Материнская плата dual ddr2 800 какой сокет
Будем рассматривать память стандарта DIMM, про SIMM забудем, она уже совсем старая.
SIMM (англ. Single In-line Memory Module , односторонний модуль памяти) — модули памяти с однорядным расположением контактов, широко применявшиеся в компьютерных системах в 1990-е годы.
DIMM (англ. Dual In-line Memory Module, двухсторонний модуль памяти ) — форм-фактор модулей памяти DRAM. Данный форм-фактор пришёл на смену форм-фактору SIMM. Основным отличием DIMM от предшественника является то, что контакты, расположенные на разных сторонах модуля, являются независимыми, в отличие от SIMM, где симметричные контакты, расположенные на разных сторонах модуля, замкнуты между собой и передают одни и те же сигналы. Впервые в форм-факторе DIMM появились модули с памятью типа FPM, а затем и EDO. Ими комплектовались серверы и брендовые компьютеры. Модуль SO-DIMM предназначен для использования в ноутбуках или в качестве расширения памяти на плате, поэтому отличается уменьшенным габаритом.
В дальнейшем в модули DIMM стали упаковывать память типа DDR (она же DDR1), DDR2, DDR3 и DDR4, отличающуюся повышенным быстродействием.
DDR SDRAM (англ. double-data-rate synchronous dynamic random access memory) — синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных).
Вот этот чип:
Смотрим в описании материнской платы свой тип памяти (и максимальный поддерживаемый размер), покупаем, устанавливаем. Так? Не совсем, здесь тоже есть подводные камни.
Как подобрать оперативную память к материнской плате?
Этап 3.
Если есть на руках (или хочется купить) планку памяти, которой нет в 1-м и в 2-м этапе -> идем на этап 3. Заходим на сайт производителя оперативной памяти и смотрим, с какими материнскими платами тестировалась данная память.
Этап 4.
Для DDR3 / DDR4 выбранная память должна еще поддерживаться процессором, т.к. контроллер памяти теперь там. Грубо говоря, Вы купили DDR3 1600 Мгц, материнская плата ее поддерживает, а процессоре заявлена поддержка только 1333 Мгу = память заработает на частоте 1333 Мгц.
Все нужно проверять.
1. ВАЖНО: оперативная память для AMD и остальных платформ не совпадает, несмотря на одинаковые названия и размеры!
В чем же различие? Интегрированный контроллер памяти процессоров AMD поддерживает адресацию с использованием 11-разрядных столбцов и размером страницы 16 Кбит. Стандартные контроллеры памяти, встречающиеся в составе других платформ, используют 10-разрядные столбцы и размер страницы 8 Кбит. При такой организации доступа к памяти каждая страница размером 16 Кбит может содержать 2048 точек входа. Это позволяет контроллеру памяти процессоров в исполнении Socket AM2/AM2+/AM3 оставаться на одной странице в два раза дольше по сравнению со «стандартным» контроллером памяти.
2. Китайская контрафактная память (т.е. непонятный производитель и этикетка от официального производителя)
Теперь смотрим на то, что продается
3. Китайский производитель NONAME
Виды памяти
Тип памяти | Число контактов | Напряжение питания, В | Частоты работы памяти, Мгц |
DDR1 | 184 pin | 2,5 В (старые мат.платы) | 200 266 333 400 |
DDR1 | 184 pin | 2,6 В | |
DDR2 | 240 pin | 1,8 В | 400 533 667 800 1066 |
DDR3 | 240 pin (не совместимы с DDR2) | 1,5 В | 800 1066 1333 1600 1866 2133 2400 на одинаковых частотах с DDR2 память DDR3 медленнее |
DDR3L | 240 pin (не совместимы с DDR2) | 1,35 В (low voltage) | |
DDR4 | 288 pin | 1,2 В | 1600 1866 2133 2400 3200 3400 |
В настоящее время память DDR4 поддерживается только на материнских платах с socket 1151 / 2011-3 при использовании процессоров Intel шестого поколения. Контроллер памяти (управление памятью) также встроено в процессор. Для socket 1151 поддерживается двухканальный режим, для socket 2011-3 поддерживается четырехканальный режим работы памяти.
Частота шины памяти, Мгц | Частота памяти, Мгц | Стандарт | Название модуля | Мбит/сек (теоретическая) |
100 | 200 DDR1 | PC 1600 | ||
133 | 266 DDR1 | JEDEC | PC 2100 | |
150 | 300 DDR1 | PC 2400 | ||
166 | 333 DDR1 | JEDEC | PC 2700 | |
200 | 400 DDR1 | JEDEC | PC 3200 | |
217 | 433 DDR1 | O.C. | ||
233 | 466 DDR1 | O.C. | ||
250 | 500 DDR1 | O.C. | ||
275 | 550 DDR1 | O.C. | ||
300 | 600 DDR1 | O.C. | ||
200 | 400 DDR2 | JEDEC | ||
266 | 533 DDR2 | JEDEC | PC 4200 | |
333 | 667 DDR2 | JEDEC | PC 5300 | |
400 | 800 DDR2 | JEDEC | PC 6400 | 6400 |
500 | 1000 DDR2 | O.C. | ||
533 | 1066 DDR2 | O.C. | PC 8500 | 8533 |
556 | 1111 DDR2 | O.C. | ||
571 | 1142 DDR2 | O.C. | ||
625 | 1250 DDR2 | O.C. | ||
400 | 800 DDR3 | |||
533 | 1066 DDR3 | JEDEC | ||
667 | 1333 DDR3 | JEDEC | PC 10667 | 10667 |
800 | 1600 DDR3 | JEDEC | PC 12800 | 12800 |
900 | 1800 DDR3 | JEDEC | ||
933 | 1866 DDR3 | O.C. | PC 14900 | 14933 |
1000 | 2000 DDR3 | JEDEC | ||
1066 | 2133 DDR3 | O.C. | PC 17000 | 17066 |
1200 | 2400 DDR3 | O.C. | PC 19200 | 19200 |
800 | 1600 DDR4 | JEDEC | PC 12800 | 12800 |
933 | 1866 DDR4 | JEDEC | PC 14900 | 14933 |
1066 | 2133 DDR4 | JEDEC | PC 17000 | 17066 |
1200 | 2400 DDR4 | O.C. | PC 19200 | 19200 |
1600 | 3200 DDR4 | O.C. | PC4 25600 | 25600 |
1700 | 3400 DDR4 | O.C. | PC4 27200 | 27200 |
JEDEC (англ. Solid State Technology Association, известная как Joint Electron Device Engineering Council, или Сообщество (Комитет) Инженеров, специализирующихся в области электронных устройств) — комитет инженерной стандартизации полупроводниковой продукции при Electronic Industries Alliance (EIA), промышленной ассоциации, представляющей все отрасли электронной индустрии.
xtreme Memory Profiles (сокр. англ. XMP, рус. экстремальные профили памяти) — расширение стандарта SPD для хранения и передачи расширенной информации о модулях памяти DDR3 SDRAM, разработанное фирмой Intel в качестве альтернативы представленного ранее аналогичного расширения Nvidia — Enhanced Performance Profiles (сокр. англ. EPP).
Технология XMP служит упрощению разгона памяти с использованием заранее заготовленных настроек (профилей SPD, расширенных относительно стандартных профилей JEDEC) с понижением задержек (англ. low latency) или повышением частоты (англ. high frequency). При считывании расширенных данных SPD из модуля памяти, может производиться автоматическая настройка на указанные в расширенном профиле параметры, избавляя конечного пользователя от ручной настройки (для опытных пользователей оставлена возможность изменять параметры принудительно). В случае нестабильности работы памяти, являющейся следствием работы в режиме, близком к предельному, XMP предоставляет возможность безопасной загрузки (англ. fail-safe default boot), при этом все параметры устанавливаются по стандарту JEDEC.
В socket 1151 только двух-канальная память.
Ниже фото типичного слота для 4-х планок оперативной памяти для двухканального режима работы.
Хорошо видно, что слоты 1-3 и 2-4 разного цвета.
Если всё установлено правильно, включится режим dual-channel, проверить результат можно в программе CPU-Z.
Видно тип памяти, ее параметры (латентность / тайминги), общий объем и режим работы.
Латентность (англ. CAS Latency, CL; жарг. тайминг) — временна́я задержка сигнала при работе динамической оперативной памяти со страничной организацией. Мера таймингов — такт шины памяти. Таким образом, каждая цифра означает задержку сигнала для обработки, измеряемая в тактах шины памяти.
Cycle Time (tRAS) = 18 тактов = Число тактов между командой на открытие банка и командой на предварительный заряд. Время на обновление строки. Накладывается на TRCD. Обычно примерно равно сумме трёх предыдущих чисел.
Для каждой планки памяти обычно указывается в виде последовательности четырех цифр: 5-6-6-18. Естественно, для разных частот работы эти цифры будут разные, можно посмотреть через программу Everest, что именно поддерживает данная планка памяти (раздел SPD).
Как раз видно, что память на частоте шины 400 Мгц (800 Мгц для самой памяти) будет работать с таймингами 5-6-6-18 и эти цифры совпадают с данными из программы CPU-Z.
И снова про беспощадный маркетинг.
Окончательный перевод на язык здравого смысла:
Серверная память.
Сервер отличается от бытового ПК прежде всего отказоустойчивостью. Большая ценность хранимой информации и критические ошибки BSOD недопустимы.
При сбое обычной памяти получаем BSOD (приятный синий экран) и необходимость перезагрузки системы. Использование памяти ECC (англ. error-correcting code , код коррекции ошибок) позволяет продолжить работу системы, исключив сбойный участок памяти.
Память ECC-память в свою очередь бывает регистровая и не регистровая (иначе буферизированная и не буферизированная).
Регистровая память (англ. Registered Memory, RDIMM, иногда buffered memory) — вид компьютерной оперативной памяти, модули которой содержат регистр между микросхемами памяти и системным контроллером памяти. Наличие регистров уменьшает электрическую нагрузку на контроллер и позволяет устанавливать больше модулей памяти в одном канале. Регистровая память является более дорогой из-за меньшего объема производства и наличия дополнительных микросхем.
Конечно. данный вид памяти должен поддерживаться материнской платой (контроллером памяти) и BIOS. Физические размеры слотов и параметры электропитания одинаковые.
Хотя большая часть модулей памяти для серверов является регистровой и использует ECC, существуют и модули с ECC но без регистров (UDIMM ECC), они так же в большинстве случаев работоспособны и в десктопных системах. Можно обратить внимание, что в спецификации бытовой материнской платы написано non ECC, а в списке поддерживаемой памяти есть модули с ECC.
Регистровых модулей без ECC не существует.
Из-за использования регистров возникает дополнительная задержка при работе с памятью. Каждое чтение и запись буферизуются в регистре на один такт, прежде чем попадут с шины памяти в чип DRAM, поэтому регистровая память считается на один такт более медленной, чем нерегистровая (UDIMM, unregistered DRAM)
Вы можете сохранить ссылку на эту страницу себе на компьютер в виде htm файла
Наше первое исследование интегрированного контроллера памяти новой ревизии процессоров AMD Athlon 64 X2/FX, ориентированного на память типа DDR2 (от DDR2-400 до DDR2-800), проведенное совсем недавно, выявило весьма посредственные характеристики подсистемы памяти на новой платформе AMD. Согласно сделанным нами предположениям, отчасти это связано с «узостью» 64-битной двунаправленной шины L1-L2 кэша данных (ее теоретическая пропускная способность напрямую зависит от частоты ядра), отчасти — с самой частотой ядра. Как мы показали, пропускная способность современной высокоскоростной двухканальной DDR2 уже оказывается сопоставимой со скоростью передачи данных внутри самого процессора. «Подтянуть» последнюю, не выходя за пределы текущей архитектуры (по-прежнему «K8», пусть уже и двухъядерной), по-прежнему можно разве что путем повышения частоты ядра. При этом возрастут скоростные показатели всех уровней подсистемы памяти процессора — L1 и L2 кэша, а дополнительным бонусом станет во столько же раз кратное увеличение частоты контроллера памяти, что благоприятно скажется на характеристиках последнего уровня подсистемы памяти — оперативной памяти как таковой.
Наше сегодняшнее исследование отличается от предыдущего, по сути, заменой процессора Athlon 64 X2 4000+ (частота ядра 2.0 ГГц) новым процессором серии «FX» Athlon 64 FX-62 (частота ядра 2.8 ГГц, что в 1.4 раза выше) при сохранении остальных компонентов платформы в почти неизменном виде. Итак, посмотрим, сможем ли мы ожидать от 40% повышения частоты ядра (а различие между процессорами Athlon 64 X2 4000+ и FX-62, по сути, заключается только в этом) сопоставимого прироста (порядка 40%) в главной характеристике подсистемы памяти — максимально достижимой реальной пропускной способности.
Конфигурации тестовых стендов
Тестовый стенд №1
- Процессор: AMD Athlon 64 X2 4000+ (ревизия ядра «F»), Socket AM2
- Чипсет: NVIDIA nForce 570 SLI
- Материнская плата: MSI K9N SLI Platinum
- Память: 2x1024 МБ Corsair XMS2 PRO PC2-6400 DDR2-800 (5-5-5-12)
Тестовый стенд №2
- Процессор: AMD Athlon 64 FX-62 (ревизия ядра «F»), Socket AM2
- Чипсет: NVIDIA nForce 570 SLI
- Материнская плата: MSI K9N SLI Platinum
- Память: 2x1024 МБ Kingston HyperX PC2-6400 DDR2-800 (4-4-4-12)
Результаты тестирования
Тестирование двухканальной DDR2-800 на новой платформе AMD Athlon 64 FX-62 (стенд №2) было решено проводить в двух наиболее скоростных режимах: DDR2-667 (ожидаемая реальная частота памяти — 311 МГц, то есть «622 МГц» в терминах DDR) и DDR2-800 (ожидаемая реальная частота совпадает с номинальной, 400 МГц). Кроме того, по сравнению с предыдущим исследованием, в каждом из этих режимов использовались две схемы таймингов — 5-5-5-12 (идентичная схеме, применяемой в прошлом исследовании) и 4-4-4-12 (номинальная для модулей памяти Kingston DDR2-800). Для сравнения, в приведенной ниже таблице представлены результаты предыдущего тестирования памяти Corsair DDR2-800 в режимах DDR2-667 и DDR2-800 с процессором Athlon 64 X2 4000+ (стенд №1).
Параметр/Режим | Стенд №1 | Стенд №2 | ||||
---|---|---|---|---|---|---|
DDR2-667 | DDR2-800 | DDR2-667 | DDR2-800 | |||
Тайминги | 5-5-5-12 | 5-5-5-12 | 5-5-5-12 | 4-4-4-12 | 5-5-5-12 | 4-4-4-12 |
Теоретическая ПСП, МБ/с | 10667 | 12800 | 9955 * | 9955 * | 12800 | 12800 |
Средняя ПСП на чтение, МБ/с | 3368 | 3590 | 3693 | 3883 | 4137 | 4393 |
Средняя ПСП на запись, МБ/с | 2759 | 2909 | 3202 | 3311 | 3514 | 3760 |
Макс. ПСП на чтение, МБ/с | 6590 (61.8 %) | 6819 (53.3 %) | 7405 (74.4 %) | 7876 (79.1 %) | 8382 (65.5 %) | 8777 (68.6 %) |
Макс. ПСП на запись, МБ/с | 5758 (54.0 %) | 5790 (45.2 %) | 7874 (79.1 %) | 7999 (80.4 %) | 8039 (62.8 %) | 8070 (63.0 %) |
Минимальная латентность псевдослучайного доступа, нс | 31.8 | 28.8 | 30.7 | 28.6 | 27.4 | 24.7 |
Максимальная латентность псевдослучайного доступа, нс | 35.1 | 31.9 | 34.0 | 31.9 | 30.4 | 27.6 |
Минимальная латентность случайного доступа ** , нс | 96.3 | 85.3 | 91.6 | 88.0 | 76.2 | 74.2 |
Максимальная латентность случайного доступа ** , нс | 99.5 | 88.5 | 97.3 | 91.7 | 78.8 | 76.4 |
* реальная частота памяти 311 МГц (2800/9)
** размер блока 32 МБ
Невооруженным глазом видно, что использование более высокой частоты ядра действительно позволяет улучшить скоростные характеристики подсистемы памяти. В режиме DDR2-667 максимальная теоретическая ПСП, как ни странно, наблюдается при записи данных в память (подобную картину мы видели в предыдущем исследовании в «младших» режимах вроде DDR2-400, но не DDR2-667) и достигает примерно 7.9 ГБ/с. Что интересно, использование более скоростной схемы таймингов 4-4-4-12 против 5-5-5-12 приводит к ощутимому увеличению ПСП при чтении данных (с 7.4 до 7.9 ГБ/с). Как показывают наши многочисленные исследования памяти DDR2 на платформе Intel, подобный эффект на последней практически не наблюдается. Так что различия в контроллерах памяти и способах организации подсистемы памяти, как говорится, налицо.
Итак, в режиме DDR2-667 на процессоре Athlon 64 FX-62 нам удалось достичь максимальную реальную ПСП, составляющую почти 80% от теоретической пропускной способности памяти DDR2, функционирующей на частоте 311 МГц. Относительно 2-ГГц ядра Athlon 64 X2 4000+, отношение максимальных величин ПСП составляет примерно 1.17 раз (при соотношении частот ядер, равном 1.4). Таким образом, повышение частоты ядра явно способствует увеличению реальной пропускной способности подсистемы памяти, но коэффициент пропорциональности между увеличением ПСП и увеличением частоты ядра оказывается явно меньше единицы (если быть точным, он равен 1.17/1.4 = 0.84). Кроме того, само 80% «раскрытие потенциала» DDR2-667, хотя и выглядит достаточно впечатляюще, все же оказывается хуже по сравнению с тем, что уже давно можно увидеть на платформе Intel с 266-МГц частотой FSB, где легко достигается реальная ПСП, практически идентичная теоретической ПС процессорной шины (8.53 ГБ/с).
Перейдем к режиму DDR2-800. С одной стороны, в этом случае «раскрытие потенциала» (учитывая, сколь велик сам потенциал) выражено в заметно меньшей степени. Максимально достижимая реальная ПСП оказалась равной примерно 8.4-8.8 ГБ/с при операциях чтения и 7.9-8.0 ГБ/с при операциях записи (эти две величины вновь поменялись местами, только на данной платформе точка достижения «преимущества чтения над записью» сместилась в область более высоких частот памяти). Это составляет всего 63-69% от теоретической ПСП, равной 12.8 ГБ/с, а также не очень сильно опережает реальную ПСП, достигаемую на платформе Intel (8.53 ГБ/с). Так что о явном преимуществе в пропускной способности нового интегрированного контроллера AMD над традиционной «шинной» организацией подсистемы памяти на платформе Intel говорить все еще не приходится. С другой стороны, прирост в ПСП относительно первой исследованной платформы в данном случае оказывается заметнее — он составляет 1.28 раз, то есть в большей степени соответствует 1.4-кратному увеличению частоты ядра процессора. Как говорится, мелочь, а приятно.
Напоследок, несколько слов о задержках при псевдослучайном и случайном доступе к памяти. Как видно из приведенной таблицы, в режиме DDR2-667 при идентичности таймингов они достаточно мало отличаются от результатов предыдущего исследования. Уменьшение таймингов до 4-4-4-12 приводит к некоторому уменьшению задержек во всех случаях (особенно выраженному — при случайном доступе), что согласуется с данными многочисленных исследований DDR2 на платформе Intel. Вместе с тем, в режиме DDR2-800 задержки при случайном доступе изначально оказываются заметно меньшими (при сохранении схемы таймингов 5-5-5-12), а их дальнейшее уменьшение при переходе к схеме таймингов 4-4-4-12 оказывается уже весьма незначительным. Таким образом, увеличение тактовой частоты контроллера памяти (в данном случае ключевую роль играет именно частота контроллера памяти, а не ядра процессора) способствует снижению задержек при доступе в память, что можно считать дополнительным преимуществом. В абсолютных величинах задержек преимущество интегрированного контроллера AMD перед «чипсетным» Intel, таким образом, становится еще более ощутимым.
Заключение
В первую очередь отметим, что именно DDR2-800 SDRAM в большинстве случаев следует считать лучшим выбором для использования в платформах, основанных на процессоре Core 2 Duo. Как было показано нами в статье "Выбор памяти для платформы Core 2 Duo", наивысшую производительность в разогнанных системах можно получить при синхронном тактовании процессорной шины и шины памяти. А если учесть, что наиболее типичный разгон процессоров с ядром Conroe происходит при частотах FSB порядка 400 МГц, то именно оверклокерскую DDR2-800 SDRAM можно рекомендовать для приобретения большинству энтузиастов. Тем более что, как показывает практика, многие модули памяти PC2-6400, оказываются, способны не только на работу при частоте 800 МГц с достаточно агрессивными таймингами, но и зачастую могут быть разогнаны до более высоких скоростей при некотором увеличении задержек.
Конечно, учитывая обнаруженную нами ранее универсальность быстрых модулей, отрицать возможность их эффективного применения в разогнанных системах не следует. Как показали тесты, быстрые оверклокерские модули, рассчитанные на эксплуатацию при частоте 1 ГГц и выше, способны функционировать и с достаточно агрессивными таймингами при частотах около 800 МГц. Однако не следует упускать из виду важный ценовой фактор. Модули PC2-6400 SDRAM стоят ощутимо дешевле гигагерцовой и более быстрой памяти. Именно поэтому такие модули оказываются наиболее популярными среди основной массы оверклокеров.
Надо сказать, что высокая эффективность синхронного тактования процессорной шины и шины памяти – не единственный аргумент в пользу оверклокерских DIMM со средней скоростью. Проведённые нами тесты выявили, что далеко не все LGA775 материнские платы, совместимые с процессорами Core 2 Duo, способны обеспечить стабильное функционирование модулей памяти при частотах около 1 ГГц и выше. Например, определённые проблемы возникают у плат на базе набора логики i975X, в частности, у популярной среди оверклокеров ASUS P5W DH Deluxe. В результате, PC2-8000 и более быстрая память может быть полноценно использована и реально востребована только в системах на базе набора логики Intel P965, что значительно сужает сферу применимости такой высокочастотной памяти.
Кстати, отчасти именно поэтому тесты оверклокерской DDR2 SDRAM в платформах на базе Core 2 Duo мы проводим, используя материнскую плату ASUS P5B Deluxe, в основе которой лежит набор логики Intel P965 Express. Данная системная плата даёт возможность раскрыть потенциал памяти в Core 2 Duo системах наилучшим образом, поскольку более новый чипсет от Intel лучше оптимизирован для работы со скоростной DDR2 SDRAM. Вместе с этим следует отметить, что в Socket AM2 системах DDR2 память обычно разгоняется ещё лучше. Но, по озвученным в предыдущих частях нашего тестирования причинам, в настоящем материале нас интересует эксплуатация оверклокерской DDR2 SDRAM именно в системах с процессором Core 2 Duo.
реклама
К вышесказанному остаётся добавить то, что контроллер памяти нового набора логики Intel P965 имеет ряд особенностей по сравнению с предшествующими и конкурирующими контроллерами памяти. Дело в том, что при разработке этого нового чипсета инженеры уделили внимание наделению контроллера памяти значительной интеллектуальностью: в нём впервые реализованы алгоритмы внеочередного исполнения команд, целью которых является более эффективное использование открытых в памяти страниц. Это, в конечном итоге, позволяет повысить КПД полосы пропускания DDR2 SDRAM и снизить латентности при работе с данными. Таким образом, контроллер памяти iP965 во многом отличается по свойствам и своей архитектуре от аналогичных блоков, встроенных в другие процессоры и чипсеты.
Возвращаясь к основной цели данного материала, состоящей в тестировании двухгигабайтных комплектов оверклокерскиx модулей памяти PC2-6400 SDRAM, напомним состав используемой нами тестовой системы:
- Процессор Intel Core 2 Extreme X6800 (LGA775, 2.93GHz, 4MB L2);
- Материнская плата ASUS P5B Deluxe (LGA775, Intel P965 Express);
- Графическая карта: PowerColor X1900 XTX 512MB (PCI-E x16);
- Дисковая подсистема: Maxtor MaXLine III 250GB (SATA150);
- Операционная система: Microsoft Windows XP SP2 с DirectX 9.0c.
Набор тестов, который мы употребляли для проверки стабильности памяти, был стандартен и включал три приложения: Memtest86, S&M и Prime95. Исследование характеристик памяти проводилось при штатном для них напряжении питания, указанном производителем модулей DDR2 SDRAM.
Приветствую. Это продолжение "социальных" экспериментов, по сборке устаревших компьютеров, в "максимальной" комплектации. Сразу отступление для непонятливых: это не "приплаченная" статья и не реклама, автор не продвигает "старьё" и не рекомендует устаревшую продукцию.
Собирать будем на сокете "AM2(AM2+)". Это разъём фирмы "амд". Совместим с моделями процессоров:"Athlon 64";"Opteron"; "Sempron"; "Phenom" и др.
Не будем перечислять модельный ряд совместимый с AM2, а выберем по одному кандидату. Результаты тестов, ниже на скриншоте. Характеристики, так же прилагаю в качестве таблицы. Пусть читателя не смущает использование серверных процессоров. Эти модели, исключительно для получения сравнительных результатов и объективного мнения.
Лидером, в этом состязании, стал 4-х ядерный процессор, с частотой 3000 МГц.
Сразу подберем и материнскую плату. Требования следующие: 4 слота ОЗУ DDR2;сокет AM2+ и желательно, что бы на последующий апгрейд поддерживала "АМ3" ; набор микросхем "790X".
Подошла фирма: "Гигабайт". Модель:"MA790X-UD4P". Ниже характеристики "материнки".
Критерии выбора этой модели такие: функции разгона, переход в будущем на сокет "АМ3".
Теперь переходим к "оперативке". Материнская плата работает с 16 "гигами" ОЗУ. Устанавливать будем 4 планки, по 4 гигабайта каждая. До суммарного объёма, в 16 "гигов".
В статье не указываются такие комплектующие как: "винчестер", ssd, кулер или корпус компьютера. Поэтому, если решили воспользоваться этой статьей как руководством, то эти комплектующие, подберите самостоятельно. Уделите внимание охлаждению процессора, так как это "горячая" модель с "ТДП" в 125 ватт.
Теперь выберем графический адаптер. Подбирая видеокарту, отталкиваюсь от мощности процессора (что бы не создавать "узкого горла"). Результатом станет претендент "красных": "RX 550" и "зелёных": "1030". Ниже прикладываю характеристики и тесты для сравнения.
- LGA 775 for Intel ® Coreв„ў 2 Extreme / Coreв„ў 2 Quad / Coreв„ў 2 Duo / Pentium ® Dual Core / Celeron ® Dual Core / Celeron, supporting Penryn Quad Core Yorkfield and Dual Core Wolfdale processors
- Intel ® G31 + ICH7 Chipsets
- Compatible with FSB 1600/1333/1066/800 MHz CPUs
- Supports Dual Channel DDR2 800/667 (2 x DIMM slots) with max. capacity up to 8GB
- Intel ® Graphics Media Accelerator 3100, DirectX 9.0, Max. shared memory 384MB
- 1 x PCI Express x16 slot
- 4 x SATA2 3.0 Gb/s connectors, 10/100 Ethernet LAN
- Supports ASRock Instant Boot
- Supports Smart BIOS, ASRock OC Tuner, Intelligent Energy Saver, Extra ESD Protection
- Specification
- Support
Manual
Description | Language | Download | |
---|---|---|---|
User Manual | English | Global | China |
User Manual (VIA) | English | Global | China |
Quick Installation Guide | Multi-Language | Global | China |
The specification is subject to change without notice in advance. The brand and product names are trademarks of their respective companies. Any configuration other than original product specification is not guaranteed.
The above user interface picture is a sample for reference. The actual user interface may vary with the updated software version.
Средняя цена по России, руб: 3 596
Общие характеристики
Фирма, которая произвела данную материнскую плату.
Форм-фактор – это стандарт, который определяет габаритные размеры устройства. Наиболее распространенными форм-факторами настольных ПК, которые совместимы почти со всеми современными корпусами являются ATX и micro-ATX.
Процессор
Производитель процессора |
На данный момент основными производителями процессоров являются Intel и AMD.
Сокет (от англ. socket— разъем) – разъем, предназначенный для процессора. Наличие одинаковых сокетов на процессоре и материнской плате является основным, но не единственным критерием их совместимости.
Материнские платы для домашних ПК, как правило, имеют только 1 сокет. Наличие двух и более сокетов в большинстве случаев является признаком высокопроизводительной серверной материнской платы.
Некоторые материнские платы сразу имеют встроенный процессор. Это позволяет избавиться от проблем совместимости.
FSB (Front Side Bus) – системная шина (интерфейс передачи данных), соединяющая процессор и материнскую плату, а точнее ее «северный мост». Чем выше частота FSB, тем быстрее данные передаются от процессора к материнской плате. Для совместимости с процессором материнская плата должна поддерживать его частоту FSB, то есть частота FSB процессора должна быть не меньше минимальной частоты, которую поддерживает материнская плата и не больше максимальной.
Почти все современные материнские платы поддерживают процессоры, сокет которых совпадает с сокетом материнской платы (поэтому частота FSB часто не указывается). Данная проблема совместимости наблюдается, как правило, только на старых материнских платах (с сокетами S478 и т.д).
FSB (Front Side Bus) – системная шина (интерфейс передачи данных), соединяющая процессор и материнскую плату, а точнее ее «северный мост». Чем выше частота FSB, тем быстрее данные передаются от процессора к материнской плате. Для совместимости с процессором материнская плата должна поддерживать его частоту FSB, то есть частота FSB процессора должна быть не меньше минимальной частоты, которую поддерживает материнская плата и не больше максимальной.
Почти все современные материнские платы поддерживают процессоры, сокет которых совпадает с сокетом материнской платы (поэтому частота FSB часто не указывается). Данная проблема совместимости наблюдается, как правило, только на старых материнских платах (с сокетами S478 и т.д).
При наличии технологии Hyper-Threading процессор способен выполнять дополнительный поток задач (на каждое ядро). Это дает преимущество в производительности перед процессорами, в которых данная технология не реализована. Но процессоры с большим количеством ядер, как правило, являются более производительными.
Чипсет
Производитель чипсета материнской платы |
Чипсет (chipset) – набор микросхем, осуществляющих контроль и управление всеми узлами материнской платы.
Чипсет (chipset) – набор микросхем, осуществляющих контроль и управление всеми узлами материнской платы.
Данная технология позволяет удаленно управлять компьютером, что позволит предоставить к нему доступ специалисту, который сможет выполнить настройку и устранить неполадки. Также у технологии есть и другие возможности.
BIOS/EFI
Иногда при сбоях электроэнергии, неправильной «перепрошивке» BIOS или по каким-либо иным причинам выход в BIOS, а, следовательно, и запуск ПК становятся невозможными. Для этого на некоторых материнских платах предусмотрена возможность восстановления BIOS, обычно с дополнительной микросхемы, которая сразу встроена в материнскую плату.
Оперативная память
Совместимость между различными представителями DDR (DDR, DDR2, DDR3, DDR4) отсутствует.
На смену DDR3 постепенно приходят модули памяти DDR4, но большого распространения они пока не получили из-за высокой стоимости самих планок памяти и материнских плат для них. Скорость передачи данных у модулей памяти DDR4 в два раза выше чем у DDR3.
DIMM (Dual In-line Memory Module, двухсторонний модуль памяти) – форм-фактор модуля памяти, пришедший на смену SIMM (Single In-line Memory Module, односторонний модуль памяти). Основным преимуществом является ускорение передачи данных. DIMM также имеет функцию обнаружения и исправления ошибок, что обеспечивает более надежную передачу данных.
DDR2/DDR3 DIMM, DDR/DDR2 DIMM. Некоторые материнские платы могут поддерживать сразу 2 различных типа памяти, это позволяет использовать старые модули оперативной памяти.
DDR2 FB-DIMM (Fully Buffered DIMM, полностью буферизованный DIMM) – серверная оперативная память. Обеспечивает повышенную скорость и точность передачи данных. Несовместимы с обычными небуферизованными модулями памяти DDR2 DIMM.
Максимальная частота оперативной памяти, которую поддерживает материнская плата.
Минимальная частота оперативной памяти, которую поддерживает материнская плата.
Позволяет ускорить доступ к данным при установке двух планок оперативной памяти. Чтобы двухканальный режим заработал необходимо установить их в специальные слоты. Более того, как правило, планки памяти должны быть абсолютно идентичными. Прирост производительности зависит от типа выполняемых задач и составляет от 10 до 80% по сравнению с материнскими платами без поддержки двухканального режима памяти.
Аналогично двухканальному режиму, только для 3-х планок оперативной памяти.
Аналогично двухканальному режиму, только для 4-х планок оперативной памяти.
Регистровая (буферизованная) оперативная память содержит буфер, который является временным хранилищем данных. Данному виду памяти необходим 1 дополнительный такт на запись данных во временный буфер. Благодаря ему уменьшается вероятность потери данных, но при этом незначительно снижается быстродействие.
Буферизованная оперативная память имеет более высокую стоимость и используется преимущественно на серверах.
PCI/Видеокарта
PCI Express (также обозначается как PCIe или PCI-E) — высокоскоростной интерфейс, пришедший на смену AGP, который используют, в основном, для подключения видеокарт. Совместим с PCI-E x8, x4 и т.д., но несовместим с AGP!
SLI и CrossFire – это технологии, которые позволяют устанавливать одновременно несколько видеокарт. Это приводит к увеличению производительности (как правило, на современных устройствах при правильном подключении прирост производительности составляет около 90-95%).
CrossFire X – последняя версия CrossFire.
Hybrid технологии позволяют объединять производительность видеокарты встроенной в материнскую плату с дискретной.
Вторая версия шины PCI-Express с пропускной способностью до 2,5 Гбит/с.
Последняя на данный момент версия шины PCI-Express с пропускной способностью до 8 Гбит/с.
Похож на PCI-Express x16, но несколько меньше, используется, в основном, для периферийных устройств. Совместим с PCI-E x4 и x1.
Похож на PCI-Express x8, но несколько меньше, используется, в основном, для периферийных устройств. Совместим с PCI-E x1.
Похож на PCI-Express x4, но несколько меньше, используется, в основном, для периферийных устройств.
Слот, предназначенный, в основном, для периферийных устройств. Несовместим с PCI-Express!
PCI-X (PCI Extended – расширенный PCI) – разъем, который используется на серверных материнских платах для подключения устройств.
• Intel® Core 2 Quad, Core 2 Duo, Pentium and Celeron in the LGA775 package.
Please refer to CPU Support for compatible CPU; the above description is for reference only.
Main Memory
• Supports two unbuffered DIMM of 1.8 Volt DDR2 DRAM
• Supports up to 4GB memory size.
• Supports dual channel DDR2 memory architecture.
• Supports DDR2 667/800 memory interface.
• Due to the limitation of G31 chipsets, dual channel support must meet some requirement in the specification of memory modules. please refer to Test Reports for detailed description.
Slots
• 1 x PCI Express x16 slot (PCI Express Bus SPEC V1.0a compliant)
• 1 x PCI Express x1 slot (PCI Express Bus SPEC V1.0a compliant)
• 2 x PCI slots (support 3.3V/ 5V PCI bus Interface)
On-Board IDE/SATA
• Or Supports PCIE LAN 10/100/1000 Fast Ethernet by 8111C
TPM (Trusted Platform Module)
• The Trusted Platform Module Solution
On-Board Pinheaders/ Connectors
Back Panel I/O Ports
BIOS
• The motherboard BIOS provides "Plug & Play" BIOS which detects the peripheral devices and expansion cards of the board automatically.
• The motherboard provides a Desktop Management Interface(DMI) function which records your motherboard specifications.
Читайте также: