках информации о микросхеме FM2819, то видел фото нескольких печатных плат аналогичных фонарей. На одних были запаяны четыре резистора по 1 Ому, а на некоторых вообще SMD-резистор с маркировкой "0" (перемычка), что, на мой взгляд, вообще является преступлением.
Светодиод – это нелинейный элемент, и, поэтому, последовательно с ним необходимо включать токоограничивающий резистор.
Если заглянуть в даташит на светодиоды серии Cree XLamp XM-L, то можно обнаружить, что их максимальное напряжение питания составляет 3,5V, а номинальное 2,9V. При этом ток через светодиод может достигать величины в 3А. Вот график из даташита.
Номинальным током для таких светодиодов считается ток в 700 mA при напряжении в 2,9V.
Конкретно в моём фонаре ток через светодиод составил 1,2 A при напряжении на нём в 3,4. 3,5V, что явно многовато.
Чтобы уменьшить прямой ток через светодиод я запаял вместо прежних резисторов четыре новых номиналом в 2,4 Ом (типоразмер 1206). Получил общее сопротивление в 0,6 Ом (мощность рассеивания 0,125W * 4 = 0,5W).
После замены резисторов прямой ток через светодиод составил 800 mA при напряжении в 3,15V. Так светодиод будет работать при более мягком тепловом режиме, и, надеюсь, прослужит долго.
Поскольку резисторы типоразмера 1206 рассчитаны на мощность рассеивания в 1/8W (0,125 Вт), а в режиме максимальной яркости на четырёх токоограничивающих резисторах рассеивается мощность около 0,5Вт, то от них желательно отвести излишнее тепло.
Для этого зачистил от зелёного лака медный полигон рядом с резисторами и напаял на него каплю припоя. Такой приём частенько применяется на печатных платах бытовой электронной аппаратуры.
После доработки электронной начинки фонаря покрыл печатную плату лаком PLASTIK-71 (электроизоляционный акриловый лак) для защиты от конденсата и влаги.
При расчётах токоограничительного резистора я столкнулся с некоторыми тонкостями. За напряжение питания светодиода стоит принимать напряжение на стоке MOSFET транзистора. Дело в том, что на открытом канале MOSFET-транзистора теряется часть напряжения из-за сопротивления канала (R(ds)on).
Чем выше ток, тем большее напряжение "оседает" по пути Исток-Сток транзистора. У меня при токе в 1,2А оно составило 0,33V, а при 0,8А – 0,08V. Также часть напряжения падает на соединительных проводах, которые идут с клемм аккумулятора на плату (0,04V). Казалось бы, такая мелочь, а в сумме набегает 0,12V. Так как под нагрузкой напряжение на Li-ion аккумуляторе проседает до 3,67. 3,75V, то на стоке MOSFET'а уже 3,55. 3,63V.
Ещё 0,5. 0,52V гасит цепь из четырёх параллельных резисторов. В итоге на светодиод приходит напряжение в районе 3-ёх с небольшим вольт.
На момент написания этой статьи в продаже появилась обновлённая версия рассмотренного налобного фонаря. В нём уже встроена плата контроля заряда/разряда Li-ion аккумулятора, а также добавлен оптический датчик, который позволяет включать фонарь жестом ладони.
Читайте также: