На каком языке представлена информация обрабатываемая компьютером
Кодирование - это представление информации с помощью некоторого кода.
Код - это система условных знаков для представления информации.
Способы кодирования информации
- Графический
- Числовой
- Символьный
Декодировани е - это действие по восстановлению первоначальной формы представления информации. Для декодирования необходимо знать код и правила кодирования.
Средством кодирования и декодирования служит кодовая таблица соответствия. Например, соответствие в различных системах счисления - 24 - XXIV, соответствие алфавита каким-либо символамПримеры кодирования информации
Примером кодирования информации является азбука Морзе.
В азбуке Морзе используется всего 2 символа - точка и тире (короткий и длинный звук).
Еще одним примером кодирования информации является флажковая азбука.
Также примером является азбука флагов
Всем известный пример кодирования - нотная азбука.
Кодирование информации
Представление информации происходит в различных формах в процессе восприятия окружающей среды живыми организмами и человеком, в процессах обмена информацией между человеком и человеком, человеком и компьютером, компьютером и компьютером.
Кодирование - это операция преобразования знаков или групп знаков одной знаковой системы в знаки или группы знаков другой знаковой системы.
Примером может служить язык жестов.
Сигналы
Вокруг нас существуют преимущественно два сигнала, например:
Всё это сигналы, обозначающие количество информации в 1 бит.
1 бит - это такое количество информации, которое позволяет нам выбрать один вариант из двух возможных.
Распознавание информации компьютером
Компьютер - это электрическая машина, работающая на электронных схемах. Чтобы компьютер распознал и понял вводимую информацию, ее надо перевести на компьютерный (машинный) язык.
Алгоритм, предназначенный для исполнителя, должен быть записан, то есть закодирован, на языке, понятном компьютеру.
Это электрические сигналы: проходит ток или не проходит ток.
Машинный двоичный язык - последовательность "0" и "1". Каждое двоичное число может принимать значение 0 или 1.
Каждая цифра машинного двоичного кода несет количество информации, равное 1 бит.
Бит и байт
Двоичное число, которое представляет наименьшую единицу информации, называется бит. Бит может принимать значение либо 0, либо 1. Наличие магнитного или электронного сигнала в компьютере означает 1, отсутствие 0.
Строка из 8 битов называется байт. Эту строку компьютер обрабатывает как отдельный символ (число, букву).
Рассмотрим пример. Слово ALICE состоит из 5 букв, каждая из которых на языке компьютера представлена одним байтом. Стало быть, Alice можно измерить как 5 байт.
Процессор берёт команды программ и данные для обработки из памяти. Память является электронным устройством и состоит из микросхем, которые, в свою очередь, состоят из тысяч более мелких электронных компонентов. Подобные электронные компоненты могут находиться только в двух состояниях — «включено» или «выключено», что соответствует двум цифрам двоичной системы счисления 1 или 0 или одному биту.
Таким образом, любая информация в памяти компьютера представляется в виде последовательности битов, каждый из которых находится в одном из допустимых состояний.
При использовании одного бита можно представить в памяти компьютера только два различных символа. Одному из них будет сопоставлен двоичный код — ноль, а второму — единица.
Если мы увеличим длину кодовой комбинации символа до двух цифр, то получим следующие коды: 00, 01, 10, 11. Таким образом, в памяти компьютера можно будет представить четыре различных символа. При последовательном наращивании длины двоичной кодовой комбинации увеличивается количество символов, которые могут быть закодированы. Кодом длиной в три символа представляются 8 различных символов (000, 001, 010, 011, 100, 101, 110, 111) и т. д.
При длине кодовой комбинации L количество кодовых комбинаций K определяется по формуле:
K = 2 L ,
Текстовая информация состоит из букв, цифр, знаков препинания, специальных символов, таких, как пробел, символ перевода строки и др. Для кодирования текстовой информации в компьютере используются равномерные коды. В случае, когда код каждого символа занимает в памяти компьютера 1 байт, или 8 бит, общее количество символов, которые можно закодировать, равно 2 8 = 256. Если кодовое слово состоит из двух байтов, можно закодировать 2 16 = 65 536 символов.
Существуют стандартные таблицы кодов. Они могут использовать один или два байта для кодирования одного символа.
Широко используется таблица кодов, известная как стандарт ASCII (American Standart Code for Information Interchange — Американский стандартный код для обмена информацией), использующая один байт для кодирования одного символа. ASCII представляет собой кодировку для представления десятичных цифр, символов латинского и национального алфавитов, знаков препинания, символов арифметических операций и управляющих символов. Управляющие символы называют непечатаемыми символами, к ним относятся такие, как «перевод строки» (код символа 10), «возврат каретки» (код 13) и др.
Первая половина кодовой таблицы содержит стандартные символы ASCII (символы с кодами 0 — 127), они одинаковые во всех странах.
Коды в таблице записаны в шестнадцатеричной системе счисления, как принято в информатике. Код символа А, например, 4116 = 6510. Таблицу кодов не надо запоминать, но следует помнить последовательность символов:
- знаки препинания и арифметических операций;
- цифры от 0 до 9;
- прописные символы латинского алфавита;
- строчные символы латинского алфавита.
Вторая часть кодовой таблицы (символы с кодами 128 — 255) называют расширенными кодами ASCII. В расширенные коды ASCII включают символы национальных алфавитов, например символы кириллицы. Но даже с учётом этих дополнительных знаков алфавиты многих языков не удаётся охватить при помощи 256 знаков. По этой причине существуют различные варианты кодировки ASCII, включающие символы разных языков.
Отсутствие согласованных стандартов привело к появлению различных кодовых таблиц (вернее, различных вторых частей кодовых таблиц) для кодирования символов кириллицы, среди которых
- международный стандарт ISO 8859;
- кодовая таблица фирмы Microsoft CP-1251 (кодировка Windows);
- кодовая таблица, применяемая в ОС Unix KOI8R и др.
По этой причине тексты на русском языке, набранные с использованием одной кодовой таблицы, невозможно прочитать при использовании другой кодовой таблицы.
В настоящее время в компьютерах широко применяется стандарт кодирования Unicode (Юникод), в котором для кодирования одного символа отводятся один байт, два байта или четыре байта. Первые 128 символов Юникода совпадают с символами ASCII. Остальная часть кодовой таблицы включает символы, используемые в основных языках мира.
Изображение на экране монитора формируется набором экранных точек —пикселей. Каждая экранная точка имеет свой цвет. Картинка на экране — это отображение информации из памяти компьютера.
Первые мониторы были монохромными. Точка на экране монохромного монитора может быть только светлой (белой) или тёмной (чёрной). Для кодирования цвета пикселя используется один бит памяти, значение 1 соответствует белому цвету, 0 — чёрному. Подобные экраны используются в недорогих сотовых телефонах, системах видеонаблюдения и других устройствах.
Каждый пиксель современного дисплея определяется компонентами трёх основных цветов: красного (Red, R), зелёного (Green, G) и синего (Blue, B). В памяти необходимо сохранять информацию о состоянии каждой точки изображения, т. е. о состоянии каждой из её трёх составляющих. Управление яркостью каждой составляющей позволяет влиять на цвет экранной точки.
Цветовой моделью называется правило представления цвета в виде наборов чисел (обычно трёх-четырёх). В компьютерной графике используется несколько видов цветовых моделей.
Рассмотрим цветовую модель, связанную с представлением пикселя составляющими красного, зелёного и синего цветов. Она называется RGB(Red-Green-Blue)-моделью.
В RGB-модели происходит сложение цветов и добавление их к чёрному цвету экрана, поэтому она называется аддитивной (additive). Разные цвета образуются смешиванием трёх основных цветов в разных пропорциях, т. е. с разными яркостями.
Глубина цвета (color depth) — это число бит, используемых для представления каждого пикселя изображения.
В модели RGB каждый цвет может кодироваться тремя байтами (режимTrueColor). Каждый байт отвечает за яркость красной, зеленой и синей составляющей пикселя соответственно. Таким образом, глубина цвета в режиме TrueColor составляет 24 бита. Изображения, пиксели которых закодированы таким способом, называются 24-битными изображениями.
Чтобы указать цвет пикселя в модели RGB, достаточно перечислить разделённые точками яркости каждой составляющей, например: 255.255.0 — код жёлтой точки, записанный при помощи десятичных кодов яркостей. Значения яркости варьируются от 0 («выключено») до 255 («включено на максимум»). Если значения яркостей всех трёх составляющих равны, получим оттенки серого цвета.
Если изменять интенсивность каждого цвета для смешанных цветов, например задать цвет 127.127.0, то мы получим на экране болотный цвет, а не более тёмный оттенок жёлтого цвета, как можно было ожидать. Это связано с тем, что человеческий глаз более чувствителен к зелёному цвету. Чем ниже интенсивности составляющих, тем темнее цвет на экране. И наоборот — чем выше интенсивности цветов, тем светлее оттенки.
Модель CMY использует также три основных цвета: голубой (Cyan), фуксин (Magenta, иногда его называют «пурпурный» или «малиновый») и жёлтый (Yellow). Эти цвета описывают отражённый от белой бумаги свет трёх основных цветов RGB-модели.
Модель CMY является субтрактивной (основанной на вычитании) цветовой моделью. Краситель, нанесённый на белую бумагу, вычитает часть спектра из падающего белого света. Например, на поверхность бумаги нанесли жёлтый (Yellow) краситель. Теперь синий свет, падающий на бумагу, полностью поглощается. Таким образом, жёлтый носитель вычитает синий свет из падающего белого.
При смешении двух субтрактивных составляющих результирующий цвет затемняется, а при смешении всех трёх должен получиться чёрный цвет. Но при использовании реальных полиграфических красок получается не чёрный, а неопределённый тёмный цвет. Поэтому к трём основным цветам CMY-модели добавляют чёрный (Black) и получают новую цветовую модель CMYK.
Цветовая модель CMYK используется в основном в полиграфии при выводе изображения на печать.
Количество различных цветов K и количество битов для их кодирования (глубина цвета) L связаны формулой K = 2 L . При L = 24 бита можно закодировать 2 24 = 16 777 216 различных цветов.
Если известно разрешение экрана (количество точек по горизонтали и вертикали) и глубина цвета, можно определить объём видеопамяти для хранения одного кадра (одной страницы) изображения. Например, при разрешении экрана 640 × 480 и использовании 24 бит на точку объём видеопамяти равен 640 ∙ 480 ∙ 24 = 7 372 800 бит = 900 Кбайт.
Все компьютерные изображения делятся на два больших класса — растровые и векторные. Различие между ними определяет способ хранения изображений в памяти компьютера.
Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем громче звук; чем больше частота сигнала (число колебаний в секунду), тем выше тон.
В настоящее время существует два основных способа записи звука —аналоговый (непрерывный) и цифровой (дискретный). Виниловая пластинка является примером аналогового хранения звуковой информации, так как звуковая дорожка изменяет свою форму непрерывно. Компакт-диски являются примером цифрового хранения звуковой информации, так как звуковая дорожка компакт-диска содержит участки с различной отражающей способностью.
Для того чтобы записать звук на какой-нибудь носитель, его нужно преобразовать в электрический сигнал. Это делается с помощью микрофона. Микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Так звуковые волны преобразуются микрофоном в электрический ток переменного напряжения, который представляет собой аналоговый сигнал. Применительно к электрическому сигналу термин «аналоговый» обозначает, что этот сигнал непрерывен по времени и амплитуде (см. рис. 11а).
Для того чтобы компьютер мог обрабатывать звук, непрерывный сигнал должен быть превращён в последовательность электрических импульсов (двоичных нулей и единиц). В процессе кодирования непрерывного звукового сигнала производится его дискретизация по времени. Дискретизация — это преобразование непрерывных сигналов в набор дискретных значений, каждому из которых присваивается число — кодовое слово.
Для дискретизации надо несколько раз в секунду измерять величину аналогового сигнала и кодировать её, например, с помощью 256 значений.
Фактически плоскость, на которой изображён непрерывный сигнал, разбивается вертикальными и горизонтальными линиями (см. рис. 11б), и считается, что график проходит строго через узлы полученной сетки, непрерывная плавная линия заменяется ломаной.
Дискретизация по времени соответствует разбиению вертикальными линиями. Она характеризуется частотой дискретизации. Частота дискретизации звукового компакт-диска 44,1 кГц, DVD — примерно 96 кГц. Это значит, что величина аналогового сигнала измеряется 44 100 и 96 000 раз в секунду соответственно. Если кодируется стереозвук, отдельно кодируются два канала.
Горизонтальное разбиение также важно: чем меньше расстояние между горизонтальными линиями сетки, тем качественнее будет цифровой звук. Количество линий сетки определяет количество уровней звука, поэтому горизонтальное разбиение называется квантованием по уровню. Для кодирования полученных значений уровней используют двоичные числа. Количество используемых для кодирования бит называется глубиной звука. Если глубина звука 8 бит или 16 бит, можно закодировать соответственно 2 8 = 256 уровней или 2 16 = 65 536 уровней сигналов. Это значит, что интервал от нулевого до максимального напряжения аналогового сигнала разбивается на 256 или 65 536 уровней, что соответствует количеству высот звука (тонов).
Преобразование непрерывной звуковой волны в последовательность звуковых импульсов различной амплитуды производится с помощью аналого-цифрового преобразователя (АЦП), размещённого на звуковой плате.
С помощью специальных программных средств (редакторов звукозаписей) открываются широкие возможности по созданию, редактированию и прослушиванию звуковых файлов. Но, как видно из примера, звуковые файлы занимают очень много места в памяти. Поэтому используются методы сжатия звуковых файлов. Качество музыки после сжатия несколько ухудшается, но это практически незаметно, так как при разработке алгоритмов сжатия учитываются законы восприятия музыки человеком.
Вы уже владеете одним языком, а быть может и несколькими. Знаете некоторые понятия из химии, физики, математики и других наук. А для того, чтобы понимать и использовать компьютерный язык нужно иметь знания о представлении информации в памяти компьютера. В этой статье поговорим о представлении текста, графики, звука в ПК и рассмотрим основные положения, касающиеся этой темы.
Введение
Для того чтобы было намного проще понять, как представляются файлы в компьютере приведем несколько примеров из жизни с которыми сталкивался каждый:
- Вы хотите перейти дорогу, но дойдя до перекрестка, вы останавливаетесь, потому что загорелся красный свет. После небольшого ожидания цвет светофора меняется на зеленый. Машины тормозят, а вы продолжайте свой путь.
- Вы сильно торопитесь, когда едете на работу или учебу. Участник дорожного движения, который едет спереди двигается на низкой скорости. Вы моргаете ему фарами, он уступает вам дорогу, и вы едете дальше.
А теперь переведем эти ситуации на язык информатики – в данных ситуациях светофор и фары передают код. Красный сигнал говорит нам о том, что нужно остановиться, а моргание фарами это “код” с помощью которого мы просим уступить дорогу. Быть может вы удивитесь, но в основу любого человеческого языка тоже положен код, только символы в нем называются алфавитом. Теперь рассмотрим это определение более подробно. Итак:
Код – набор обозначений, с помощью которого можно представить информацию.
Кодирование – процесс, при котором данные переводятся в код.
По мере развития информационной сферы учеными и разработчиками предлагались многие способы кодирования информации. Некоторые из них остались незамеченными, другими же мы пользуемся до сих пор. В качестве примера приведем азбуку Морзе, разработанную Самюэлем Морзе в 1849 году. Буквы и цифры определяются в ней тремя символами:
- Тире (длинный сигнал);
- Точка (короткий сигнал);
- Пауза или отсутствие сигнала.
Однако наибольшую популярность завоевал “двоичный код”, который предложил использовать Вильгельм Лейбниц в семнадцатом веке. Информация в нем определяется двумя символами – 0 и 1. Разработчикам данный метод кодирования сильно понравился из-за простоты его реализации. 0- это пропуск сигнала, а число 1- его наличие. Именно двоичное представление используется сегодня в ПК и в другой цифровой технике.
Это интересно Что такое множество 👨🎓. Свойства и операции над множествамиПредставление и устройство памяти персонального компьютера
Скорее всего, вы знаете, что внутренняя память компьютера состоит из двух частей – оперативной и основной:
Чтобы иметь представление, как работает внутренняя память компьютера, и как её использовать, нужно заглянуть внутрь системного блока. Здесь можно провести аналогию с тетрадным листом “в клеточку”. Каждая клетка содержит в себе одно из двух состояний – 0 или 1. Если в ячейке стоит 1, то это говорит о том, что данная ячейка внутренней памяти включена, если 0, то выключена. Этот способ представления информации называется цифровым кодированием.
Каждая ячейка внутренней памяти ПК хранит в себе единицу информации, которая называется битом. Составляя различные последовательности из битов, мы можем определить различную информацию. У цифрового кодирования много преимуществ – легко копировать и переносить материалы с одного носителя на другой. При создании дубликата копия полностью идентична оригиналу, что невозможно осуществить с данными, которые представлены в аналоговой форме. Из-за большого количества преимуществ в 80-х годах 20 века люди начали использовать способы представления текста, звука и фото с помощью цифр.
Представление графических типов информации в ПК
Сейчас существует два способа представления графических данных в машинном коде.
Растровый
Суть этого способа заключается в том, что графическое изображение делится на маленькие фрагменты, которые называются пиксели. Каждый пиксель содержит в себе информацию о своем цвете. Данный способ называется растровым кодированием.
Векторный
В отличие от растрового кодирования, в данном способе представление графики описывается с помощью векторов. Каждому вектору задают координаты начала и конца, толщину и цвет. Например, для отрисовки окружности надо будет задать координаты её центра и радиус, цвет заполнения (если он есть), а также цвет и толщину контура.
Текст и числа
Представление текстовой информации во внутренней памяти персонального компьютера осуществляется с помощью специальных таблиц. На данный момент, распространение получили стандарты ASCII и UTF-8
ASCII
Таблица была разработана и стандартизирована в 1963 в США. Она предназначалась для обмена данными по телетайпу. Однако сейчас, с её помощью, можно определить различные буквы, знаки и числа. Один знак в этой таблице кодируется восемью битами.
Стандарт был предложен в 1992 году. Её разработали Кен Томпсон и Роб Пайк. С помощью этой кодировки можно представить все знаки в мире. Обладает большой популярностью в интернете – большинство сервисов и сайтов используют именно это таблицу.
Для записи голоса используется микрофон и звуковая плата компьютера. Чтобы компьютер смог определить звуковую информацию – её необходимо перевести в цифровую. Для этого аналоговый сигнал поступает на аналого-цифровой преобразователь. Там он разбивается на маленькие временные кусочки, каждому из которых устанавливается величина интенсивности голоса.
В результате функция A(t) преобразуется в дискретную последовательность. Качество звуковой информации полученной на выходе определяется частотой дискретизации.
Частота дискретизации – количестве измерений уровней громкости за одну секунду. Чем больше это значение, тем лучше качество.
Видео
Заключение
Теперь вы знаете о представлении информации в памяти компьютера. Если разобраться в цифровом кодировании и устройстве внутренней памяти ПК, то вы сможете понять и другие, более серьезные разделы информатики, такие как программирование, IP-адресация и другие. Если у вас возникли вопросы по теме, то задавайте их в комментариях к статье.
А11. В каком устройстве ПК производится обработка информации?
- внешняя память
- дисплей
- процессор
- мышь
А12. Устройство ввода информации - джойстик - используется:
- для компьютерных игр;
- при проведении инженерных расчётов;
- для передачи графической информации в компьютер;
- для передачи символьной информации в компьютер;
А13. Мониторов не бывает
- монохромных
- жидкокристаллических
- на основе ЭЛТ
- инфракрасных
А14. К внешней памяти относятся:
- модем, диск, кассета
- кассета , оптический диск, магнитофон
- диск, кассета, оптический диск
- Мышь, световое перо, винчестер
А15. Прикладное программное обеспечение - это:
- справочное приложение к программам
- текстовый и графический редакторы, обучающие и тестирующие программы, игры
- набор игровых программ
А16. Операционные системы:
- DOS, Windows, Unix
- Word, Excel, Power Point
- (состав отделения больницы): зав. отделением, 2 хирурга, 4 мед. Сестры
- dr. Web, Антивирус Касперского
А17. Вирусы, способные обитать в файлах документов называются:
- сетевыми
- макро-вирусами
- файловыми
- загрузочными
А18. Какие программы из ниже перечисленных являются антивирусными?
- Doctor WEB, AVG
- WinZip, WinRar
- Word, PowerPoint
- Excel, Internet Explorer
А19. Объединение компьютеров и локальных сетей, расположенных на удаленном расстоянии, для общего использования мировых информационных ресурсов, называется.
- локальная сеть
- глобальная сеть
- корпоративная сеть
- региональная сеть
А20. При работе с текстовым редактором необходимы следующие аппаратные средства персонального компьютера:
- клавиатура, дисплей, процессор, оперативное запоминающее устройство
- внешнее запоминающее устройство, принтер
- мышь, сканер, жесткий диск
- модем, плоттер
4 вариант
Блок А.
При выполнении заданий этой части из четырёх предложенных вам вариантов выберите один верный.
А1. Поиск, сбор, хранение,преобразование,использование информации - это предмет изучения:
- информатики
- кибернетики
- робототехники
- Internet
А2. Информацию, существенную и важную в настоящий момент, называют:
Читайте также: