Матрица с обратной засветкой в каких фотоаппаратах
Наконец Canon начал работу над своим собственным датчиком CMOS с обратной засветкой (BSI). Долгое время компания не разрабатывала новые технологии, влияющие на качество изображения, за что получила много негативных отзывов за отсутствие инноваций. На данный момент в мире существует только четыре полнокадровых камеры, использующих матрицу с обратной засветкой. Это Sony A7 R2, Sony RX1R2, Sony A9 и Nikon D850.
По имеющимся данным, датчик Nikon D850, который также использует датчик с этой технологией был разработан Sony.
Согласно отчету за 2016 год Canon является четвертым по величине поставщиком CMOS-датчиков на рынке с 7% от общей доли. Sony является лидером в отрасли и охватывает более 27% от общей доли рынка.
Одна из самых больших проблем Canon заключается в том, что компания до сих пор не делает матрицы с обратной засветкой. Sony и Omni выпускают такие матрицы для камер и смартфонов. Samsung также имеет свою собственную версию датчика BSI CMOS.
Если Canon выпустит свою версию матрицы с технологией обратной засветки, то она сможет повысить производительность своих камер при съёмке в условиях слабого освещения. В данном направлении конкуренты обогнали Canon. При сочетании BSI с автофокусировкой Dual Pixel у Canon появится большое преимущество в сегменте беззеркалок и зеркальных камер.
Данные патента:
- Дата подачи патента: 2017-06-15
- Патент №: 20170227 US201715442940
Следите за новостями в социальных сетях: Facebook, Вконтакте и Telegram
Два месяца тому назад в статье, посвящённой сравнению LCD и E-Ink дисплеев, я упомянул, что одним из следующих обзоров будет «вскрытие» матрицы современного фотоаппарата. И спешу исполнить данное обещание!
Первым в «коллекцию» светочувствительных матриц попали фронтальная и задняя камеры смартфона одного известного корейского производителя, который был любезно предоставлен Василием Столяровым. Затем хабраюзер DarkWood, живущий недалеко от Москвы, прислал мне свой старенький неработающий фотоаппарат фирмы Pentax (здесь и далее я намеренно не буду указывать точную модель девайсов). Девайс был мёртв и это был хороший повод сдать его в мои заботливые руки, а не выкидывать, как многие делают.
И как только я собрался пилить, поступило ещё одно предложение от моего практически однокурсника, Ильи. От этого предложение я не мог отказаться. Мне презентовали относительно современный Canon, у которого были проблемы со съёмкой изображений.
Таким образом, на красно-революционно-первомайский стол ложатся три кандидата: OEM камера из телефона и фотоаппараты Pentax (самый пожилой среди всех участников) и Canon (пожалуй, самый молодой).
Если ещё кто-то не знает, зачем мы здесь собрались, то в подвале данной статьи есть ссылки на предыдущие «вскрытия». Если же кто-то запамятовал, как работает цифровой фотоаппарат или зачем нужна матрица, то милости просим на Wiki или просто посмотрите это видео от канала Discovery:
Часть теоретическая. CCD и CMOS
На сегодняшний день матрицы, выполненные по технологии CMOS (Complementary Metal-Oxide Semiconductor) завоевали более 90% мирового рынка, а не так давно безумно популярным CCD (Charge-Coupled Device) уже пророчат скорый закат.
Причин тому масса, вот далеко не полный список преимуществ CMOS-технологии: во-первых, низкое энергопотребление в статическом состоянии по сравнению с CCD, во-вторых, CMOS сразу «выдаёт» цифровой сигнал, который не требует дополнительного преобразования (точнее преобразование происходит на каждом отдельном субпикселе), в отличие от CCD, которое является фактически аналоговым устройством, в-третьих, дешевизна производства, особенно при больших размерах матриц.
Кратко ознакомиться с принципами работы CMOS-матриц можно с помощью в двух видео от компании Canon:
Но все наши пациенты (может быть, за исключением матрицы камеры мобильного телефона) относятся к той эпохе, когда миром безраздельно правил CCD, а CMOS только набирался сил и светочувствительности, чтобы впоследствии занять лидирующие позиции. Поэтому несколько слов, всё же, скажу о том, как работает CCD-матрица. Более подробное описание всегда можно найти на страницах Wiki.
Итак, фотон от объекта съёмки, пройдя сквозь фильтр Байера, то есть цветофильтр типа RGBG, или фильтр RGBW и собирающую микролинзу, попадает на светочувствительный полупроводниковый материал. Поглощаясь, фотон порождает электро-дырочную пару, которая в ячейке под действием внешнего электрического поля «разделяется», и электрон «отправляется» в копилку – потенциальную яму, где он будет ожидать «чтения».
Схема устройства CCD матрицы (Источник)
Чтение же в CCD матрицы происходит «поячеечно», если так можно выразиться. Пусть мы имеем массив 5 на 5 пикселей. Сначала мы считываем количество электронов, а по-простому величину электрического тока, с первого пикселя. Затем специальный контроллер «сдвигает» все ячейки на одну, то есть заряд из второй ячейки перетекает в первую. Опять считывается значение и так, пока не будут прочитаны все 5 ячеек. Далее уже другой контроллер сдвигает оставшееся «изображение» на одну строчку вниз и процесс повторяется, пока не будут измерены токи во всех 25 ячейках. Может показаться, что это долгий процесс, однако для 5 миллионов пикселей он занимает считанные доли секунд.
Процесс считывания изображения с CCD матрицы (Источник)
Чтобы было совсем понятно, предлагаю ознакомиться со следующими видео:
Часть практическая
Обычно красивыми разборами занимаются люди в белоснежных перчатках, недавно они добрались и до фотоаппаратов, однако поговаривают, что за видео-инструкцию по сборке необходимо доплатить, отправив смс на короткий номер. Далее будут применяться чуть более чем полностью топорные методы, так что не советую повторять это в домашних условиях…
Как разбирался сотовый телефон всегда можно посмотреть на страницах предыдущей статьи, поэтому не буду здесь приводить эти душераздирающие кадры ещё раз.
Вышеупомянутый фотоаппарат Pentax был предоставлен мисьё DarkWood, у которого, как мне кажется, сейчас сердце должно обливаться кровью, а по щеке катиться скупая мужская слеза:
Разборка Pentax в фотографиях
Из всего многообразия деталей, нас пока интересует лишь LCD дисплей, который будет демонстрироваться школьникам, приходящим к нам, на ФНМ, на экскурсии, сама CCD матрица, стекло с чем-то подозрительно напоминающим поляризатор или фильтр и ИК-подсветка (красная лампочка) для ночной съёмки. Стоит отметить, что матрица жёстко закреплена на корпусе фотоаппарата. Следовательно, все вибрации Ваших рук будут без труда напрямую передаваться на саму матриц, что, согласитесь, никак не способствует качественной фотосъёмке. Видимо, DarkWood имеет железобетонные нервы.
Что между тем не помешало ему, «утопить» свой любимый фотоаппарат. Помните, когда летом Вы оправитесь в тёплые страны на море и будете пытаться сфотографировать очередную накатывающую волну, что фотоаппарат – устройство, в котором токи могут приводить к коррозии.
Следы коррозии прямо на шлейфе, ведущем к кнопке спуска затвора (к сожалению, не единственное такое место)
Сразу видно, что Canon – чуть более продвинутая, более современная модель, нежели Pentax. Например, матрица подпружинена (на левом нижнем изображении хорошо различимы маленькие пружинки). Такая пассивная система стабилизации изображения способствует получению более качественных и чётких снимков, если, конечно, Вы не неврастеник в запущенной стадии!
«Внутренности» Canon
Кстати, на фото справа внизу отчётливо виден громадный конденсатор, отвечающий за вспышку, из-за проблем с которым мне когда-то пришлось списать свою цифровую мыльницу Canon.
Камера мобильного телефона
Начнём наши изыскания с камеры мобильного телефона, которой будет посвящено не так много времени и слов в этой статье по причине того, что сама матрица имеет совершенно микроскопические размеры и с ней трудно работать (пилить, шлифовать).
Как не сложно заметить, на оптических микрофотографиях ниже матрица у края имеет две зоны: более светлую и более тёмную. Надеюсь, что все уже догадались: под светлой стороной нет диодов, она нанесена просто так, с запасом, чтобы максимально закрыть собой тонкую душевную организацию матрицы…
Накроем всё с запасом – нам не жалко
Микрофотографии, полученные с помощью оптического микроскопа, значительно отличаются, от тех, что выдаёт микроскоп электронный. Например, как на счёт «квадратуры сферы»?
Дело в том, что на оптике мы не видим каких-то прозрачных слоёв (да хотя б они и просто менее заметны), тогда как электронная микроскопия – прежде всего метод анализа поверхности, то есть вполне может быть так, что круглые цветные цветофильтры накрыты сверху квадратными «колпаками». При этом размеры такого кубосферического субпикселя составляют около 2,5 микрометров.
Вот такая она, квадратура сферы…кстати, в вакууме…
Матрица фотоаппарата Pentax
Исследование CCD-матрицы фотоаппарата Pentax начнём с оптических микрофотографий. К моему глубокому сожалению, из-за стерических затруднений, как говорят химики, в системе образец-микроскоп, не удалось снять при больших увеличениях и рассмотреть отдельные субпикселы.
Что-то написано, интересно, а можно тут где-нибудь увидеть имена маленьких китайских детишек?
Каждая посадочная площадка под контакты пронумерована, но не к каждой подведён тот самый контактный провод.
А вот так мы скоро будем учиться считать – с помощью нанотехнологий, естественно…
Чёткая граница между самой матрицей и «обвязкой»
А следующая микрофотография достойна учебника по электронной микроскопии. Знаете, почему электронный микроскоп не является средством измерения? Да-да, именно поэтому: из-за локального накопления заряда, вроде бы сферические объекты вдруг стали эллипсоидами:
Но мы-то знаем, что это сферы…
Далее взглянем на то, что находится вокруг светочувствительной матрицы. Так как я не являюсь специалистом в области создания электронных схем, то боюсь даже предполагать, зачем нужны все эти сложные конструкции и «хитросплетения» проводников, может быть, найдётся кто-нибудь, готовый пояснить назначение приведённых ниже деталей и компонентов (в комментариях, конечно же)?
Непоколебимые столбики, пережившие распил и полировку…
В этих слоях можно запутаться, а чёрту и ногу сломать
Этот выпуск «Взгляд изнутри» — знаковый, после нескольких лет «мытарств» нам, наконец-то, установили новую систему микроанализа, так что в некоторых случаях, я смогу не только приводить красивые картинки, но и пояснять из каких химических элементов увиденное состоит.
А вот и самое интересное – матрица во всей своей красе. Под сеточкой, в ячейках которой расположились микросферы-линзы, можно видеть отдельные фоточувствительные элементы (ну или их останки, точнее сказать затруднительно). Чуть ниже при обсуждении матрицы Canon я в деталях поясню «cross-section» устройство матрицы. Пока же обратимся к данным локального химического анализа. Оказывается, что сетка состоит из вольфрама, а микросферы, по всей видимости, это диоксид кремния, который сверху «укрыт» каким-то полимерным материалом. С более детальным анализом можно ознакомиться здесь.
Матрица во всей своей сложноустроенной красоте
Возвращаясь к первому СЭМ-изображению в этой главе, хочется отметить, что контактные площадки выполнены из чистого золота (о да!), однако проводники внутри сенсора, по всей видимости, состоят из алюминия, на который тончайшим слоем напылена медь, содержание которой на грани чувствительности прибора. Детальная информация представлена тут.
Матрица фотоаппарата Canon
Продолжим наше погружение в микро- и наномиры мы, как обычно, с оптической микроскопии. Как и в случае с Pentax, матрицу от фотоаппарата Canon не удалось снять на высоком увеличении вследствие геометрических нестыковок. Однако из полученных микрофотографий можно оценить размер отдельного субпикселя – около 1,5 мкм, что гораздо меньше, чем у матрицы мобильного телефона.
Оптические микрофотографии матрицы Canon
Кстати, один из виновников невозможности снимать на оптическом микроскопе при больших увеличениях – «покровное» стекло, закрывающее собой матрицу и её «начинку»:
Хороший кадр: передача за стеклом
Конечно, всегда самое интересное прячется на сколах, где разваливающийся строго упорядоченный мир даёт трещину, позволяющую заглянуть в самые сакраментальные уголки устройства:
Чуть позже мы ещё вернёмся к желтовато-оранжевым областям этой фотографии…
Уже знакомые нам столбики совершенно не понятного предназначения:
Как стойкие оловянные солдатики
Теперь рассмотрим более детально устройство CCD-матрицы. Сверху CCD-матрица покрыта чем-то, напоминающем полимерный слой (1), который защищает фоточувствительные элементы от агрессивной внешней среды. Под ним находятся микролинзы с красителем (2 и 3). Но так как электронная микроскопия не позволяет получать цветные изображения, то точно сказать, окрашена большая или маленькая сферы не представляется возможным. Микролинзы из диоксида кремния (наиболее вероятный материал для их изготовления) закреплены в ячейках вольфрамовой сетки (4), под которой скрывают фоточувствительные элементы (5). И, конечно же, вся эта конструкция покоится на подложке из чистейшего кремния!
С учётом того, что матрица дополнительно защищена «покровным» стеклом, то фотоэлементы защищены лучше, чем президент РФ в своём лимузине (если, конечно, сделать поправку на масштабный фактор).
Данные микроанализа можно скачать тут.
Устройство матрицы по пунктам. Описание в тексте
Но и это ещё не всё. У нас же осталось ещё стёклышко, прикрывающее матрицу, которое, как кажется, является поляризатором. Оно несколько шероховатое по краям, но практически идеально гладкое по всей остальной площади поверхности. Вроде бы оптическая микроскопия не даёт никаких результатов: стекло, как стекло.
Стекло с подозрением на поляризатор: ничего необычного
И только с помощью электронной микроскопии удаётся увидеть химконтраст на изображении и полосатую структуру. Толщина такой «плёнки» составляет всего-навсего 2,5 микрометра, при этом размеры отдельных слоёв 180 и 100 нм, соответственно, для более тёмных и более светлых. На основании данных микроанализа (тут), рискну предположить, что более тёмные области обогащены титаном, а светлые – алюминием. По-моему, это потрясающе!
Оказывается, внутри фотоаппарата своя полосата жизнь!
Послесловие
Такой мир уходящего века CCD-матриц предстал перед нами сегодня.
Спасибо всем (Василию за телефон, Илье и DarkWood за фотоаппараты), кто внёс свой посильный вклад в создание данной статьи. Вы – молодцы, что поддержали в этом нелёгком начинании!
И апофеоз данной статьи, а точнее его апофигей:
Покойтесь с миром, пока мы не придумаем вам нового применения
Бонус 1. Как выглядит зелёная пылевая буря в Москве?
Хотел сначала отдельным постом выложить, но решил не захламлять пространство. Буквально несколько дней назад Москву накрыло жёлто-зелёное облако, многие уже начали было готовится к приходу апокалипсиса, но обошлось… Что в реальности явилось причиной столь странной окраски?
Климат в последнее время барахлит на этой планете: то на Новый Год оставит без снега, то завалит снегом по самую макушку, то весна будет похожа на зиму, то вдруг неожиданно наступит лето. Цветы, деревья и растительность менее приспособлены к такого рода пертурбациям, поэтому 1,5 месяца весны сжавшиеся в 1 неделю заставили растения пересмотреть свои планы по размножению…
Утром, сев за письменный стол, я обнаружил на нём слой пыли, а протерев салфеткой, понял, что надо бы эту пыль как следует изучить. Сказано – сделано!
Хорошая новость – окраска жёлто-зелёного облака действительно была обусловлена большим количеством пыльцы (я насчитал, как минимум, три вида):
Состав московской бури: пыльца… Справа внизу пыльца на поверхности части растения
Плохая новость – этим мы тоже дышим, причём каждый день, а не в периоды размножения растений (микро- и наночастицы, которые не каждый фильтр поймает):
Состав московской бури: не очень приятная пыль и грязь
Кроп или фулл фрейм? Камера смартфона или зеркалка? Ответы на эти и подобные вопросы можно дать самому, если понять, как устроены современные фотокамеры. Статья «Устройство фотоматрицы» прольёт свет на некоторые аспекты этого вопроса.
Ко времени разработки фото матрицы существовали матрицы излучающие. Излучают матрицы в цветовой модели RGB. Суть её в том, что каждая ячейка матрицы делится на 3 субячейки которые представляют собой Red (красный), Green (зелёный) и Blue (синий) люминофоры. Такая система применялась на Электронно Лучевых Трубках (ЭЛТ), а также на всех типах современных ЖК матриц.
Разработчики фото матриц изначально пошли по тому же пути, но столкнувшись с трудностями стали искать альтернативу. В чём же проблемы такого подхода у фото матрицы?
Проблемы фотоматриц
Фотоматрица является устройством, воспринимающим спроецированное на неё изображение. Поскольку полупроводниковые фотоприёмники примерно одинаково чувствительны ко всем цветам видимого спектра, для восприятия цветного изображения каждый фотоприёмник накрывается светофильтром одного из первичных цветов: красного, зелёного или синего (цветовая модель RGB). В результате каждая фото ячейка воспринимает только световой поток, пропускаемый своим фильтром, а это 1/3 информации, остальные же 2/3 фотонов попросту теряются и становятся невидимы для фото матрицы. В условиях борьбы за каждый фотон, потеря 2/3 светового потока непозволительное расточительство.
На помощь пришла наука. В 1976 г. сотрудник Kodak Брайс Э. Байер получил патент США на своё изобретение «чувствительная матрица для цветного изображения». Поэтому фильтр Байера часто называют матрицей Байера. Байер был пионером, он начал заниматься этими исследованиями, когда о цифровых фото матрицах ещё никто не помышлял.
В матрице Байера половина фотофильтров зелёные, а другая половина поделена поровну между красными и синими. Преимущества отданы зелёному, по аналогии с человеческим глазом. Это позволяет лучше фиксировать контраст и улучшает ночное зрение фотоматрицы. Но такой подход лишает снимок части цветности. Каждый элементарный фотодиод фиксирует информацию о яркости только своего пикселя в частичном цветоделённом изображении. Недостающие компоненты цвета рассчитываются процессором камеры на основании данных из соседних ячеек в результате интерпретации этих данных при помощи алгоритма под названием дебайеризация или демозаизации. При этом происходит разделение пикселей, регистрирующих красный, зелёный и синий цвета, а затем информация преобразуется в цветной файл.
Простая билинейная интерполяция для этого не подходит, так как яркие объекты при этом приобретают цветную кайму (см. Рис. 3.). Таким образом, в формировании конечного цветового значения пикселя участвует 9 или более фотодиодов матрицы. Производители цифровых фотоаппаратов и RAW-конвертеров используют собственные адаптивные алгоритмы, защищённые авторским правом. Впрочем, алгоритмы и настройки большинства RAW-конвертеров базируются на исходниках dcraw — конвертера с открытым кодом, о чём многие авторы программ-конвертеров (например, SilkyPix) честно упоминают в документации на программу.
Кроме фильтра Байера в матрицах фотоаппаратов могут применяться и другие решения (см. таблицу).
Впрочем, это математика, а какие технологические приёмы используют производители для создания фотоматриц?
Технологии устройства матриц
По технологии устройства фото матриц можно разделить на 3 типа:
- ПЗС (CCD)
- КМОП (CMOS)
- КМОП с обратной засветкой (BSI CMOS)
Рассмотрим их чуть подробнее.
Фотоматрица ПЗС (CCD)
Самый старый представитель фотоматриц, изобретенный ещё в 1969 году. Однако активно вкладываться и развивать эту технологию стала именно Sony. В настоящее время эти фотоматрицы не часто используются и, фактически, отмирают, уступая более современным технологиям.
Фотоматрица КМОП (CMOS)
В конце 1960-х гг. многие исследователи отмечали, что структуры КМОП (CMOS) обладают чувствительностью к свету. Однако приборы с зарядовой связью (ПЗС) обеспечивали настолько более высокую светочувствительность и качество изображения, что КМОП-матрицы не получили сколько-нибудь заметного развития. Разработка не была доведена до стадии технологии.
О ней вспомнили в 1990-х, когда предметно-технологическое множество существенно расширилось и узкие места в КМОП (CMOS) структурах удалось заменить отработанными технологиями. Прогресс в субмикронной фотолитографии позволил применять в КМОП-сенсорах более тонкие соединения. За счёт большего процента облучаемой площади КМОП-матрицы удалось увеличить её светочувствительность. Таким образом весь проект стал более технически совершенным и реализуемым.
Переворот в технологии КМОП-сенсоров произошел, когда в лаборатории реактивного движения (Jet Propulsion Laboratory — JPL) NASA успешно реализовали Active Pixel Sensors (APS). Теоретические исследования были выполнены ещё несколько десятков лет тому назад, но практическое использование активного сенсора отодвинулось до 1993 года. APS добавляет к каждому пикселу транзисторный усилитель для считывания, что даёт возможность преобразовывать заряд в напряжение прямо в пикселе. Это обеспечило также произвольный доступ к фотодетекторам наподобие реализованного в микросхемах ОЗУ.
Фотодиод ячейки занимает существенно меньшую площадь элемента матрицы, по сравнению с ПЗС матрицей с полнокадровым переносом. Поэтому ранние матрицы КМОП имели существенно более низкую светочувствительность, чем ПЗС. Но в 2007 году компания Sony выпустила на рынок новую линейку видео- и фотокамер, оснащёнными КМОП-матрицами нового поколения, с технологией EXMOR, которая ранее применялась только для КМОП-матриц в специфических оптических устройствах таких как электронные телескопы. В этих матрицах электронная «обвязка» пиксела, препятствующая продвижению фотонов на светочувствительный элемент, была перемещена из верхнего в нижний слой фото матрицы, что позволило увеличить как физический размер пиксела при тех же геометрических размерах матрицы, так и доступность элементов свету, что, соответственно, увеличило светочувствительность каждого пиксела и матрицы в целом. Фотоматрицы КМОП впервые сравнялись с ПЗС-матрицами по светочувствительности, но оказались более энергосберегающими и лишенными главного недостатка ПЗС-технологии — «боязни» точечного света. В 2009 году компания Sony улучшила КМОП-матрицы с технологией EXMOR применив к ним технологию «Backlight illumination» («освещение с задней стороны» или «матрицы с обратной засветкой»).
КМОП матрицы потребляют меньше энергии, дешевле в производстве, имеют более чёткую балансировку белого и другие преимущества. Всё это сыграло свою роль в их доминировании.
Преимущества КМОП-матриц
- Основное преимущество КМОП технологии — низкое энергопотребление в статическом состоянии. Это позволяет применять такие матрицы в составе энергонезависимых устройств, например, в датчиках движения и системах наблюдения, находящихся большую часть времени в режиме «сна» или «ожидания события».
- Важным преимуществом КМОП матриц является единство технологии с остальными, цифровыми элементами аппаратуры. Это приводит к возможности объединения на одном кристалле аналоговой, цифровой и обрабатывающей части (КМОП-технология, являясь в первую очередь процессорной технологией, подразумевает не только «захват» света, но и процесс преобразования, обработки, очистки сигналов не только собственно-захваченных, но и сторонних компонентов РЭА), что послужило основой для миниатюризации камер для самого разного оборудования и снижения их стоимости ввиду отказа от дополнительных процессорных микросхем.
- С помощью механизма произвольного доступа можно выполнять считывание выбранных групп пикселов. Данная операция получила название кадрированного считывания (англ. windowing readout). Кадрирование позволяет уменьшить размер захваченного изображения и потенциально увеличить скорость считывания по сравнению с ПЗС-сенсорами, поскольку в последних для дальнейшей обработки необходимо выгрузить всю информацию. Появляется возможность применять одну и ту же фотоматрицу в принципиально различных режимах. В частности, быстро считывая только малую часть пикселей, можно обеспечить качественный режим живого просмотра изображения на встроенном в аппарат экране с относительно малым числом пикселей. Можно отсканировать только часть кадра и использовать её для отображения на весь экран. И тем самым, получить возможность качественной ручной фокусировки. Допустимо вести скоростную репортажную съёмку с меньшим размером кадра и разрешением.
- В дополнение к усилителю внутри пиксела, усилительные схемы могут быть размещены в любом месте по цепи прохождения сигнала. Это позволяет создавать усилительные каскады и повышать чувствительность в условиях плохого освещения. Возможность изменения коэффициента усиления для каждого цвета улучшает, в частности, балансировку белого.
- Дешевизна производства в сравнении с ПЗС-матрицами, особенно при больших размерах фотоматриц.
КМОП-матрица с обратной засветкой (BSI CMOS)
Это развитие КМОП технологии. Технологию Back-side illumination Яndex переводит как «Подсветка задней стороны». Встречаются также варианты «матрица с задней подсветкой», но наиболее благозвучный и устоявшийся – это «матрица с обратной засветкой».
Сам термин не является «говорящим». Скорее всего, название технологии придумано англоговорящими и построено на игре слов. Обычная КМОП-технология называется Front Illuminated, а усовершенствованная – Back Illuminated.
В интернете можно встретить описания КМОП-технологии с обратной засветкой, будто за фотоматрицей расположена отражающая подложка, возвращающая фотоны обратно в матрицу.
Либо что конструкция чем-то напоминает кошачий глаз, собирая не попавшие в фотодиоды фотоны, и вновь проецируя их на фотоматрицу, в результате чего у матрицы появляется «ночное зрение».
Но всё это выдумки и, прямо скажем, маркетинговые утки. На самом деле, свет на фотоприемники поступает точно так же, как и всегда. Основная суть изменений состоит в том, что служебные области пиксела, которые отвечают за снятие сигнала с фотоприемников и их обнуление (электропроводка), перенесли в нижний слой, увеличив тем самым площадь приёмника при том же самом размере пиксела. Реальный выигрыш по эффективной площади пиксела получился примерно 10-15% (для матриц размером 1/2,5"-1/2,3"), так что говорить о двукратном увеличении чувствительности – не серьезно. Это подтверждается и инструментальными тестами SONY HX1, имеющей такую матрицу.
Sony анонсировала новую революционную разработку: компания создала 1,46-мегапиксельную CMOS-матрицу с обратной засветкой (BSI) и центральным затвором. Это первая в мире CMOS-матрица с разрешением свыше 1 мегапикселя с такими характеристиками.
Искажения, возникающие при построчном считывании, на примере быстро движущихся лопастей пропеллера
“Новый датчик Sony получил новейшие компактные слаботочные конвертеры, расположенные под каждым пикселем. Они мгновенно конвертируют аналоговый сигнал со всех пикселей в цифровой, чтобы временно сохранить его в цифровой памяти. Такая архитектура позволяет избежать искажения, вызванного задержкой считывания, что позволяет реализовать функцию центрального затвора.
Чтобы добиться параллельной конвертации всех пикселей, Sony разработала технологию, благодаря которой стало возможно использовать примерно 3 миллиона соединений Cu-Cu (“медь-медь”) в одной матрице. Такое соединение обеспечивает электрическую непрерывность между пикселем и слоем управляющей логики, одновременно обеспечивая пространство для 1,46 миллиона конвертеров (по количеству эффективных пикселей)”.
Пока нет никакой информации, когда эта революционная разработка появится в потребительских камерах, но уже очевидно, что Sony намерена удержать свое господство в области производства датчиков изображений и обеспечить своим цифровым камерам первенство в плане качества матриц.
Читайте также: