Материнская плата pci express ata 133 распиновка
Несмотря на непрекращающиеся споры между любителями SCSI и IDE, становится ясно, что винчестеры IDE завоевывают рынок и сегодня занимают даже большую его часть, чем раньше. В то время как винчестеры SCSI продолжают доминировать на рынке серверов и рабочих станций, все больше любителей SCSI переходят на IDE. Дело в том, что винчестеры IDE практически сравнялись со SCSI как по части производительности, так и надежности. К тому же интеграция контроллеров IDE RAID на материнскую плату, позволяющих создать высокоскоростной массив RAID-0, стала достойной альтернативой использования одиночных винчестеров SCSI.
По мере расширения рынка IDE, всегда находятся компании, которые пытаются чем-то выделиться среди конкурентов. Наиболее ярким примером решения проблем, о существовании которых до этого никто даже не догадывался, может послужить компания Maxtor. Она недавно выпустила на рынок новые винчестеры Ultra ATA/133 и периферию к ним, которые позволяют увеличить производительность интерфейса дисков на 33%.
Но вряд ли можно сказать, что пропускная способность интерфейса Ultra ATA/100 не удовлетворяет нуждам имеющихся винчестеров. Безусловно, скорости винчестеров постоянно увеличиваются, но пропускная способность интерфейса никогда не становилась узким местом. Даже самые быстрые винчестеры IDE не могут перешагнуть за черту 45 Мбайт/с (скорость чтения данных с пластин), и поэтому проблемным местом становится не интерфейс, а собственно винчестер.
Maxtor разработала новый стандарт Ultra ATA/133 в одиночку, попытавшись изменить судьбу развития этой сферы индустрии. Обычно подобными вещами занимаются консорциумы, состоящие из многих производителей винчестеров и контроллеров. За последнее время это единственный случай, когда одна компания взяла всю инициативу на себя.
В то время как Maxtor пытается продвигать Ultra ATA/133, все остальные производители винчестеров избегают этой технологии и начинают разрабатывать продукты, поддерживающие новый стандарт Serial ATA. Даже сама Maxtor готовится к этому событию, чтобы удержать свою позицию на рынке к концу года, но все же компания позиционирует Ultra ATA/133 как отличное переходное решение между Ultra ATA/100 и Serial ATA.
Итак, мы поставили своей целью сравнить интерфейс ATA/133 с предыдущими интерфейсами ATA и проверить, дает ли он хоть какой-нибудь заметный прирост производительности и стоит ли тратить деньги на новые продукты, поддерживающие стандарт ATA/133. Но кроме этого в обзор войдет одна из разрабатываемых карт 66 МГц PCI компании Promise, благодаря которой мы сможем проверить, влияет ли увеличение скорости PCI на производительность новых винчестеров. Но прежде чем перейти к тестированию, давайте познакомимся поближе с технологиями Ultra ATA/133 и 66-МГц PCI.
64-бит и 66 МГц PCI
По мере развития плат PCI и увеличения передаваемых ими данных, они требуют все больше пропускной способности от устаревшей спецификации 33МГц PCI. Такие устройства как Ultra160/320 SCSI RAID или Gigabit Ethernet могут и вовсе исчерпать все возможности и без того перегруженной шины PCI. На шине возникают задержки, поскольку различные устройства PCI начинают воевать друг с другом за пропускную способность шины. Данная проблема уже многократно решалась различными способами, в результате таким картам предоставлялись быстрые интерфейсы PCI.
Самый распространенный способ увеличения пропускной способности шины – это увеличение скорости разъемов PCI. Это можно сделать двумя способами, которые, кстати говоря, не исключают совместного применения. Один из них состоит в увеличении объема данных, передаваемых карте за один такт (переход от 32 к 64 битам), а второй в увеличении частоты шины (с 33МГц до 66МГц). Оба способа практически удваивают скорость интерфейса. Если же применить их вместе, то теоретически производительность должна возрасти в 4 раза. Вот таблица, отражающая положение вещей с точки зрения теории.
Как видите, при использовании новых технологий скорость разъема PCI может стать очень большой. Однако мы не наблюдаем массового перехода на эти технологии по причине сложности реализации 64-битной 66 МГц PCI шины на материнской плате. Во-первых, использование 64-битного слота возможно только при специализированном 64-битном южном мосте, который сможет правильно формировать 64-битные пакеты данных. Intel и AMD уже создали 64-битные чипсеты для материнских плат, но они довольно дорогие. Шина 66 МГц требует очень качественной сборки и специальной разводки, поэтому скоростную шину PCI сложно реализовать. Вот почему 66МГц PCI до сих пор остается на территории серверов. Прирост производительности за счет этой технологии пока что не стоит денег, которые придется за него платить. К тому же карты, работающие на 66МГц PCI – редкое явление в наши дни.
Вот 3 «стандартных» типа разъемов PCI, которые реализованы сегодня. На всем рынке существует шесть разновидностей, но на сервера и рабочие станции обычно устанавливают эти три.
Как ни странно, не любая PCI карта сможет работать с такой шиной. Новая 64-битная шина PCI создавались с учетом поддержки старого 32-битного режима. Так что большинство 32-битных карт PCI все же будут работать без всяких проблем (но не получат от такой шины никакого преимущества). Если у вашей 32-битной карты PCI есть две выемки, то она будет работать в любом 64-битном разъеме, указанном выше. Если же на ней только одна выемка, то у вас карта, которая поддерживает либо 5В питание, либо 3,3В. Если выемка ближе к передней части платы, то у вас карта на 3,3В. Если же наоборот, то карта на 5В.
Большинство новых 64-битных карт PCI на 66МГц несовместимы со старыми разъемами PCI на 33МГц. Они могут быть установлены только в новые специальные разъемы. 64-битные карты PCI на 66 МГц – очень большая редкость на сегодняшний день. Они используются только для ОЧЕНЬ требовательных к пропускной способности устройств PCI, так что вам они вряд ли понадобятся, пока вы не займетесь сооружением серверов.
Самой большой проблемой, впрочем, является ситуация, когда на шине используется несколько высокоскоростных PCI устройств, тогда пропускная способность должна быстро исчерпаться. Как Intel, так и AMD разработали протоколы, которые могут резервировать определенные уровни пропускной способности, достаточные для любого PCI устройства.
Пример реализации ATA-133, 66 МГц PCI системы
Организация высокоскоростного интерфейса IDE не представляется сложной, если иметь нужные компоненты. Контроллеры и жесткие диски Ultra ATA/133 уже можно купить практически в любом магазине, причем они не очень дорого стоят. Но вот достать материнскую плату с разъемами PCI на 66МГц будет затруднительно. Для нашего тестирования мы собрали тестовую систему ATA/133 (DMA-6) с использованием следующих устройств.
Мы взяли материнскую плату Asus A7M266-D с двумя процессорами Athlon. Благодаря новому южному мосту AMD 768 на плате реализованы два 64-битных разъема PCI на 66МГц. Они также допускают использование и 32-битных карт на 33МГц и на 66МГц. Большинство плат для AMD Athlon MP и Intel Pentium 4 Xeon будут поддерживать 64-битную шину PCI, как и большинство чипсетов от Serverworks. Но на данный момент количество материнских плат, поддерживающих такую скорость PCI можно сосчитать по пальцам на одной руке.
Мы также протестировали винчестер Matrox D740X и на старых контроллерах ATA, чтобы проверить, существует ли разница между «вчерашними» контроллерами Ultra ATA/66 и Ultra ATA/100 и «сегодняшним» контроллером Ultra ATA/133. Контроллеры Ultra ATA/66 и 100 были взяты также от Promise (Ultra66 и Ultra100 соответственно) и работали в 32-битном режиме на 33МГц слотах. В виду того, что ATA/133 использует такой же 40-контактный 80-проводной шлейф, мы использовали один и тот же шлейф во всех тестах.
Конфигурация системы
- Память DDR работает с задержкой CAS 2
- Promise Ultra ATA 66/100 использует встроенные драйверы Windows XP
- Promise Ultra ATA/133 использует поставляемые драйверы Windows XP
- Перед тестированием все винчестеры были форматированы в NTFS.
- ATTO DiskTools Bench32 2.02
- ZD Winbench 99 High-End Diskmark
- ZD Winbench 99 Business Diskmark
- SiSoft Sandra File System Benchmark
ATTO's DiskTools – синтетический тест Windows. Он определяет скорость чтения/записи диска при записи и чтении файлов разных размеров Результат выводится в Мбайт/с. |
ATTO DiskTools Скорость записи
Если внимательно посмотреть на таблицу, то можете увидеть, что переход на Ultra ATA/133 c Ultra ATA/100 не дает особенных преимуществ. Конечно, есть небольшой прирост, но обыкновенный пользователь этого просто не заметит.
Но переход на 66МГц шину PCI, ATA/133 приводит к заметному приросту производительности, намного большему, чем мы могли предположить. Перед тестом мы считали, что прирост будет около 5%, не более. Это просто поразительно! К концу теста ATA/133 на 66МГц PCI превосходил ATA/133 на шине 33МГц почти вдвое!
ATTO DiskTools Скорость чтения
К сожалению, при чтении с диска новый интерфейс уже не имеет такого преимущества, как при записи. В этом тесте 66МГц контроллер лидировал при размерах около 2,0Кб, но при 41,8Мб сравнялся с остальными. Скорее всего, дело в скорости чтения собственно с пластины диска и контроллер здесь не в силах помочь.
Этот тест показал, что в реальных условиях нет абсолютно никакой разницы при использовании контроллеров ATA/100 и ATA/133. Даже Promise Ultra ATA/66 теоретически может предоставить достаточную пропускную способность для этого винчестера, потому что максимальная скорость чтения в среднем составляет 35,8Мб/с.
Тест файловой системы
ZDBop тестирует работу основных приложений Windows.
Winbench 99 - Business Disk Performance
Winbench 99 - High-End Disk Performance
Синтетические тесты Sandra и ZD не позволяют реально оценить ситуацию, но они все же показывают относительные отличия, которые определенно имеют место. На протяжении трех тестов мы видим, что при работе на 33МГц АТА/133 получает небольшое преимущество перед ATA/100, но при переходе на 66МГц разница становится заметнее.
Заключение
За небольшое время использования нового диска и контроллера IDE мы были приятно удивлены приростом производительности при использовании одного диска. Когда Ultra ATA/133 и контроллеры PCI IDE RAID на 66МГц появятся на массовом рынке, производительности систем заметно возрастет.
Ultra ATA/133 большей частью все же кажется чисто маркетинговой технологией, а не новым интерфейсом, призванным дать пользователю невиданную доселе производительность. Переход с Ultra ATA/100 на Ultra ATA/133 не приведет к заметным результатам. Только если вам нравится обладать всеми новинками, которые можно достать, вам понравится такой апгрейд.
Но с другой стороны технология 66-МГц PCI впечатляет. При перемещении карты Promise ATA/133 в 66МГц разъем PCI прирост производительности оказался уже не таким маленьким. Если такое происходит с Promise ATA/133, остается только догадываться, к чему это приведет при использовании страдающих от недостатка пропускной способности устройств, таких как SCSI RAID, high-end звуковых карт или самых быстрых адаптеров Ethernet. Но, к сожалению, в виду редкости материнских плат с 66МГц PCI и совместимых карт, не так много пользователей смогут насладиться этим новшеством.
Демонстрация работы 66МГц PCI показывает, что в шине еще есть место для улучшений. После того, как 66МГц PCI станет общедоступной, равно как и периферия, требующая высокой пропускной способности, «ширины» шины хватит еще лет на десять, а может и больше.
Как известно, PCI это пластмассовый cлот на материнской плате компьютера. Впервые он появился на Пентиум-1. Первоначально использовался для подключения видеокарт, но с конца 90-х видеоадаптеры стали подключать через более быстрый слот AGP. Самые новые видеокарты уже подключаются через PCI-E. Вот схема подачи питания на них с блока питания ATX ПК:
Также через PCI подключают звуковые карты, ТВ-тюнеры, внутренние факсмодемы, дополнительные USB- и FireWire-контроллеры, АТА-контроллеры для подключения дополнительных дисков и дисководов, сетевые карты и прочие платы расширения.
Архитектура PCI Express обеспечивает производительность ввода-вывода для настольных платформ со скоростью передачи от 2,5 гигабайт в секунду по линии x1 PCI Express. Смотрите подробнее на картинке.
Распиновка разъема PCI
Распиновка PCI-Express 1x
Распиновка PCI-Express 4x
Распиновка PCI-Express 8x
Распиновка PCI-Express 16x
Существует также и mini PCI Express разъём, цоколёвка которого приведена на рисунке выше.
Стандарты PCI-e передачи
PCI Express 1.0a
В 2003 году представили PCIe 1.0a со скоростью передачи данных 250 МБ / с и скоростью передачи 2,5 гигатрансфера в секунду (GT / s). Скорость передачи выражается в передачах в секунду, а не в битах в секунду, поскольку количество передач включает служебные биты, которые не обеспечивают дополнительной пропускной способности; PCIe 1.x использует схему кодирования 8b / 10b, что приводит к 20% (= 2/10) расходам на исходную полосу пропускания канала.
PCI Express 2.0
Объявили о PCI Express Base 2.0 в 2007 году. Стандарт PCIe 2.0 удваивает скорость передачи данных по сравнению с PCIe 1.0 до 5 ГТ / с, а пропускная способность на полосу увеличивается с 250 МБ / с до 500 МБ. / с. Следовательно, 32-полосный разъем PCIe (× 32) может поддерживать совокупную пропускную способность до 16 ГБ / с. Слоты материнской платы PCIe 2.0 полностью обратно совместимы с картами PCIe v1.x. Карты PCIe 2.0 также обычно обратно совместимы с материнскими платами PCIe 1.x, используя доступную пропускную способность PCI Express 1.1. В целом, графические карты или материнские платы, разработанные для версии 2.0, будут работать с другими версиями 1.1 или 1.0a. Как и 1.x, PCIe 2.0 использует схему кодирования 8b / 10b, поэтому обеспечивает эффективную максимальную скорость передачи 4 Гбит / с для каждой полосы по сравнению со скоростью исходных данных 5 ГТ / с.
PCI Express 2.1
PCI Express 2.1 вышла в 2009 году, она поддерживает большую часть систем управления, поддержки и устранения неполадок, которые запланированы для полной реализации в PCI Express 3.0. Однако скорость такая же, как у PCI Express 2.0. Увеличение мощности из слота нарушает обратную совместимость между картами PCI Express 2.1 и некоторыми старыми материнскими платами с 1.0 / 1.0a, но большинство материнских плат с разъемами PCI Express 1.1 поставляются с обновлением BIOS их производителями через служебные программы для поддержки обратной совместимости карт. с PCIe 2.1.
PCI Express 3.0
Спецификация PCI Express 3.0 стала доступна в конце 2010 года. Новые функции PCI Express 3.0 включают ряд оптимизаций для улучшенной передачи сигналов и целостности данных, включая выравнивание передатчика и приемника, усовершенствования системы ФАПЧ, восстановление тактовых данных и улучшения каналов для поддерживаемых в настоящее время топологии. PCI Express 3.0 обновляет схему кодирования до 128b / 130b по сравнению с предыдущей кодировкой 8b / 10b, уменьшая накладные расходы на полосу пропускания с 20% от PCI Express 2.0 примерно до 1,54% (= 2/130). Это достигается с помощью операции XOR известного двоичного полинома в качестве скремблера к потоку данных в топологии обратной связи. Скорость передачи данных PCI Express 3.0 8 ГТ / с эффективно обеспечивает 985 МБ / с на полосу, что почти вдвое увеличивает пропускную способность полосы пропускания по сравнению с PCI Express 2.0.
PCI Express 4.0
PCI Express 4.0 был анонсирован в 2017 году, обеспечивая скорость передачи данных 16 ГТ / с, что удваивает пропускную способность, обеспечиваемую PCI Express 3.0, при сохранении обратной и прямой совместимости как в программной поддержке, так и в используемом механическом интерфейсе. Спецификации PCI Express 4.0 также включают OCuLink-2, альтернативу разъему Thunderbolt. OCuLink версии 2 будет иметь скорость до 16 Гб / с (всего 8 ГБ / с для 4 полос), а максимальная пропускная способность разъема Thunderbolt 3 составляет 5 ГБ / с. Кроме того, необходимо изучить оптимизацию активной и неактивной мощности.
Зачастую пользователи оставляют подключение передней панели при сборке напоследок, уделяя больше внимания основным компонентам ПК. Такой подход резонен, но в свою очередь один неправильно подключенный коннектор панели не позволит включить устройство даже при правильной сборке всех остальных комплектующих. Как этого избежать, рассмотрим в данном материале.
Какие бывают разъемы на передней панели корпуса
Дизайн компьютерных корпусов менялся на протяжении многих лет, эта участь не обошла стороной и панель с разъемами. Различные кард-ридеры и встроенные реобасы уже не так актуальны, как раньше, а спикеры используются далеко не каждым рядовым пользователем. Неизменными остаются органы управления в виде кнопок включения/отключения и перезагрузки, индикации, аудио- и USB-порты.
Кроме этих основных групп разъемов в некоторых современных корпусах можно встретить кнопки управления подсветкой. Подключение подсветки корпуса может быть реализовано разнообразными вариантами в зависимости от производителя. Зачастую это трехпиновый 5В кабель, подключаемый в материнскую плату, и SATA-кабель для подсоединения к блоку питания. Еще один часто встречающийся вариант — подключение к встроенному контроллеру.
При подключении проводов от передней панели желательно следовать общему кабель-менеджменту корпуса. А именно заранее спланировать и подвести кабели до установки материнской платы. Подключение проводов панели является предпоследним шагом перед готовой сборкой ПК. Заключительный шаг — установка видеокарты, так как ее размеры могут создавать неудобства.
Три основные категории разъемов имеют соответствующие коннекторы на материнских платах в специально отведенных местах, которые незначительно меняются в зависимости от конкретного устройства.
Аудио-разъемы
На передних панелях современных корпусов можно встретить два вида реализации аудио0-разъемов:
- Раздельный — отдельные разъемы для микрофона и аудиовыхода.
- Комбинированный — один разъем, совмещающий в себе оба интерфейса.
Вне зависимости от типа реализации, аудио-разъем подключается к плате при помощи одного стандартизированного коннектора. Аудио-разъем представляет собой коннектор в 9-pin, десятая колодка отсутствует, создавая тем самым специфичную структуру, не позволяющую подключить коннектор неправильно. Как правило, соответствующий разъем на материнской плате находится в ее нижней левой части и обозначен маркировкой HD_Audio. В компактных платах он может быть расположен не в самых удобных местах, а использование процессорных кулеров с горизонтальным расположением может сильно затруднить свободный доступ к разъему.
USB-порты
Разнообразие версий USB-портов не обошло стороной и компьютерные корпуса. В продаже можно встретить корпуса со стандартными USB-портами разных версий, двусторонними Type-C, а также с различными их сочетаниями.
USB 2.0
Этот тип разъема имеет схожий с аудио-разъемом коннектор в 9-pin, но с иным расположением отверстий — отсутствующая колодка находится с краю. Как правило, найти соответствующий разъем на плате можно неподалеку от массивной площадки для подключения кабеля питания в правой части материнской платы. Маркируется он обозначением USB. Зачастую на плате присутствует несколько таких разъемов.
USB 3.0
В отличие от более старой версии 2.0, порты USB 3.0 подключаются массивным кабелем и штекером. Для коннектора с 19-pin имеется отдельная фиксирующая рамка. Для предотвращения неправильного подключения у штекера предусмотрен специальный ключ и вставить его в разъем неправильной стороной попросту не получится. Располагается он также в группе с остальными USB-портами. Массивность коннектора в ряде случаев не позволяет аккуратно скрыть его, и этот фактор напрямую зависит от конкретной платы и корпуса.
USB Type-C
Современный и компактный разъем USB Type-C встречается далеко не во всех материнских платах, и, чтобы пользоваться соответствующим портом в корпусе, стоит заранее предусмотреть этот нюанс. Этот разъем имеет направляющую для плотного соединения коннекторов. Его коннектор кардинально отличается от рассмотренных ранее версий USB. Вместо колодок используются «дорожки» — по десять штук с каждой стороны. Как правило, его можно найти в группе с остальными USB-разъемами под маркировкой USB 3*.
Управление и индикация ПК
Если с подключением раннее рассмотренных коннекторов не должно возникнуть особых проблем, то подключение коннекторов управления и индикации ПК может доставить неопытному пользователю ряд проблем. Виной тому множество отдельных проводов, у которыз нет ни физических направляющих, ни защиты от неправильного подключения.
Как правило, необходимые разъемы находятся в правой нижней части материнской платы и обозначены надписью PANEL или F_PANEL. Коннекторы кнопок и индикаторов разделены на группы и располагаются друг за другом. В зависимости от конкретной платы колодки для подключения могут располагаться в разной последовательности. Поэтому важно иметь под рукой краткое руководство пользователя, где подробно указана распиновка платы. Если же его нет, можно воспользоваться подсказками производителя платы, а именно нанесенными маркировкой обозначениями рядом с колодками. Но стоит учесть, что они не во всех случаях могут быть читаемы.
Стандартная колодка представляет собой 9-pin коннектор, а коннекторы подключаются надписью вниз. Как правило, кнопка включения/выключения Power SW имеет сдвоенный провод и подключается в верхний крайний справа разъем.
Следующий шаг — подключение индикаторов, отображающих включение ПК Power LED. Нужные пины находятся в этом же ряду. Плюс — крайний слева, а минус, соответственно, правее.
На очереди кнопка перезагрузки Reset SW. В данном случае она располагается крайней справа, также, как и кнопка включения/выключения, но в нижнем ряду.
Остается лишь подключить индикацию работы жестких дисков HDD LED. Необходимый коннектор можно найти в нижнем ряду панели F_PANEL. Как и в случае с индикаторами питания ПК, плюсовой разъем находится левее, минусовой правее. В комплекте с материнской платой или корпусом пользователь может обнаружить переходник для подключения озвученных раннее коннекторов. Переходник значительно облегчает частое подключение/отсоединение миниатюрных разъемов.
Форм-фактор – это стандарт, который определяет габаритные размеры устройства. Наиболее распространенными форм-факторами настольных ПК, которые совместимы почти со всеми современными корпусами являются ATX и micro-ATX.
Процессор
Производитель процессора |
На данный момент основными производителями процессоров являются Intel и AMD.
Сокет (от англ. socket— разъем) – разъем, предназначенный для процессора. Наличие одинаковых сокетов на процессоре и материнской плате является основным, но не единственным критерием их совместимости.
Материнские платы для домашних ПК, как правило, имеют только 1 сокет. Наличие двух и более сокетов в большинстве случаев является признаком высокопроизводительной серверной материнской платы.
Некоторые материнские платы сразу имеют встроенный процессор. Это позволяет избавиться от проблем совместимости.
FSB (Front Side Bus) – системная шина (интерфейс передачи данных), соединяющая процессор и материнскую плату, а точнее ее «северный мост». Чем выше частота FSB, тем быстрее данные передаются от процессора к материнской плате. Для совместимости с процессором материнская плата должна поддерживать его частоту FSB, то есть частота FSB процессора должна быть не меньше минимальной частоты, которую поддерживает материнская плата и не больше максимальной.
Почти все современные материнские платы поддерживают процессоры, сокет которых совпадает с сокетом материнской платы (поэтому частота FSB часто не указывается). Данная проблема совместимости наблюдается, как правило, только на старых материнских платах (с сокетами S478 и т.д).
FSB (Front Side Bus) – системная шина (интерфейс передачи данных), соединяющая процессор и материнскую плату, а точнее ее «северный мост». Чем выше частота FSB, тем быстрее данные передаются от процессора к материнской плате. Для совместимости с процессором материнская плата должна поддерживать его частоту FSB, то есть частота FSB процессора должна быть не меньше минимальной частоты, которую поддерживает материнская плата и не больше максимальной.
Почти все современные материнские платы поддерживают процессоры, сокет которых совпадает с сокетом материнской платы (поэтому частота FSB часто не указывается). Данная проблема совместимости наблюдается, как правило, только на старых материнских платах (с сокетами S478 и т.д).
При наличии технологии Hyper-Threading процессор способен выполнять дополнительный поток задач (на каждое ядро). Это дает преимущество в производительности перед процессорами, в которых данная технология не реализована. Но процессоры с большим количеством ядер, как правило, являются более производительными.
Чипсет
Производитель чипсета материнской платы |
Чипсет (chipset) – набор микросхем, осуществляющих контроль и управление всеми узлами материнской платы.
Чипсет (chipset) – набор микросхем, осуществляющих контроль и управление всеми узлами материнской платы.
Данная технология позволяет удаленно управлять компьютером, что позволит предоставить к нему доступ специалисту, который сможет выполнить настройку и устранить неполадки. Также у технологии есть и другие возможности.
BIOS/EFI
Иногда при сбоях электроэнергии, неправильной «перепрошивке» BIOS или по каким-либо иным причинам выход в BIOS, а, следовательно, и запуск ПК становятся невозможными. Для этого на некоторых материнских платах предусмотрена возможность восстановления BIOS, обычно с дополнительной микросхемы, которая сразу встроена в материнскую плату.
Оперативная память
Совместимость между различными представителями DDR (DDR, DDR2, DDR3, DDR4) отсутствует.
На смену DDR3 постепенно приходят модули памяти DDR4, но большого распространения они пока не получили из-за высокой стоимости самих планок памяти и материнских плат для них. Скорость передачи данных у модулей памяти DDR4 в два раза выше чем у DDR3.
DIMM (Dual In-line Memory Module, двухсторонний модуль памяти) – форм-фактор модуля памяти, пришедший на смену SIMM (Single In-line Memory Module, односторонний модуль памяти). Основным преимуществом является ускорение передачи данных. DIMM также имеет функцию обнаружения и исправления ошибок, что обеспечивает более надежную передачу данных.
DDR2/DDR3 DIMM, DDR/DDR2 DIMM. Некоторые материнские платы могут поддерживать сразу 2 различных типа памяти, это позволяет использовать старые модули оперативной памяти.
DDR2 FB-DIMM (Fully Buffered DIMM, полностью буферизованный DIMM) – серверная оперативная память. Обеспечивает повышенную скорость и точность передачи данных. Несовместимы с обычными небуферизованными модулями памяти DDR2 DIMM.
Максимальная частота оперативной памяти, которую поддерживает материнская плата.
Минимальная частота оперативной памяти, которую поддерживает материнская плата.
Позволяет ускорить доступ к данным при установке двух планок оперативной памяти. Чтобы двухканальный режим заработал необходимо установить их в специальные слоты. Более того, как правило, планки памяти должны быть абсолютно идентичными. Прирост производительности зависит от типа выполняемых задач и составляет от 10 до 80% по сравнению с материнскими платами без поддержки двухканального режима памяти.
Аналогично двухканальному режиму, только для 3-х планок оперативной памяти.
Аналогично двухканальному режиму, только для 4-х планок оперативной памяти.
Регистровая (буферизованная) оперативная память содержит буфер, который является временным хранилищем данных. Данному виду памяти необходим 1 дополнительный такт на запись данных во временный буфер. Благодаря ему уменьшается вероятность потери данных, но при этом незначительно снижается быстродействие.
Буферизованная оперативная память имеет более высокую стоимость и используется преимущественно на серверах.
PCI/Видеокарта
PCI Express (также обозначается как PCIe или PCI-E) — высокоскоростной интерфейс, пришедший на смену AGP, который используют, в основном, для подключения видеокарт. Совместим с PCI-E x8, x4 и т.д., но несовместим с AGP!
SLI и CrossFire – это технологии, которые позволяют устанавливать одновременно несколько видеокарт. Это приводит к увеличению производительности (как правило, на современных устройствах при правильном подключении прирост производительности составляет около 90-95%).
CrossFire X – последняя версия CrossFire.
Hybrid технологии позволяют объединять производительность видеокарты встроенной в материнскую плату с дискретной.
Вторая версия шины PCI-Express с пропускной способностью до 2,5 Гбит/с.
Последняя на данный момент версия шины PCI-Express с пропускной способностью до 8 Гбит/с.
Похож на PCI-Express x16, но несколько меньше, используется, в основном, для периферийных устройств. Совместим с PCI-E x4 и x1.
Похож на PCI-Express x8, но несколько меньше, используется, в основном, для периферийных устройств. Совместим с PCI-E x1.
Похож на PCI-Express x4, но несколько меньше, используется, в основном, для периферийных устройств.
Слот, предназначенный, в основном, для периферийных устройств. Несовместим с PCI-Express!
PCI-X (PCI Extended – расширенный PCI) – разъем, который используется на серверных материнских платах для подключения устройств.
реклама
Основными характеристиками этой материнской платы являются:
реклама
Последние характеристики нуждаются в некоторых комментариях. Процессоры VIA C3, равно как и Pentium III/Celeron не имеют возможности изменения множителя, а потому встроенная в BIOS поддержка этой функции выглядит странно. Разве что в будущем (а С3 будут выпускаться минимум до 2004 года) появятся процессоры с незаблокированным множителем :). Напряжение на памяти регулируется в пределах 2,6-2,8 В с шагом в 0,1 В. Такие оверклокерские задатки для плат производства VIA выглядят несколько необычно, но нам это нравится.
реклама
реклама
Несмотря на непрекращающиеся споры между любителями SCSI и IDE, становится ясно, что винчестеры IDE завоевывают рынок и сегодня занимают даже большую его часть, чем раньше. В то время как винчестеры SCSI продолжают доминировать на рынке серверов и рабочих станций, все больше любителей SCSI переходят на IDE. Дело в том, что винчестеры IDE практически сравнялись со SCSI как по части производительности, так и надежности. К тому же интеграция контроллеров IDE RAID на материнскую плату, позволяющих создать высокоскоростной массив RAID-0, стала достойной альтернативой использования одиночных винчестеров SCSI.
По мере расширения рынка IDE, всегда находятся компании, которые пытаются чем-то выделиться среди конкурентов. Наиболее ярким примером решения проблем, о существовании которых до этого никто даже не догадывался, может послужить компания Maxtor. Она недавно выпустила на рынок новые винчестеры Ultra ATA/133 и периферию к ним, которые позволяют увеличить производительность интерфейса дисков на 33%.
Но вряд ли можно сказать, что пропускная способность интерфейса Ultra ATA/100 не удовлетворяет нуждам имеющихся винчестеров. Безусловно, скорости винчестеров постоянно увеличиваются, но пропускная способность интерфейса никогда не становилась узким местом. Даже самые быстрые винчестеры IDE не могут перешагнуть за черту 45 Мбайт/с (скорость чтения данных с пластин), и поэтому проблемным местом становится не интерфейс, а собственно винчестер.
Maxtor разработала новый стандарт Ultra ATA/133 в одиночку, попытавшись изменить судьбу развития этой сферы индустрии. Обычно подобными вещами занимаются консорциумы, состоящие из многих производителей винчестеров и контроллеров. За последнее время это единственный случай, когда одна компания взяла всю инициативу на себя.
В то время как Maxtor пытается продвигать Ultra ATA/133, все остальные производители винчестеров избегают этой технологии и начинают разрабатывать продукты, поддерживающие новый стандарт Serial ATA. Даже сама Maxtor готовится к этому событию, чтобы удержать свою позицию на рынке к концу года, но все же компания позиционирует Ultra ATA/133 как отличное переходное решение между Ultra ATA/100 и Serial ATA.
Итак, мы поставили своей целью сравнить интерфейс ATA/133 с предыдущими интерфейсами ATA и проверить, дает ли он хоть какой-нибудь заметный прирост производительности и стоит ли тратить деньги на новые продукты, поддерживающие стандарт ATA/133. Но кроме этого в обзор войдет одна из разрабатываемых карт 66 МГц PCI компании Promise, благодаря которой мы сможем проверить, влияет ли увеличение скорости PCI на производительность новых винчестеров. Но прежде чем перейти к тестированию, давайте познакомимся поближе с технологиями Ultra ATA/133 и 66-МГц PCI.
64-бит и 66 МГц PCI
Самый распространенный способ увеличения пропускной способности шины – это увеличение скорости разъемов PCI. Это можно сделать двумя способами, которые, кстати говоря, не исключают совместного применения. Один из них состоит в увеличении объема данных, передаваемых карте за один такт (переход от 32 к 64 битам), а второй в увеличении частоты шины (с 33МГц до 66МГц). Оба способа практически удваивают скорость интерфейса. Если же применить их вместе, то теоретически производительность должна возрасти в 4 раза. Вот таблица, отражающая положение вещей с точки зрения теории.
Как видите, при использовании новых технологий скорость разъема PCI может стать очень большой. Однако мы не наблюдаем массового перехода на эти технологии по причине сложности реализации 64-битной 66 МГц PCI шины на материнской плате. Во-первых, использование 64-битного слота возможно только при специализированном 64-битном южном мосте, который сможет правильно формировать 64-битные пакеты данных. Intel и AMD уже создали 64-битные чипсеты для материнских плат, но они довольно дорогие. Шина 66 МГц требует очень качественной сборки и специальной разводки, поэтому скоростную шину PCI сложно реализовать. Вот почему 66МГц PCI до сих пор остается на территории серверов. Прирост производительности за счет этой технологии пока что не стоит денег, которые придется за него платить. К тому же карты, работающие на 66МГц PCI – редкое явление в наши дни.
Вот 3 «стандартных» типа разъемов PCI, которые реализованы сегодня. На всем рынке существует шесть разновидностей, но на сервера и рабочие станции обычно устанавливают эти три.
Как ни странно, не любая PCI карта сможет работать с такой шиной. Новая 64-битная шина PCI создавались с учетом поддержки старого 32-битного режима. Так что большинство 32-битных карт PCI все же будут работать без всяких проблем (но не получат от такой шины никакого преимущества). Если у вашей 32-битной карты PCI есть две выемки, то она будет работать в любом 64-битном разъеме, указанном выше. Если же на ней только одна выемка, то у вас карта, которая поддерживает либо 5В питание, либо 3,3В. Если выемка ближе к передней части платы, то у вас карта на 3,3В. Если же наоборот, то карта на 5В.
Большинство новых 64-битных карт PCI на 66МГц несовместимы со старыми разъемами PCI на 33МГц. Они могут быть установлены только в новые специальные разъемы. 64-битные карты PCI на 66 МГц – очень большая редкость на сегодняшний день. Они используются только для ОЧЕНЬ требовательных к пропускной способности устройств PCI, так что вам они вряд ли понадобятся, пока вы не займетесь сооружением серверов.
Самой большой проблемой, впрочем, является ситуация, когда на шине используется несколько высокоскоростных PCI устройств, тогда пропускная способность должна быстро исчерпаться. Как Intel, так и AMD разработали протоколы, которые могут резервировать определенные уровни пропускной способности, достаточные для любого PCI устройства.
Пример реализации ATA-133, 66 МГц PCI системы
Мы взяли материнскую плату Asus A7M266-D с двумя процессорами Athlon. Благодаря новому южному мосту AMD 768 на плате реализованы два 64-битных разъема PCI на 66МГц. Они также допускают использование и 32-битных карт на 33МГц и на 66МГц. Большинство плат для AMD Athlon MP и Intel Pentium 4 Xeon будут поддерживать 64-битную шину PCI, как и большинство чипсетов от Serverworks. Но на данный момент количество материнских плат, поддерживающих такую скорость PCI можно сосчитать по пальцам на одной руке.
Мы также протестировали винчестер Matrox D740X и на старых контроллерах ATA, чтобы проверить, существует ли разница между «вчерашними» контроллерами Ultra ATA/66 и Ultra ATA/100 и «сегодняшним» контроллером Ultra ATA/133. Контроллеры Ultra ATA/66 и 100 были взяты также от Promise (Ultra66 и Ultra100 соответственно) и работали в 32-битном режиме на 33МГц слотах. В виду того, что ATA/133 использует такой же 40-контактный 80-проводной шлейф, мы использовали один и тот же шлейф во всех тестах.
Конфигурация системы
- Память DDR работает с задержкой CAS 2
- Promise Ultra ATA 66/100 использует встроенные драйверы Windows XP
- Promise Ultra ATA/133 использует поставляемые драйверы Windows XP
- Перед тестированием все винчестеры были форматированы в NTFS.
- ATTO DiskTools Bench32 2.02
- ZD Winbench 99 High-End Diskmark
- ZD Winbench 99 Business Diskmark
- SiSoft Sandra File System Benchmark
ATTO DiskTools Скорость записи
Если внимательно посмотреть на таблицу, то можете увидеть, что переход на Ultra ATA/133 c Ultra ATA/100 не дает особенных преимуществ. Конечно, есть небольшой прирост, но обыкновенный пользователь этого просто не заметит.
Но переход на 66МГц шину PCI, ATA/133 приводит к заметному приросту производительности, намного большему, чем мы могли предположить. Перед тестом мы считали, что прирост будет около 5%, не более. Это просто поразительно! К концу теста ATA/133 на 66МГц PCI превосходил ATA/133 на шине 33МГц почти вдвое!
ATTO DiskTools Скорость чтения
К сожалению, при чтении с диска новый интерфейс уже не имеет такого преимущества, как при записи. В этом тесте 66МГц контроллер лидировал при размерах около 2,0Кб, но при 41,8Мб сравнялся с остальными. Скорее всего, дело в скорости чтения собственно с пластины диска и контроллер здесь не в силах помочь.
Этот тест показал, что в реальных условиях нет абсолютно никакой разницы при использовании контроллеров ATA/100 и ATA/133. Даже Promise Ultra ATA/66 теоретически может предоставить достаточную пропускную способность для этого винчестера, потому что максимальная скорость чтения в среднем составляет 35,8Мб/с.
SiSoft Sandra 2002 – это синтетический тест Windows. Тестирует процессор, память, жесткий диск и проверяет поддержку дополнительных инструкций процессора. Больше результат – больше общая производительность. |
Тест файловой системы
ZDBop тестирует работу основных приложений Windows.
Синтетические тесты Sandra и ZD не позволяют реально оценить ситуацию, но они все же показывают относительные отличия, которые определенно имеют место. На протяжении трех тестов мы видим, что при работе на 33МГц АТА/133 получает небольшое преимущество перед ATA/100, но при переходе на 66МГц разница становится заметнее.
Заключение
Ultra ATA/133 большей частью все же кажется чисто маркетинговой технологией, а не новым интерфейсом, призванным дать пользователю невиданную доселе производительность. Переход с Ultra ATA/100 на Ultra ATA/133 не приведет к заметным результатам. Только если вам нравится обладать всеми новинками, которые можно достать, вам понравится такой апгрейд.
Но с другой стороны технология 66-МГц PCI впечатляет. При перемещении карты Promise ATA/133 в 66МГц разъем PCI прирост производительности оказался уже не таким маленьким. Если такое происходит с Promise ATA/133, остается только догадываться, к чему это приведет при использовании страдающих от недостатка пропускной способности устройств, таких как SCSI RAID, high-end звуковых карт или самых быстрых адаптеров Ethernet. Но, к сожалению, в виду редкости материнских плат с 66МГц PCI и совместимых карт, не так много пользователей смогут насладиться этим новшеством.
Демонстрация работы 66МГц PCI показывает, что в шине еще есть место для улучшений. После того, как 66МГц PCI станет общедоступной, равно как и периферия, требующая высокой пропускной способности, «ширины» шины хватит еще лет на десять, а может и больше.
Читайте также: