Msata ssd что это
Обсуждать вопрос необходимости замены старого HDD на современный SSD наверное не станем, а вот разобраться в многообразии форматов твердотельных дисков пожалуй стоит.
Бутерброд из 3,5" SATA HDD, 2,5" SATA SSD и mSATA SSD (снизу-вверх) Бутерброд из 3,5" SATA HDD, 2,5" SATA SSD и mSATA SSD (снизу-вверх)SATA SSD
Приводы такого формата по сути ничем, для системы, не отличаются от обычного дискового HDD . Есть конечно нюансы при работе на аппаратном и программном уровне, но для пользователя они скрыты. Мы просто покупаем диск, вставляем два провода и пользуемся.
Так как в настольных системах доминируют диски в формате 3,5 " (символ " обозначает дюймы), а в ноутбуках 2,5 ", а в реальности внутренности SSD по размеру ещё меньше, то формат 2,5 " для SSD прочно закрепился - и в случае установки такого привода в настольный компьютер используется переходник для крепления, либо в корпусе уже может быть предусмотрено посадочное место под SSD 2,5 ".
Производительность таких устройств ограничена производительностью шины SATA , которая для современных систем SATA3 равняется шести гигабитам, то есть теоретическая максимальная скорость работы не превышает 750 мегабайт в секунду. Несомненным плюсом таких дисков является обратная совместимость с SATA2 и даже с первой версией. Да, мы теряем в максимальной скорости, но получаем полную бесшумность, низкое тепловыделение, высокую скорость доступа к данным. То есть появляется возможность "прокачать" старый ноутбук с SATA2 и значительно повысить его производительность.
mSATA SSD
С 2009 года, когда был представлен этот вариант подключения устройств он прочно закрепился во всех компактных ультрабуках и планшетах. Предоставляя производительность SATA SSD он даёт компактность на уровне обычного ноутбучного Wi - Fi модуля. Габариты такого устройства 3х5 см. А самостоятельная замена, если она предусмотрена в корпусе устройства - значительно проще, чем даже замена SATA в стационарном ПК. Далеко не все ноутбуки комплектуются таким слотом, поэтому если бы вы хотели купить ноутбук с поддержкой mSATA , то информацию о конкретной модели нужно прорабатывать заранее.
Например, мой ноутбук, который был показан ранее в статьях о его разборке и возможностях апгрейда - имеет посадочное место на плате для mSATA , но разъём не был распаян. Мне пришлось найти плату-донор, с которой был взят сам разъем, а специалист по ремонту с помощью паяльной станции этот слот перепаял на плату моего ноутбука. И теперь я могу пользоваться mSATA устройством.
M.2 SSD (NVMe)
Данный интерфейс разрабатывался для замены mSATA , чтобы увеличить пропускную способность самой шины. В последней редакции протокола теоретическая скорость работы находится на уровне 4 гигабайт в секунду, что в пять с небольшим раз быстрее SATA3 . Дело в том, что M.2 подключается непосредственно к производительной шине PCI Express и предназначен именно для скоростных устройств.
И если увидеть mSATA на материнской плате стационарного компьютера было бы экзотикой, то M.2 - неотъемлемая часть топовых материнских плат, а некоторые варианты комплектуют двумя такими разъёмами.
PCIE SSD
PCIE SSD, можно установить в любой компьютер со свободным слотом PCIE PCIE SSD, можно установить в любой компьютер со свободным слотом PCIEПо своей сути ничем не отличаются по производительности от M.2 , но разработаны в формате обычной PCIE платы. И если М.2 на плате распаивается и подключается к шине еще на этапе проектирования, то PCIE SSD вы можете воткнуть в любой из доступных слотов PCIE , причем как в х1 , так и в х16 , будет ранжироваться только максимальная производительность. Для современных поколений плат оптимальным является подключение к порту х4 .
Плата-переходник, позволяет использовать M.2 диск для подключения к PCIE слоту Плата-переходник, позволяет использовать M.2 диск для подключения к PCIE слотуТакой формат может быть интересен владельцам хороших систем предыдущих поколений, когда покупка одной платы закрывает вопрос производительности системы без полного её апгрейда ради слота M.2 .
Только следует обратить внимание, что некоторые BIOS материнской платы не имеют возможности загрузки операционной системы с PCIE SSD .
Определите объём требуемого диска и сумму, которую вы готовы отдать на покупку. После этого ориентируйтесь по материнской плате вашего компьютера или ноутбука. Исключите неподдерживаемые типы подключения.
Например если у вас 4 порта SATA , три из которых заняты, а на плате есть свободный х4 или х8 PCIE слот, то имеет смысл выбрать PCIE SSD (если вы планируете полный апгрейд например через пол года, то можно купить M.2 диск и пока подключить через PCIE переходник, тогда после апгрейда вам будет достаточно M.2 диск вынуть из переходника и переставить в слот в новой материнской плате). Если же вы затеяли полный апгрейд или покупаете новую систему, то я бы рекомендовал выбрать плату с M.2 и купить соответствующий накопитель.
О преимуществах SSD перед классическими жесткими дисками мы говорили неоднократно: они более энергоэффективные, бесшумные, компактные, а главное – они значительно быстрее. Их основным недостатком (по крайней мере сейчас) остается все еще достаточно высокая цена за единицу объема и, следовательно, они являются более предпочтительными в сочетании со стандартным жестким диском большей емкости, т.е. когда SSD используется в качестве системного диска, на который установлена Windows и несколько важных программ. Это позволяет ускорить систему в несколько раз, в то время как HDD служит как пространство для хранения коллекции фильмов и музыки, фотографий и т.д.
Это, конечно, идеальное сочетание, которое сегодня можно встретить во многих настольных системах. Однако в случае с ноутбуками все несколько иначе. Так как пространство в ультра компактном корпусе современного мобильного компьютера строго ограничено, часто пользователям приходится выбирать между твердотельным и классическим диском, то есть между высокой скоростью и меньшей емкостью или большой вместимостью, но с гораздо более скромным быстродействием.
Разумеется, на рынке можно найти модели, предлагающие возможность для установки двух жестких / двух SSD-дисков или их комбинаций, но они являются относительно редкими и, следовательно, дорогими.
К счастью уже несколько лет существует новая и все еще сравнительно малоизвестная альтернатива, объединяющая «лучшее из обоих миров». Речь идет о стандарте mSATA (Mini-SATA), который иногда встречается под именем М.2 или NGFF (Next Generation Form Factor). Во всех случаях речь идет об одном и том же – особый класс дисковых устройств нового поколения, которые одновременно быстрые (поскольку используют технологию SSD) и ультра компактные, что делает их исключительно подходящими именно для ноутбуков, ультрабуков и гибридных систем.
mSATA SSD
Основной вклад в стандарт Mini-SATA внесла компания Intel, которая первоначально разработала его как ультрабыструю буферную память, ускоряющую работу компьютеров, использующих материнские платы с чипсетами кремниевого гиганта.
Однако сегодня этот формат наиболее широко используется именно в мире портативных компьютеров, в основном потому, что он миниатюрный и предоставляет пользователям ноутбуков легкий путь к скоростям SSD, причем без необходимости делать трудный выбор между твердотельным накопителем и жестким диском.
К сожалению, не все современные лэптопы предоставляет возможность использовать mSATA SSD. Другими словами, поддержка стандарта и слот для установки такого устройства должны быть предусмотрены производителем ноутбука. Но если ваш ноутбук поддерживает эту технологию, то вы безо всяких усилий можете добавить такой диск или заменить уже установленный mSATA SSD более новым, более быстрым устройством с большей емкостью.
Как можно узнать, поддерживает ли ноутбук mSATA SSD?
Самый простой способ, это посмотреть на официальном сайте производителя. Если у вас модель от Lenovo, произведенная после 2011 года, то она почти наверняка уже использует mSATA SSD или, по крайней мере, имеет слот для установки такого устройства.
Поддержку этой технологии предлагают и достаточно много моделей от Dell, Toshiba, HP, Acer и других ведущих производителей. Вот подробный (хотя и неполный) перечень моделей, которые оснащены слотом для mSATA SSD:
Установка
Сам процесс установки mSATA SSD не сложный, но требует некоторых технических знаний. Если вы чувствуете неуверенность, тогда официальный сайт аппаратной поддержки производителя вашего ноутбука должен быть вашей первой остановкой. Также информация об установке mSATA SSD может быть найдена в официальной документации, которая шла в комплекте с вашим мобильным компьютером.
Рынок таких устройств постоянно растет и предложения уже весьма впечатляющие –Samsung, например, предлагает модель с впечатляющей емкостью 1000 ГБ (1 ТБ). Цена, конечно, не менее впечатляющая – 600 долларов!
Конечно, можно найти и дешевые предложения, которых вполне достаточно для большинства пользователей. Они обеспечивают достаточно пространства для установки Windows и программ, таких как MS Office и Adobe Photoshop, и способны существенно ускорить как работу с ними, так и быстродействие ноутбука в целом. В тоже время жесткий диск останется для выполнения обычной функции, т.е. как место для хранения менее нуждающихся в скоростных дисках данных: документы, игры, фильмы, музыка, фотографии.
Как как в сфере аппаратного обеспечения компьютеров постоянно появляются различные новинки и альтернативные технологии, не все пользователи способны «угнаться» за ними.
По этой причине самостоятельная сборка компьютера, замена жесткого диска или оперативной памяти может стать достаточно сложным процессом, даже если ранее вы ее уже производили.
В данной статье мы рассмотрим интерфейс mSATA, ответим на вопрос о том, что это такое, для чего нужно и какие особенности имеет.
Содержание:
Определение
Где пользователь вообще может столкнуться с данным понятием и к чему оно относится?
Аббревиатура mSATA используется применительно к жестким дискам формата SSD и обозначает разновидность их интерфейса и форм фактора.
Потому обычно документации к такому оборудованию имеет место формулировка mSATA SSD.
Преимущества формата SSD очевидны. Это и быстродействие, и меньший нагрев, и почти полное отсутствие шума. Но какими же особенностями наделяет его наличие форм-фактора mSATA?В этом сокращении m обозначает mini (miniSATA), и из этого сразу становится ясно, что этот форм фактор предполагает устройство относительно небольшого, либо уменьшенного, размера. Габариты этого форм фактора составляют 5,95х3,0х0,3 см.
Изначально данный формат диска разрабатывался в качестве быстрой и стабильной буферной памяти.
И действительно, эти диски, благодаря трудам разработчиков компании Intel, значительно повышали быстродействие компьютера.
Но в настоящее время стандарт активно применяется во всех компактных устройствах, так как способен обеспечить скорость работы на уровне SSD.
Впервые реализовываться устройства с этим типоразмером стали, начиная с 2009 года. Именно в этом году его представила компания Serial ATA International Organization.
И хотя это достаточно удобный и функциональный тип жесткого диска, он не получил слишком широкого распространения.
В прошлой части цикла «Введение в SSD» мы рассказали про историю появления дисков. Вторая часть расскажет про интерфейсы взаимодействия с накопителями.
Общение между процессором и периферийными устройствами происходит в соответствии с заранее определенными соглашениями, называемыми интерфейсами. Эти соглашения регламентируют физический и программный уровень взаимодействия.
Интерфейс — совокупность средств, методов и правил взаимодействия между элементами системы.
Физическая реализация интерфейса влияет на следующие параметры:
- пропускная способность канала связи;
- максимальное количество одновременно подключенных устройств;
- количество возникающих ошибок.
Параллельные и последовательные порты
По способу обмена данными порты ввода-вывода делятся на два типа:
Последовательные порты — противоположность параллельным. Отправка данных происходит по одному биту за раз, что сокращает общее количество сигнальных линий, но усложняет контроллер ввода-вывода. Контроллер передатчика получает машинное слово за раз и должен передавать по одному биту, а контроллер приемника в свою очередь должен получать биты и сохранять в том же порядке.
Small Computer Systems Interface (SCSI) появился в далеком 1978 году и был изначально разработан, чтобы объединять устройства различного профиля в единую систему. Спецификация SCSI-1 предусматривала подключение до 8 устройств (вместе с контроллером), таких как:
- сканеры;
- ленточные накопители (стримеры);
- оптические приводы;
- дисковые накопители и прочие устройства.
Изначально SCSI имел название Shugart Associates System Interface (SASI), но стандартизирующий комитет не одобрил бы название в честь компании и после дня мозгового штурма появилось название Small Computer Systems Interface (SCSI). «Отец» SCSI, Ларри Баучер (Larry Boucher) подразумевал, что аббревиатура будет произноситься как «sexy», но Дал Аллан (Dal Allan) прочитал «sсuzzy» («скази»). Впоследствии произношение «скази» прочно закрепилось за этим стандартом.
В терминологии SCSI подключаемые устройства делятся на два типа:
Используемая топология «общая шина» накладывает ряд ограничений:
- на концах шины необходимы специальные устройства — терминаторы;
- пропускная способность шины делится между всеми устройствами;
- максимальное количество одновременно подключенных устройств ограничено.
Устройства на шине идентифицируются по уникальному номеру, называемому SCSI Target ID. Каждый SCSI-юнит в системе представлен минимум одним логическим устройством, адресация которого происходит по уникальному в пределах физического устройства номеру Logical Unit Number (LUN).
Команды в SCSI отправляются в виде блоков описания команды (Command Descriptor Block, CDB), состоящих из кода операции и параметров команды. В стандарте описано более 200 команд, разделенных в четыре категории:
- Mandatory — должны поддерживаться устройством;
- Optional — могут быть реализованы;
- Vendor-specific — используются конкретным производителем;
- Obsolete — устаревшие команды.
- TEST UNIT READY — проверка готовности устройства;
- REQUEST SENSE — запрашивает код ошибки предыдущей команды;
- INQUIRY — запрос основных характеристик устройства.
Дальнейшее усовершенствование SCSI (спецификации SCSI-2 и Ultra SCSI) расширило список используемых команд и увеличило количество подключаемых устройств до 16-ти, а скорость обмена данными по шине до 640 МБ/c. Так как SCSI — параллельный интерфейс, повышение частоты обмена данными было сопряжено с уменьшением максимальной длины кабеля и приводило к неудобству в использовании.
Начиная со стандарта Ultra-3 SCSI появилась поддержка «горячего подключения» — подключение устройств при включенном питании.
Первым известным SSD диском с интерфейсом SCSI можно считать M-Systems FFD-350, выпущенный в 1995 году. Диск имел высокую стоимость и не имел широкой распространенности.
В настоящее время параллельный SCSI не является популярным интерфейсом подключения дисков, но набор команд до сих пор активно используется в интерфейсах USB и SAS.
ATA / PATA
Интерфейс ATA (Advanced Technology Attachment), так же известный как PATA (Parallel ATA) был разработан компанией Western Digital в 1986 году. Маркетинговое название стандарта IDE (англ. Integrated Drive Electronics — «электроника, встроенная в привод») подчеркивало важное нововведение: контроллер привода был встроен в привод, а не на отдельной плате расширения.
Решение разместить контроллер внутри привода решило сразу несколько проблем. Во-первых, уменьшилось расстояние от накопителя до контроллера, что положительным образом повлияло на характеристики накопителя. Во-вторых, встроенный контроллер был «заточен» только под определенный тип привода и, соответственно, был дешевле.
ATA, как и SCSI, использует параллельный способ ввода-вывода, что отражается на используемых кабелях. Для подключения дисков с использованием интерфейса IDE необходимы 40-жильные кабели, также именуемые шлейфами. В более поздних спецификациях используются 80-жильные шлейфы: более половины из которых — заземления для уменьшения интерференции на высоких частотах.
На шлейфе ATA присутствует от двух до четырех разъемов, один из которых подключается в материнскую плату, а остальные — в накопители. При подключении двух устройств одним шлейфом, одно из них должно быть сконфигурировано как Master, а второе — как Slave. Третье устройство может быть подключено исключительно в режиме «только чтение».
Положение перемычки задает роль конкретного устройства. Термины Master и Slave по отношению к устройствам не совсем корректны, так как относительно контроллера все подключенные устройства — Slaves.
Особенным нововведением в ATA-3 считается появление Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.). Пять компаний (IBM, Seagate, Quantum, Conner и Western Digital) объединили усилия и стандартизировали технологию оценки состояния накопителей.
Поддержка твердотельных накопителей появилась с четвертой версии стандарта, выпущенной в 1998 году. Эта версия стандарта обеспечивала скорость обмена данными до 33.3 МБ/с.
Стандарт выдвигает жесткие требования к шлейфам ATA:
- шлейф обязательно должен быть плоским;
- максимальная длина шлейфа 18 дюймов (45.7 сантиметров).
Стандарт Serial ATA (SATA) был представлен 7 января 2003 года и решал проблемы своего предшественника следующими изменениями:
- параллельный порт заменен последовательным;
- широкий 80-жильный шлейф заменен 7-жильным;
- топология «общая шина» заменена на подключение «точка-точка».
Шестнадцать сигнальных линий для передачи данных в ATA были заменены на две витые пары: одна для передачи, вторая для приема. Коннекторы SATA спроектированы для большей устойчивости к множественным переподключениям, а спецификация SATA 1.0 сделала возможным «горячее подключение» (Hot Plug).
Некоторые пины на дисках короче, чем все остальные. Это сделано для поддержки «горячей замены» (Hot Swap). В процессе замены устройство «теряет» и «находит» линии в заранее определенном порядке.
Чуть более, чем через год, в апреле 2004-го, вышла вторая версия спецификации SATA. Помимо ускорения до 3 Гбит/с в SATA 2.0 ввели технологию Native Command Queuing (NCQ). Устройства с поддержкой NCQ способны самостоятельно организовывать порядок выполнения поступивших команд для достижения максимальной производительности.
Последующие три года SATA Working Group работала над улучшением существующей спецификации и в версии 2.6 появились компактные коннекторы Slimline и micro SATA (uSATA). Эти коннекторы являются уменьшенной копией оригинального коннектора SATA и разработаны для оптических приводов и маленьких дисков в ноутбуках.
Несмотря на то, что пропускной способности второго поколения SATA хватало для жестких дисков, твердотельные накопители требовали большего. В мае 2009 года вышла третья версия спецификации SATA с увеличенной до 6 Гбит/с пропускной способностью.
Особое внимание твердотельным накопителям уделили в редакции SATA 3.1. Появился коннектор Mini-SATA (mSATA), предназначенный для подключения твердотельных накопителей в ноутбуках. В отличие от Slimline и uSATA новый коннектор был похож на PCIe Mini, хотя и не был электрически совместим с PCIe. Помимо нового коннектора SATA 3.1 мог похвастаться возможностью ставить команды TRIM в очередь с командами чтения и записи.
Команда TRIM уведомляет твердотельный накопитель о блоках данных, которые не несут полезной нагрузки. До SATA 3.1 выполнение этой команды приводило к сбросу кэшей и приостановке операций ввода-вывода с последующим выполнением команды TRIM. Такой подход ухудшал производительность диска при операциях удаления.
Спецификация SATA не успевала за бурным ростом скорости доступа к твердотельным накопителям, что привело к появлению в 2013 году компромисса под названием SATA Express в стандарте SATA 3.2. Вместо того, чтобы снова удвоить пропускную способность SATA, разработчики задействовали широко распространенную шину PCIe, чья скорость превышает 6 Гбит/с. Диски с поддержкой SATA Express приобрели собственный форм-фактор под названием M.2.
«Конкурирующий» с ATA стандарт SCSI тоже не стоял на месте и всего через год после появления Serial ATA, в 2004, переродился в последовательный интерфейс. Имя новому интерфейсу — Serial Attached SCSI (SAS).
Несмотря на то, что SAS унаследовал набор команд SCSI, изменения были значительные:
- последовательный интерфейс;
- 29-ти жильный кабель с питанием;
- подключение «точка-точка»
Максимальное количество одновременно подключенных устройств в SAS-домене по спецификации превышает 16 тысяч, а вместо SCSI ID для адресации используется идентификатор World-Wide Name (WWN).
WWN — уникальный идентификатор длиной 16 байт, аналог MAC-адреса для SAS-устройств.
Несмотря на схожесть разъемов SAS и SATA, эти стандарты не являются полностью совместимыми. Тем не менее, SATA-диск может быть подключен в SAS-коннектор, но не наоборот. Совместимость между SATA-дисками и SAS-доменом обеспечивается при помощи протокола SATA Tunneling Protocol (STP).
Первая версия стандарта SAS-1 имеет пропускную способность 3 Гбит/с, а самая современная, SAS-4, улучшила этот показатель в 7 раз: 22,5 Гбит/с.
Peripheral Component Interconnect Express (PCI Express, PCIe) — последовательный интерфейс для передачи данных, появившийся в 2002 году. Разработка была начата компанией Intel, а впоследствии передана специальной организации — PCI Special Interest Group.
Последовательный интерфейс PCIe не был исключением и стал логическим продолжением параллельного PCI, который предназначен для подключения карт расширения.
PCI Express значительно отличается от SATA и SAS. Интерфейс PCIe имеет переменное количество линий. Количество линий равно степеням двойки и колеблется в диапазоне от 1 до 16.
Термин «линия» в PCIe обозначает не конкретную сигнальную линию, а отдельный полнодуплексный канал связи, состоящий из следующих сигнальных линий:
- прием+ и прием-;
- передача+ и передача-;
- четыре жилы заземления.
«Аппетиты» твердотельных накопителей растут очень быстро. И SATA, и SAS не успевают увеличивать свою пропускную способность, чтобы «угнаться» за SSD, что привело к появлению SSD-дисков с подключением по PCIe.
Хотя PCIe Add-In карты прикручиваются винтом, PCIe поддерживает «горячую замену». Короткие пины PRSNT (англ. present — присутствовать) позволяют удостовериться, что карта полностью установлена в слот.
Твердотельные накопители, подключаемые по PCIe регламентируются отдельным стандартом Non-Volatile Memory Host Controller Interface Specification и воплощены в множестве форм-факторов, но о них мы расскажем в следующей части.
Удаленные накопители
При создании больших хранилищ данных появилась потребность в протоколах, позволяющих подключить накопители, расположенные вне сервера. Первым решением в этой области был Internet SCSI (iSCSI), разработанный компаниями IBM и Cisco в 1998 году.
Идея протокола iSCSI проста: команды SCSI «оборачиваются» в пакеты TCP/IP и передаются в сеть. Несмотря на удаленное подключение, для клиентов создается иллюзия, что накопитель подключен локально. Сеть хранения данных (Storage Area Network, SAN), основанная на iSCSI, может быть построена на существующей сетевой инфраструктуре. Использование iSCSI значительно снижает затраты на организацию SAN.
У iSCSI существует «премиальный» вариант — Fibre Channel Protocol (FCP). SAN с использованием FCP строится на выделенных волоконно-оптических линиях связи. Такой подход требует дополнительного оптического сетевого оборудования, но отличается стабильностью и высокой пропускной способностью.
Существует множество протоколов для отправки команд SCSI по компьютерным сетям. Тем не менее, есть только один стандарт, решающий противоположную задачу и позволяющий отправлять IP-пакеты по шине SCSI — IP-over-SCSI.
Большинство протоколов для организации SAN используют набор команд SCSI для управления накопителями, но есть и исключения, например, простой ATA over Ethernet (AoE). Протокол AoE отправляет ATA-команды в Ethernet-пакетах, но в системе накопители отображаются как SCSI.
С появлением накопителей NVM Express протоколы iSCSI и FCP перестали удовлетворять быстро растущим требованиям твердотельных накопителей. Появилось два решения:
- вынос шины PCI Express за пределы сервера;
- создание протокола NVMe over Fabrics.
Протокол NVMe over Fabrics стал хорошей альтернативой iSCSI и FCP. В NVMe-oF используются волоконно-оптическая линии связи и набор команд NVM Express.
Стандарты iSCSI и NVMe-oF решают задачу подключения удаленных дисков как локальные, а компания Intel пошла другой дорогой и максимально приблизила локальный диск к процессору. Выбор пал на DIMM-слоты, в которые подключается оперативная память. Максимальная пропускная способность канала DDR4 составляет 25 ГБ/с, что значительно превышает скорость шины PCIe. Так появился твердотельный накопитель Intel® Optane™ DC Persistent Memory.
Для подключения накопителя в DIMM слоты был изобретен протокол DDR-T, физически и электрически совместимый с DDR4, но требующий специального контроллера, который видит разницу между планкой памяти и накопителем. Скорость доступа к накопителю меньше, чем к оперативной памяти, но больше, чем к NVMe.
Протокол DDR-T доступен только с процессорами Intel® поколения Cascade Lake или новее.
Заключение
Почти все интерфейсы прошли долгий путь развития от последовательного до параллельного способа передачи данных. Скорости твердотельных накопителей стремительно растут, еще вчера твердотельные накопители были в диковинку, а сегодня NVMe уже не вызывает особого удивления.
Читайте также: