Микроудобрения для обработки семян
звонки по России бесплатно
Применение микроэлементов и стимуляторов корнеобразования при протравливании семян
Применение микроэлементов и стимуляторов корнеобразования при протравливании семян
Масштабные опыты применения микроэлементов для обработки семенного материала начались в СССР в конце 40-х годов прошлого века. Замачивание семян в растворе или опудривание солями микроэлементов в опытах аграрных НИИ оказывало существенное влияние на урожайность с/х культур. Тем не менее, данный агроприём так и не получил широкого хозяйственного применения даже с появлением протравочных машин. Проблема, по большей части, была связана с тем, что в те годы применялись неорганические (по большей части сульфатные) соли микроэлементов, которые при растворении в воде распадались на заряженные частицы – ионы, которые вступали в реакцию с протравителями, снижая эффективность обработки. Применение смеси таких солей приводило к антагонизму одинаково заряженных ионов ( Fe 2+ , Mn 2+ , Zn 2+ , Cu 2+ ) и давало нулевой или отрицательный результат.
Обеспеченность растений риса азотным питанием, ВНИИ Риса, 2005 год
Жидкие органоминеральные микроудобрения помогают активизировать процессы прорастания, улучшить всхожесть семян сельхозкультур, стимулировать иммунную систему растений, а также защитить их от поражения грибками и вирусами.
Поэтому перед высеванием семена обрабатывают специальными составами, в состав которых входят активные вещества. Протравливание семян перед посевом может производиться разными способами, а действие микроэлементов имеет более высокий эффект, если сравнивать с их внесением непосредственно в почву.
Цель предпосевной обработки (протравливания) семян микроэлементами
Комплексное протравливание семян – важнейший агротехнический прием, широко применяемый сегодня при выращивании сельскохозяйственной продукции. Чтобы получить более высокий урожай и повысить его качество, нужен не только протравитель, когда проводится предпосевная обработка семян, но и жидкие удобрения, которые содержат комплекс микроэлементов.
Для обеспечения эффективного прорастания семени очень важно, чтобы оно имело питательные запасы и доступность элементов в грунте возле корневой системы, когда будет происходить прорастание. Именно по этой причине так важно протравливание перед посевом семян, их обработка сбалансированным удобрением.
Если микроэлементы вносятся непосредственно в грунт, семенам и отросткам корней значительно сложнее их усвоить, потому что образуются труднодоступные соединения. В этой связи, целесообразнее производить обработку посевного материала, используя комплексное органохелатное удобрение. Предпосевная обработка таким способом стимулирует прорастание семян и их дальнейшее развитие.
Эффективность и универсальность состава, когда проводится предпосевная обработка, достигается следующим:
• соотношением макроэлементов (азота, калия, фосфора), стимулирующих рост и развитие корневой системы, оптимизируют осмотическое давление, помогают растения сформировать белки, чтобы построить ткани;
• хелатными формами микроэлементов;
• гормонами роста (ауксинами, цитокининами) в оптимальном балансе для клеточного деления, когда семена будут прорастать, происходит интенсивное развитие корневой системы;
• высокой концентрацией цинка в доступной форме для синтеза ауксинов;
• аминокислотами, как доступным сырьем, чтобы построить протеины будущего корня культуры;
• веществами, которые обеспечивают равномерное покрытие семян, исключают осыпание удобрения, когда посевной материал будут фасоваться и транспортироваться;
• подкислением раствора для оптимального воздействия фунгицидов и инсектицидов на семена во время их протравки.
Влияние микроэлементов на семена
Экономическая эффективность применения микроэлементов при предпосевной обработке
Результаты применения комплексного удобрения с микроэлементами
Использование микроудобрений – высокотехнологичный способ, который дает возможность сочетать обработку посевного материала перед высеванием в грунт. Комплексное органохелатное удобрение оптимизирует питание сельскохозяйственной культуры микроэлементами, когда она проходит самые ранние стадии своего развития. Нередко предпосевная обработка сочетается с использованием веществ, которые образуют пленку, регуляторами роста и протравителями.
Предпосевная обработка, когда применяется комплексное органохелатное удобрение, позволяет получить следующую эффективность:
• повышается полевая всхожесть семян;
• ускоряется начальный рост и развитие сельскохозяйственных культур;
• комплексное воздействие на семенной материал, когда микроудобрением осуществляется обработка и протравливание совместно с другими средствами при контактной обработке;
• повышается стойкость растений к грибковым и вирусным заболеваниям;
• повышается стойкость растения к неблагоприятному влиянию факторов внешней среды (засуха, низкая или высокая температура и др.);
• формируется мощная корневая система, которая проникает глубоко в грунт.
Таким образом, предпосевная обработка (протравливание) семян с применением органоминеральных препаратов с микроэлементами позволяет обеспечить растение необходимыми веществами, защитить его от болезней и природных факторов, а также повысить качество и урожайность.
Примеры результатов применения комплексного органоминерального удобрения "О-РАЙЗ Всё включено" при предпосевной обработке семян в разделе "Результаты".
Микроудобрения — удобрительные вещества, содержащие различные микроэлементы, необходимые растениям для успешного роста и развития. [11] Микроудобрения подразделяются в зависимости от содержащихся в них микроэлементов.
Содержание:
Источники пополнения почвы микроэлементами – органические удобрения, минеральные удобрения и чистые химические соли. Способы внесения зависят от степени обеспеченности почв микроэлементами. [5]
Виды микроудобрений
Во многих почвенно-климатических зонах при длительном использовании высоких доз минеральных удобрений возникает необходимость в использовании различных микроудобрений. Особенно остро вопрос о применении микроудобрений стоит на осушенных торфянистых почвах, орошаемых землях, на почвах легкого механического состава.
Виды микроудобрения
Микроудобрения различают по содержащимся микроэлементам. Наиболее распространены в российском растениеводстве борные, марганцевые, молибденовые, цинковые и медные удобрения. [10] (Изображение) Расширяется сфера применения хелатных форм микроудобрений.
Борные микроудобрения
Борные микроудобрения – удобрительные вещества, содержащие бор. Этот элемент необходим растениям на протяжении всей жизни. Он не способен реутилизироваться в растениях. Это приводит к тому, что бор особенно необходим молодым, растущим органам. Его недостаток приводит к заболеванию и отмиранию точек роста. Очень важна роль бора на известкованных дерново-подзолистых почвах, поскольку известкование уменьшает доступность бора для растений. Усиливают потребность в боре и калийные удобрения.
Некоторые марки борных микроудобрений:
Избыток бора вызывает у растений токсикоз, возникает так называемый ожог нижних листьев и проявляется краевой некроз.
В качестве борных удобрений применяют борную кислоту и комплексные борсодержащие удобрения.
Борная кислота
(Н3ВО3) – мелкокристаллический порошок белого цвета. Содержит 17,3 % бора. Хорошо растворима в воде. Применяют для предпосевной обработки семян и некорневых подкормок. [4]
Бура
Боросуперфосфат
– простой суперфосфат с содержанием водорастворимого бора 0,2 % и двойной (с содержанием бора 0,4 %).
Бормагниевые удобрения
Медные микроудобрения
Медные микроудобрения – удобрительные вещества, содержащие медь в форме, легкодоступной для растений. Роль меди в растениях определена ее присутствием в составе медьсодержащих белковых соединений и ферментов. Под влиянием меди ускоряется созревание урожая, снижается вероятность заболевания различными грибковыми заболеваниями: мучнистой росой, пятнистостью листьев, паршой, черной ножкой, фитофторозом.
Растения испытывают недостаток меди на нейтральных и слабощелочных почвах, а также при повышении доз азотных удобрений.
Наиболее эффективны медные удобрения на торфяно-болотных почвах, дерново-подзолистых почвах заболоченных и легкого гранулометрического состава. Больше всего на медь отзываются ячмень, овес, пшеница, лен, корнеплоды, луговой клевер, кормовая и сахарная свекла, плодово-ягодные и многие овощные культуры. [4]
В качестве медных удобрений используются сульфат меди, пиритные огарки, порошок, содержащий медь. [13] Разработана технология получения КАС с содержанием меди 0,5 и 0,05 %. [4]
Сульфат меди
Сульфат меди
(медный купорос) CuSO4 х 5H2O – 23,4-24,9 % меди. Представляет собой кристаллический порошок серо-голубого цвета, обладающий высокой растворимостью в воде. Медный купорос применяется для предпосевной обработки семян, некорневых подкормок различных сельскохозяйственных культур. Эффективность медных подкормок возрастает в засушливые годы. [4]
Хлористый калий с медью
Аммофос с медью
КАС с содержанием меди
Пиритные огарки
– местное медное удобрение, 0,2–0,3 % меди. Вносятся один раз в 4–5 лет осенью под зяблевую вспашку или весной под предпосевную культивацию. [13]
Цинковые микроудобрения
Цинковые микроудобрения – удобрительные вещества, содержащие цинк. Этот элемент водит в состав 30 ферментов, принимает участие в белковом и фосфорном обмене, синтезе аскорбиновой кислоты, ростовых веществ и тиамина, повышает водоудерживающую силу растений.
Недостаток цинка является причиной нарушения углеводного обмена и задержки образования крахмала, сахарозы и хлорофилла. Самым распространенным цинковым микроудобрением является сернокислый цинк (Zn SO4 х 7 Н2О). Отработана технология получения аммофосфата и аммофоса, содержащих 1,5 % Zn. [4]
Сернокислый цинк
Молибденовые микроудобрения
Молибденовые микроудобрения – удобрительные вещества, содержащие молибден. Этот элемент входит в состав нитратредуктазы и участвует в восстановлении нитратов, а также нитрогеназы, играющей основную роль в фиксации атмосферного азота свободно живущими и клубеньковыми бактериями. Недостаток молибдена тормозит процесс восстановления нитратов в растениях, что приводит к снижению урожая и ухудшению его качества.Известкование кислых почв приводит к мобилизации почвенного молибдена. [4]
Наиболее распространенными молибденовыми микроудобрениями являются молибдат аммония ((NH4)6Мо7О244Н2О), молибдат аммония – натрия, отходы электроламповой промышленности. [5] Разработаны технологии получения аммофоса и аммофосфата с содержанием 1,4 % молибдена. [4]
Молибдат аммония
(NH4)6Мо7О24 4Н2О содержит 50–52 % Мо. Применяется для обработки семян бобовых трав, некорневой подкормки зернобобовых, кормовой и сахарной свеклы. [4]
Молибдат аммония–натрия
Отходы электроламповой промышленности
Аммофос и аммофосфат с молибденом (1,4 % Мо) используются для основного и припосевного удобрения под овощи, зернобобовые, семенники бобовых трав.Нормы этих удобрений устанавливаются по фосфору. [4]
Марганцевые микроудобрения
Марганцевые микроудобрения – удобрительные вещества, содержащие марганец. Необходимость этого элемента обусловлена его активным участием в окислительно-восстановительных реакциях, в фотосинтезе и других жизненно важных для растения процессах. [9] Недостаток марганца, как и его избыток, отрицательно влияет на рост и развитие растений. В качестве марганцевых удобрений применяются сернокислый марганец, марганизированный суперфосфат, марганизированная нитрофоска, марганцевые шламы.
Марганец сернокислый пятиводный – серосодержащее марганцевое удобрение (MnSO4 х 5H2O). Применяется как в основной прием одновременно с основными удобрениями, так и в качестве подкормок. [10]
Марганизированный суперфосфат
– удобрение в виде гранул светло-серого цвета. Содержит 1–2 % марганца. Получают путем добавления при грануляции к порошковидному суперфосфату 10–15 % марганцевого шлама. Применяется так же, как и суперфосфат. [10]
Марганизированная нитрофоска
содержит 0,9 % марганца. Хорошо усваивается растениями. Получают при добавлении в нитрофоску марганцевого шлама. Применяют так же, как обычную нитрофоску. [10]
Марганцевый шлам
содержит от 10–17 % марганца, представляет собой отходы марганцевого производства. Кроме того, содержит 20 % кальция и магния, 25–28 % кремнекислоты, 8–10 % полуторных оксидов и небольшое количество фосфора. Марганцевые шламы эффективно применяются в качестве основного удобрения одновременно с азотно-калийно-фосфорными удобрениями. [10]
Кобальтовые микроудобрения
Кобальтовые микроудобрения – удобрительные вещества, содержащие кобальт. Этот химический элемент активно участвует в процессе фиксации атмосферного азота клубеньками бобовых и небобовых растений. [2] Обогащенность кобальтом растительной продукции для животноводства имеет большое значение, поскольку отсутствие кобальта в кормах менее 0,07 мг на 1 кг сухого сена вызывает акобальтоз, снижение продуктивности и даже гибель животных.
В качестве кобальтовых удобрений используют сернокислый кобальт и хлористый кобальт. [10]
Сернокислый кобальт
CoSO4 . 7(H2O) – розово-красные кристаллы, медленно растворимые в воде. [6] Применяется для подкормки растений в течение вегетационного периода, а также для предпосевной обработки семян. [10]
Хлористый кобальт
CoCl2 . 6(H2O) – красно-фиолетовые кристаллы, легко растворимые в воде и в этиловом спирте. [7] Применяется для подкормки растений в течение вегетационного периода, а также для предпосевной обработки семян. [10]
Йодсодержащие микроудобрения
Йодсодержащие микроудобрения – удобрительные вещества, содержащие йод. Этот элемент оказывает стимулирующее действие на рост и развитие растений. Йод содержится во многих базовых минеральных и органических удобрениях: фосфоритной муке, суперфосфате, сернокислом аммонии, хлористом калии, навозе, торфе, золе и других. Для вегетационной подкормки и предпосевной обработки семян используется раствор кристаллического йода. [1] В настоящее время разработан ряд удобрений, содержащих йод. [8]
Ванадийсодержащие микроудобрения
Ванадийсодержащие микроудобрения – удобрительные вещества, содержащие ванадий. Важность этого элемента в жизни растений неоспорима. В качестве ванадийсодержащих удобрений применяются метаванадат натрия, ванадат аммония. [1] Кроме того, разработан ряд удобрений, содержащих наряду с другими важными микроэлементами и ванадий. [8]
Метаванадат натрия
(ванадиевой кислоты (HVO3) натриевая соль двухводная) (NaVO3)– однородная субстанция желтого цвета или белый порошок. Применяется в качестве подкормки или для предпосевной обработки семян. [12]
Метаванадат аммония
(NH4VO3) представляет собой неорганическое соединение в виде соли аммиака и метаванадиевой кислоты, имеет вид желтоватых или чисто белых кристаллов, хорошо растворимых в воде. [12] Может применяться в основное внесение и для вегетационной подкормки. Необходимо строго соблюдать указания производителя по применению. (Составитель)
Железо(III)-натриевая ЭДТА
Гидрат железо(III)-натриевой соли этилендиаминтетрауксусной кислоты.
Хелатные микроудобрения
Хелатные микроудобрения – удобрительные вещества, изготовленные на основе комплексонатов (хелатов) металлов. Они представляют собой высококонцентрированные водные растворы 1-гидроксиэтилидендифосфонатов и других комплексных солей металлов: Fe 3+, Mn 2+ , Zn 2+ ,Cu 2+ ,Co 2+ , Mo 6+ и В 3+ . Концентрация комплексонатов в растворе достигает 200 г/л. Содержание микроэлементов – 3–6 % массы. Хелатные удобрения обладают целым рядом преимуществ по сравнению с традиционными микроудобрениями:
- Не токсичны
- Устойчивы во всем диапазоне кислотности почв
- Совместимы со всеми минеральными удобрениями
- Практически не связываются почвой
- Не подвержены разрушению микроорганизмами
- Эффективность воздействия на растения превышает все прочие формы микроудобрений в 2–10 раз
Хелатные микроудобрения (хелат железа, хелат бора, хелат цинка и другие) содержат соответствующий металл в форме комплексного органического соединения (хелата). Применяются как корректоры питания для корневых и внекорневых подкормок в открытом и закрытом грунте. [3] Эффективность удобрения зависит от точности соблюдения инструкции производителя. (Составитель)
Торговые марки микроудобрений
Государственный каталог пестицидов и агрохимикатов, разрешенных к применению на территории Российской Федерации содержит большое количество марок различных микроудобрений:
- удобрения, содержащие только микроэлементы в различных сочетаниях.
- микроэлементы в совокупности с гуминовыми веществами,
- макроудобрения, содержащие один или несколько микроэлементов, и прочее.
Такое многообразие обусловлено не причудами производителей, а разнообразием потребностей почв и растений. Именно эти параметры необходимо учитывать при выборе марки микроудобрений.
Часто уже в названии препарата озвучивается сфера его применения или состав. Так, ОАО “Буйский химический завод” предлагает водорастворимые комплексные минеральные удобрения Акварин Картофельный, Акварин Цветочный, Акварин Земляничный. В ассортименте того же предприятия Солу Микро Fe D 11 (хелат железа ДТПА), Солу Микро Fe 13 (хелат железа ЭДТА), Солу Микро Mn 13 (хелат марганца ЭДТА).
Кроме того, в инструкции к удобрению всегда указываются все основные сведения о нем: состав, основные сферы и время применения, норма расхода, токсичность и прочее.
Одним из главных критериев в выборе удобрения является надежность фирмы – производителя. Пользоваться сомнительными удобрениями сомнительных фирм (читай: подделками) может быть просто опасно. (Составитель)
Применение на различных типах почв
Оптимальные концентрации доступных для растений форм микроэлементов в почве труднодостижимы, поскольку многие из них либо достаточно легко вымываются из почвы, либо закрепляются в ней и становятся недоступны растениям. Создание оптимальных уровней содержания микроэлементов в почвах проводится только в случае крайней генетической бедности их тем или иным микроэлементом. При этом следует соблюдать осторожность, поскольку избыточное содержание микроэлемента может оказывать негативное воздействие на качество и урожай сельхозкультур.
Почвы подразделяют на четыре группы по степени обеспеченности микроэлементами:
I группа – низкая обеспеченность микроэлементами.
II группа – среднеобеспеченные почвы
III группа – высокообеспеченные микроэлементами почвы
IV группа – почвы с избыточным содержанием микроэлементов.
Вносить микроэлементы в почву рекомендуется только на почвах I группы. На среднеобеспеченных почвах микроэлементы вносятся путем предпосевной обработки семян и некорневых подкормок. В III и IV группах почв внесение микроэлементов в любом виде категорически исключается. [4] Для каждого зонально-климатического типа почв определяются конкретные величины градации обеспеченности почвы теми или иными микроэлементами. (Составитель)
Способы внесения
Агрохимическая эффективность способов применения микроэлементов выглядит следующим образом:
- Внесение одновременно с макроудобрениями – самый эффективный способ применения.
- Предпосевная обработка семян занимает второе место.
- Предпосевная подкормка располагается на третьем месте по эффективности.
Однако по причине дефицита микроудобрений, их дороговизны, опасности передозировки и загрязнения окружающей среды основными способами внесения микроудобрений остается внесение их в составы при предпосевной подготовке семян или некорневых подкормках.
Микроудобрения применяются при возделывании культур по интенсивным технологиям. [4]
Сегодня практически перед каждым сельхозпроизводителем, дачник ли он, фермер, садовод-любитель или руководитель компании, контролирующей 100 000 га, встает вопрос внедрения новых прогрессивных экономически выгодных технологий производства. Одна из наиболее популярных в последнее время инноваций в растениеводстве — использование микроэлементов.
Первые опыты, доказавшие положительное воздействие микроэлементов на рост и развитие растений, были проведены во второй половине XIX века. Детальное изучение началось с 30-х гг. XX века. С этого времени микроэлементы начали применять в США, в бывшем СССР, Великобритании, Франции, Швеции, Германии, Польше, Болгарии и других странах.
В Украине этот агротехнический прием только начинает набирать обороты и, естественно, вызывает огромное количество вопросов. Практически в каждом издании сельскохозяйственного направления сейчас присутствует реклама микроудобрений, средств для некорневой обработки, удобрений и стимуляторов, содержащих микроэлементы. Основываясь на зачастую противоречивой информации, исходящей от нескольких компаний, продвигающих на рынок широкий ассортимент препаратов, объективное мнение о них сложить очень непросто. В этой статье мы попытались системно подойти к такому важному и актуальному вопросу, как использование и выбор микроудобрений. Рассмотрим свойства микроэлементов, типы препаратов, их содержащих, способы применения, эффективность их использования, а также проведем комплексный обзор препаратов, предлагаемых сегодня сельхозпроизводителю.
Микроэлементами называют химические элементы, необходимые для нормальной жизнедеятельности растений и животных и используемые растениями и животными в микроколичествах по сравнению с основными компонентами питания. Однако биологическая роль микроэлементов велика. Наиболее важные из них — Fe, Cu, Zn, Mn, Со, Мо, В. Недостаток микроэлементов в почве, являясь причиной снижения скорости и согласованности протекания процессов, ответственных за развитие организма, может привести к заболеваниям растений и даже стать причиной их гибели. С каждым урожаем из почвы уходит определенное количество микроэлементов, которые нельзя заменить другими веществами — их недостаток необходимо восполнить с учетом формы, в которой они будут находиться в почве. Растения могут усваивать микроэлементы в водорастворимой форме (подвижной форме микроэлемента и биологически активной).
Микроэлементы принимают самое непосредственное участие в формировании урожая, определяют его качество и количество. Это проявляется через:
* синтез ферментов, которые позволят более интенсивно использовать энергию, воду и питание (NPK) и, соответственно, получить более высокий урожай;
* усиление восстановительной активности тканей и препятствие заболеванию растений;
* повышение иммунитета растений (при недостатке микроэлементов у растений наблюдается состояние физиологической депрессии и общей восприимчивости к болезням);
* ускорение целого ряда биохимических реакций (совместное влияние микроэлементов значительно усиливает их каталитические свойства;
* в ряде случаев только композиции микроэлементов могут восстановить нормальное развитие растений, что в итоге приводит к значительному повышению качественных показателей). Попытаемся классифицировать удобрения, содержащие микроэлементы, взяв за основу химическую форму, в которой они находятся.
Оптимальным для растений является одновременное поступление макро- и микроэлементов. Потребность в основных микроэлементах растения испытывают в течение всего вегетационного периода. Микроэлементы в биологически активной форме в настоящее время не имеют себе равных при некорневых подкормках, которые особенно эффективны при использовании их в сочетании с макроэлементами. Для достижения максимального эффекта, микроэлементы вносятся в строго определенных нормах, в наиболее оптимальные сроки (при использовании эффективных методов их внесения).
Различные сельскохозяйственные культуры отличаются различной потребностью в отдельных микроэлементах.
Соли неорганических кислот
Практика показала, что минеральные соли микроэлементов по своей эффективности уступают хе-латным соединениям микроэлементов. Установлено, что комплексона-ты (хелаты) микроэлементов в дозах, в 2-10 раза меньших, чем минеральные соли (в эквиваленте по микроэлементам), обеспечивают равные прибавки урожаев основных сельскохозяйственных культур.
Основными формами борных удобрений являются борная кислота (17,3%) и ее натриевая соль — бура (11%), бормагниевые удобрения (не менее 2,3%). Также в качестве добавки бор используется во многих удобрениях — боросуперфосфат (водорастворимого бора 0,2%), суперфосфат двойной с добавкой бора (0,4%). Кроме того, в настоящее время на украинском рынке появилось удобрение Солюбор (содержание бора 17,5%, для некорневых подкормок). Борная кислота и бура применяются для предпосевной обработки семян (дозы, соответственно, 100-200 и 200-300 г/т) и некорневых подкормок (0,2-0,4 кг В на 1 га). Остальные борсодержащие удобрения вносятся в почву из расчета 0,5-0,8 кг/га.
В качестве молибденовых удобрений применяются молибденово-кислый аммоний, молибдат аммония (52% молибдена); порошок, содержащий молибден (14,5-16,5%); суперфосфат простой и двойной (0,1-0,2%). Как правило, их используют для предпосевной обработки семян, для некорневых подкормок или вносят в рядки при посеве.
В качестве марганцевых удобрений используют сернокислый марганец (21-22% марганца), обогащенный марганцем гранулированный суперфосфат с содержанием марганца 1,5-2%; отходы марганцево-рудной промышленности. Сернокислый марганец является растворимой солью и применяется для предпосевной обработки (намачивания или опудривания) семян (50-100 г/ц семян) и для некорневой подкормки (0,05% раствор соли при расходе 250-300 л/га).
В качестве медных удобрений главным образом применяют медный купорос (CuS04-5H20), содержащий 23-25% Си. Он может применяться для некорневой подкормки и для предпосевного намачивания семян. Для подкормки растворяют 250-500 г медного купороса в 300-500 л воды. Расход соли для предпосевной обработки — 15-35 г/ц семян.
В качестве цинковых удобрений применяют сульфат цинка (ZnSO47H2O), содержащий 21-23% Zn, цинко-суперфосфат, (0,1% Zn). ZnS04 применяют для некорневой подкормки (200-300 л 0,01- 0,02% раствора на 1 га) и предпосевной обработки семян (6-8 л 0,05-0,1% раствора на 1 ц семян).
Применение этих микроудобрений относительно недорого, но имеет серьезные недостатки:
* микроэлементы в форме солей — малорастворимые, они труднодоступны растениям и эффективны только на почвах со слабокислой и кислой средой;
* использование солей может привести к токсическому эффекту у растений и загрязнению почвы побочными вредными веществами;
* происходит засаливание почв различными анионами и катионами ( Na, CI ).
* смешивание разных солей приводит к их взаимодействию и образованию нераствормых соединений недоступных растениям.
Натриевые и калийные соли гуминовых кислот
Применяют гуминовые препараты, как правило, 3 раза за сезон: в период почкования, завязи плодов и их налива. Расход — 2-5 л/га. Гумус также переводит микроэлементы в формы растворимых гуминовых комплексов. Гуминовые препараты обогащают почву теми веществами, которые могут захватывать ионы металлов, находящихся в почве и удобрениях. Однако концентрация микроэлементов в гуминовых препаратах не позволяет рассматривать их в качестве достаточно серьезного источника микроэлементов.
Применяют данную группу удобрений потому, что они:
* способствуют усиленному поступлению питательных веществ (NPK);
* интенсифицируют обменные процессы в растительной клетке, тем самым стимулируя рост;
* защищают растение от тяжелых металлов и ядовитых веществ (переводят их в менее токсичную форму);
* удерживают на себе и отдают по потребности ионы микроэлементов, Са и Mg;
* стимулируют развитие всех почвенных микроорганизмов, что способствует интенсивному восстановлению гумуса в почвах и компостах.
Особо останавливаться на этой группе мы не будем, так как, по сути, эти удобрения — органические, и микроэлементы в них, конечно же, содержатся, равно как и в навозе, но основное их назначение — отнюдь не подкормка микроэлементами.
Комплексные удобрения пролонгированного действия
Удобрения, представляющие собой плохо растворимые в воде гранулы, обладают способностью к длительному дозированному подкармливанию растений за счет медленного процесса растворения в почве (Ава, Корнепитатель КП, Леватит).
К этой группе удобрений также относятся фритты (продукт спекания минеральных солей стекла).
Среди множества современных препаратов для подкормки растений большой интерес представляют кап-сулированные удобрения длительного действия. Питательные вещества собраны в гранулы, покрытые специальной водопроницаемой оболочкой, благодаря которой они, под действием воды и тепла, поступают в почву постепенно. Капсула, покрытая полупроницаемой оболочкой, содержит минеральные элементы — N, Р, К, Mg, Fe, В, Си, Zn, Mn, Мо в необходимом для растения соотношении. Осмокот, Плантакот, Сьераблен, Мультикот, Активин, Тренер получают, обрабатывая гранулы минеральных удобрений хвойной живицей по специальной технологии. После внесения в почву вода, проникая внутрь капсулы, постепенно растворяет минеральные соли, причем срок их действия — от 3 до 36 месяцев
Известны также плавленые фосфорно-магниевые удобрения (ПФМУ). Они содержат в своем составе Р, Mg, Si, Са и не только удовлетворяют потребность растений в некоторых минералах, но и нейтрализуют кислые почвы.
Как правило, удобрения этой группы применяются в ладшафтном дизайне, декоративном озелении (газоны и т. п.).
Однако применение микроудобрений пролонгированного действия сопряжено с рядом трудностей, таких как:
* потери вследствие вымывания;
* различные потребности культур при севообороте;
* неопределенность темпов растворения.
Помимо того, что на нашем рынке препараты данной группы практически не представлены, сама тема микроудобрений пролонгированного действия, как инструмента агрономии, требует серьезных научных исследований.
Микроэлементы в хелатной форме
Эти высокопрочные комплексные соединения растворимы в воде, полностью усваиваются растениями, нетоксичны.
В производстве микроудобрений используется ряд различных органических кислот. На нашем рынке подавляющее большинство препаратов основывается на двух из них — ЭДТА (этилендиаминтетрауксусная кислота) и ОЭДФ (гидроксиэтили-дендифосфоновая кислота).
ЭДТА — на ее основе производят хелаты, которые можно использовать на почвах с рН меньше 8, причем для каждого элемента устойчивые соединения могут образовываться только при определенных значениях рН (например, комплекс железа с ЭДТА эффективен при борьбе с хлорозом только на умеренно-кислых почвах; в щелочной же среде он нестабилен). Отметим несколько характерных особенностей ЭДТА:
* комплексы с молибденом сравнительно малопрочные, в щелочной среде разлагаются. С бором комплексы не образуются;
* подвержена гидролизу;
* хелаты Са и Мд на основе ЭДТА, растворимы;
* ЭДТА неустойчива к действию микроорганизмов почвы;
* проявляет антивирусную активность.
В основном ЭДТА используют западные производители, прежде всего, в связи с ее относительно низкой стоимостью.
ОЭДФ была принята за основу советской промышленностью и агрохимической наукой. На ее основе могут быть получены все стабильные индивидуальные хелаты металлов, а также композиции различного их состава и соотношения. По своей структуре она наиболее близка к природным соединениям на основе полифосфатов (при ее разложении образуются химические соединения, легко усваиваемые растениями). Хелаты на ее основе можно использовать на почвах с рН 4,5-11. Отличительная черта этого хелатирующего агента в том, что он может, в отличие от ЭДТА, образовывать устойчивые комплексы с Мо и В. ОЭДФ устойчива по отношению к действию микроорганизмов почвы. Строго дифференцируемые условия растворимости комплексов ОЭДФ позволяют получать микроудобрения пролонгированного действия. Специфичность взаимодействия ОЭДФ с ионами кальция позволяет изменять физико-химические и гранулометрические свойства различных минеральных удобрений. Следует отметить, что применение хела-тов на ОЭДФ в рабочих растворах на очень жестких природных водах недопустимо, однако, подкисление устраняет этот недостаток. Кроме того, ОЭДФ предотвращает образование малорастворимых солей в форсунках, трубопроводах питательных систем и является регулятором роста. Однако, ОЭДФ является очень слабым хелатирующим агентом для железа, меди, цинка. В питательном растворе или прикорневой зоне эти ионы легко замещаются кальцием и их эффективность значительно снижается.
Лидирующее положение нескольких основных хелантов (ЭДТА, ОЭДФ) обусловлено, прежде всего, их уникальными свойствами в сочетании с прекрасно разработанной теоретической и экспериментальной базой и, безусловно, экономической целесообразностью применения.
Способы внесения хелатных микроудобрений:
* предпосевная обработка посевного материала вместе с протравителями;
* некорневая обработка посевов отдельно или совместно с обработкой средствами защиты растений;
* добавление микроудобрений в баковые смеси в гидропонных теплицах и системах капельного орошения.
Все предлагаемые сегодня на рынке хелатные микроудобрения можно условно классифицировать по следующим признакам:
* жидкие — растворы и суспензии с 2-6% содержанием металлов;
* сухие — кристаллические или порошкообразные вещества с 6-15% содержанием металлов.
1. Удобрения (NPK + микроэлементы), содержащие фиксированное во всем ассортиментном ряду количество микроэлементов и различные вариации NPK, а также Mg, S, Са и др. Используются для некорневых подкормок и внесения через системы капельного полива.
2. Препараты, содержащие исключительно микроэлементы:
* комплексные — содержащие композицию микроэлементов в определенной пропорции(применяются как для некорневой, так и для предпосевной обработки);
* моноудобрения (хелаты моноэлементов) — соединения отдельных металлов: наиболее распространены хелаты железа, цинка, меди (как правило, используются при появлении симптомов болезней, связанных с недостатком конкретного элемента (например, при хлорозе — хелаты железа), или при явном недостатке этого, нужного растению, элемента в почве).
3. Препараты, содержащие, помимо микроэлементов, различные биологически активные вещества, стимуляторы, ферменты и др. (Реастим).
Кристален особый, Акварин 5, Мастер особый рекомендуется использовать на азотофильных культурах (озимая пшеница, озимый и яровой ячмень, кукуруза, огурец, яровой рапс, сахарная свекла). Применение их способом некорневой обработки обеспечивает физиологические потребности культур специальным минеральным питанием, оптимизирует его, стимулирует биохимические процессы. Не рекомендуется смешивать Кристалоны с препаратами, содержащими медь и алюминий. Раствор не рекомендуется оставлять без использования больше 5-6 часов. Отличительной особенностью Мастера является то, что в его состав добавлено вещество-индикатор. При растворении раствор принимает определенную окраску — и вы можете определить, насколько хорошо растворы смешиваются и проходят по системе полива.
Рекомендуемые нормы расхода: Кристален — 3-5 л/га, Акварины — 2-3, Мастер — 1,5-2 л/га (заметим, при идентичных составах).
Хотелось бы отметить, что данные удобрения надо рассматривать скорее как корректоры минерального питания, а не как источник микроэлементов. В странах Западной Европы, Латинской Америки, Азии и США, Мастер и Кристален используются главным образом как источник макроэлементов и подаются они через системы капельного орошения. Для предотвращения дефицита микроэлементов и листовой подкормки испльзуются совершенно другой класс удобрений обзор представителей которого мы приводим ниже.
Количество и порядок обработки рассмотрим на примере картофеля:
Всего четыре обработки проводятся на разных стадиях развития растения (в среднем 44 л/га).
Рекомендуемая норма внесения — 3-4 л/т семян для предпосевной обработки (к примеру, для картофеля — 4 л/т) и 4-6 л/га для некорневой обработки (томаты - 5 л/га). Микроудобрения Реаком обладают фунгицидными свойствами, поэтому при предпосевной обработке семян количество протравителя необходимо уменьшать на 30%, растворы для некорневой обработки совместимы с СЗР и готовятся без добавления прилипателей.
Результаты использования Реакома говорят как о приросте урожая (6 ц/га озимой пшеницы после предпосевной обработки семян и 30 ц/га картофеля), так и улучшении качества (повышение на класс качества пшеницы, увеличение выхода сахара на 1-1,16 т/га при некорневой обработке свеклы, белка — у сои, крахмала и сырого протеина — у картофеля (на 1,6% — крахмала, на 0,3-0,5% — сырого протеина), масляничности у подсолнечника и многое другое).
К этой статье мы прилагаем сводную таблицу составов, норм расхода, стоимостей и прочих характеристик наиболее широко применяемых в Украине микроудобрений и средств для некорневых подкормок. Как составлялась эта таблица и как ею пользоваться?
В графе 1 приведены массовые проценты действующих веществ.
В графе 2 — суммарное процентное содержание микроэлементов (железа, марганца, цинка, меди, бора, молибдена, кобальта) в препарате.
В графе 3 — расходные нормы, заявляемые продавцами, на одну некорневую обработку гектара (кг(л)/га). Количество их может быть разным, обычно — две, иногда — три (технология применения Эколиста предусматривает четыре, из них три — с участием микроэлементов).
В графе 4 — стоимость препарата за килограмм для сухих или за литр для жидких (грн/кг(л))
В графе 5 — затраты на обработку гектара (грн/га).
В графе 6 указано количество микроэлементов в граммах, попадающее на гектар, исходя из нормы расхода и содержания микроэлементов (г/га).
В графе 7 — стоимость 1 г микроэлементов в разных препаратах, полученная путем деления стоимости препарата на содержание микроэлементов, в граммах (грн/г). Этот подход, правда, не корректен по отношению к препаратам
Конечно же, в рамках одной статьи, мы не смогли описать все препараты и ответить на все вопросы, но, надеемся, ориентироваться в этом вопросе теперь вам будет проще.
В заключение хотелось бы призвать потребителей быть очень внимательными в выборе и приобретении микроудобрений. Остерегайтесь подделок! Спрос на препараты иногда превышает предложение, стоимость — сравнительно высока, а следовательно, подделки — довольно распространенное явление на рынке. Вопрос борьбы с фальсификатом стоит настолько серьезно, что Евросоюз в Украине внедряет программы борьбы и выделяет деньги на защиту своих производителей. Отечественные же пока обходятся своими ресурсами.
Читайте также: