Локальная компьютерная сеть это сеть к которой подключены все компьютеры одного населенного пункта
ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.
ИНФОРМАЦИЯ – ЭТО НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.
ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ) ИЛИ КОМПЬЮТЕР (англ. computer- -вычислитель)-УСТРОЙСТВО ДЛЯ АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ ИНФОРМАЦИИ. Принципиальное отличие использования ЭВМ от всех других способов обработки информации заключается в способности выполнения определенных операций без непосредственного участия человека, но по заранее составленной им программе. Информация в современном мире приравнивается по своему значению для развития общества или страны к важнейшим ресурсам наряду с сырьем и энергией. Еще в 1971 году президент Академии наук США Ф.Хандлер говорил: "Наша экономика основана не на естественных ресурсах, а на умах и применении научного знания".
В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: "Мы переходим от экономики, основанной на тяжелой промышленности, к экономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги.."
2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.
Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны.
В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.
Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.
В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к снижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).
История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная американская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.
СОВРЕМЕННЫЕ КОМПЬТЕРЫ- ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.
90-ые годы ХХ-го века ознаменовались бурным развитием компьютерных сетей, охватывающих весь мир. Именно к началу 90-ых количество подключенных к ним компьютеров достигло такого большого значения, что объем ресурсов доступных пользователям сетей привел к переходу ЭВМ в новое качество. Компьютеры стали инструментом для принципиально нового способа общения людей через сети, обеспечивающего практически неограниченный доступ к информации, находящейся на огромном множестве компьюторов во всем мире - "глобальной информационной среде обитания".
6.ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ И ЕЕ ОБЪЕМ.
ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР, В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нет- ноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска одно- на этом участке записан ноль, другое- единица. Если определенный участок поверхности оптического диска отражает лазерный луч- на нем записан ноль, не отражает- единица.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digit- двоичная единица). 1 бит- минимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.
Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символов- либо 0, либо 1.
Если же есть 2 бита, то из них можно составить один из четырех вариантов кодов: 00 , 01 , 10 , 11 .
Если есть 3 бита- один из восьми: 000 , 001 , 010 , 100 , 110 , 101 , 011 , 111 .
1 бит- 2 варианта,
2 бита- 4 варианта,
3 бита- 8 вариантов;
Продолжая дальше, получим:
4 бита- 16 вариантов,
5 бит- 32 варианта,
6 бит- 64 варианта,
7 бит- 128 вариантов,
8 бит- 256 вариантов,
9 бит- 512 вариантов,
10 бит- 1024 варианта,
N бит - 2 в степени N вариантов.
В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.
ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В КОМПЬЮТЕРЕ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.
СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится "аски", означает "Американский Стандартный Код для Обмена Информацией"- англ. American Standart Code for Information Interchange).
ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.
A - 01000001, B - 01000010, C - 01000011, D - 01000100, и т.д.
Таким образом, если человек создает текстовый файл и записывает его на диск, то на самом деле каждый введенный человеком символ хранится в памяти компьютера в виде набора из восьми нулей и единиц. При выводе этого текста на экран или на бумагу специальные схемы - знакогенераторы видеоадаптера (устройства, управляющего работой дисплея) или принтера образуют в соответствии с этими кодами изображения соответствующих символов.
Набор ASCII был разработан в США Американским Национальным Институтом Стандартов (ANSI), но может быть использован и в других странах, поскольку вторая половина из 256 стандартных символов, т.е. 128 символов, могут быть с помощью специальных программ заменены на другие, в частности на символы национального алфавита, в нашем случае - буквы кириллицы. Поэтому, например, передавать по электронной почте за границу тексты, содержащие русские буквы, бессмысленно. В англоязычных странах на экране дисплея вместо русской буквы Ь будет высвечиваться символ английского фунта стерлинга, вместо буквы р - греческая буква альфа, вместо буквы л - одна вторая и т.д.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО СИМВОЛА ASCII НАЗЫВАЕТСЯ 1 БАЙТ.
Очевидно что, поскольку под один стандартный ASCII-символ отводится 8 бит,
Остальные единицы объема информации являются производными от байта:
1 КИЛОБАЙТ = 1024 БАЙТА И СООТВЕТСТВУЕТ ПРИМЕРНО ПОЛОВИНЕ СТРАНИЦЫ ТЕКСТА,
1 МЕГАБАЙТ = 1024 КИЛОБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 500 СТРАНИЦАМ ТЕКСТА,
1 ГИГАБАЙТ = 1024 МЕГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ,
1 ТЕРАБАЙТ = 1024 ГИГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2000 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ.
Обратите внимание, что в информатике смысл приставок кило- , мега- и других в общепринятом смысле выполняется не точно, а приближенно, поскольку соответствует увеличению не в 1000, а в 1024 раза.
СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО ЛИНИЯМ СВЯЗИ ИЗМЕРЯЕТСЯ В БОДАХ.
1 БОД = 1 БИТ/СЕК.
В частности, если говорят, что пропускная способность какого-то устройства составляет 28 Килобод, то это значит, что с его помощью можно передать по линии связи около 28 тысяч нулей и единиц за одну секунду.
7. СЖАТИЕ ИНФОРМАЦИИ НА ДИСКЕ
ИНФОРМАЦИЮ НА ДИСКЕ МОЖНО ОБРАБОТАТЬ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ ПРОГРАММ ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА ЗАНИМАЛА МЕНЬШИЙ ОБЪЕМ.
Существуют различные методы сжатия информации. Некоторые из них ориентированы на сжатие текстовых файлов, другие - графических, и т.д. Однако во всех них используется общая идея, заключающаяся в замене повторяющихся последовательностей бит более короткими кодами. Например, в романе Л.Н.Толстого "Война и мир" несколько миллионов слов, но большинство из них повторяется не один раз, а некоторые- до нескольких тысяч раз. Если все слова пронумеровать, текст можно хранить в виде последовательности чисел - по одному на слово, причем если повторяются слова, то повторяются и числа. Поэтому, такой текст (особенно очень большой, поскольку в нем чаще будут повторяться одни и те же слова) будет занимать меньше места.
Сжатие информации используют, если объем носителя информации недостаточен для хранения требуемого объема информации или информацию надо послать по электронной почте
Программы, используемые при сжатии отдельных файлов называются архиваторами. Эти программы часто позволяют достичь степени сжатия информации в несколько раз.
Компьютерная сеть – это совокупность компьютеров и различных устройств, обеспечивающих информационный обмен между компьютерами в сети без использования каких-либо промежуточных носителей информации.
Создание компьютерных сетей вызвано практической потребностью пользователей удаленных друг от друга компьютеров в одной и той же информации. Сети предоставляют пользователям возможность не только быстрого обмена информацией, но и совместной работы на принтерах и других периферийных устройствах, и даже одновременной обработки документов.
Все многообразие компьютерных сетей можно классифицировать по группе признаков:
- Территориальная распространенность;
- Ведомственная принадлежность;
- Скорость передачи информации;
- Тип среды передачи;
По территориальной распространенности сети могут быть локальными, глобальными, и региональными.
По принадлежности различают ведомственные и государственные сети. Ведомственные принадлежат одной организации и располагаются на ее территории.
По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные.
По типу среды передачи разделяются на сети коаксиальные, на витой паре, оптоволоконные, с передачей информации по радиоканалам, в инфракрасном диапазоне.
Локальные компьютерные сети.
Локальная сеть объединяет компьютеры, установленные в одном помещении (например, школьный компьютерный класс, состоящий из 8—12 компьютеров) или в одном здании (например, в здании школы могут быть объединены в локальную сеть несколько десятков компьютеров, установленных в различных предметных кабинетах).
В небольших локальных сетях все компьютеры обычно равноправны, т. е. пользователи самостоятельно решают, какие ресурсы своего компьютера (диски, каталоги, файлы) сделать общедоступными по сети. Такие сети называются одноранговыми.
Если к локальной сети подключено более десяти компьютеров, то одноранговая сеть может оказаться недостаточно производительной. Для увеличения производительности, а также в целях обеспечения большей надежности при хранении информации в сети некоторые компьютеры специально выделяются для хранения файлов или программ-приложений. Такие компьютеры называются серверами, а локальная сеть — сетью на основе серверов.
Каждый компьютер, подключенный к локальной сети, должен иметь специальную плату (сетевой адаптер). Между собой компьютеры (сетевые адаптеры) соединяются с помощью кабелей.
Общая схема соединения компьютеров в локальные сети называется топологией сети. Топологии сети могут быть различными.
Сети Ethernet могут иметь топологию «шина» и «звезда». В первом случае все компьютеры подключены к одному общему кабелю (шине), во втором - имеется специальное центральное устройство (хаб), от которого идут «лучи» к каждому компьютеру, т.е. каждый компьютер подключен к своему кабелю.
Структура типа «шина» проще и экономичнее, так как для нее не требуется дополнительное устройство и расходуется меньше кабеля. Но она очень чувствительна к неисправностям кабельной системы. Если кабель поврежден хотя бы в одном месте, то возникают проблемы для всей сети. Место неисправности трудно обнаружить.
В этом смысле «звезда» более устойчива. Поврежденный кабель – проблема для одного конкретного компьютера, на работе сети в целом это не сказывается. Не требуется усилий по локализации неисправности.
В сети, имеющей структуру типа «кольцо» информация передается между станциями по кольцу с переприемом в каждом сетевом контроллере. Переприем производится через буферные накопители, выполненные на базе оперативных запоминающих устройств, поэтому при выходе их строя одного сетевого контроллера может нарушиться работа всего кольца.
Достоинство кольцевой структуры – простота реализации устройств, а недостаток – низкая надежность.
Региональные компьютерные сети.
Локальные сети не позволяют обеспечить совместный доступ к информации пользователям, находящимся, например, в различных частях города. На помощь приходят региональные сети, объединяющие компьютеры в пределах одного региона (города, страны, континента).
Корпоративные компьютерные сети.
Многие организации, заинтересованные в защите информации от несанкционированного доступа (например, военные, банковские и пр.), создают собственные, так называемые корпоративные сети. Корпоративная сеть может объединять тысячи и десятки тысяч компьютеров, размещенных в различных странах и городах (в качестве примера можно привести сеть корпорации Microsoft, MSN).
Глобальная компьютерная сеть Интернет.
В 1969 году в США была создана компьютерная сеть ARPAnet, объединяющая компьютерные центры министерства обороны и ряда академических организаций. Эта сеть была предназначена для узкой цели: главным образом для изучения того, как поддерживать связь в случае ядерного нападения и для помощи исследователям в обмене информацией. По мере роста этой сети создавались и развивались многие другие сети. Еще до наступления эры персональных компьютеров создатели ARPAnet приступили к разработке программы Internetting Project ("Проект объединения сетей"). Успех этого проекта привел к следующим результатам. Во-первых, была создана крупнейшая в США сеть internet (со строчной буквы i). Во-вторых, были опробованы различные варианты взаимодействия этой сети с рядом других сетей США. Это создало предпосылки для успешной интеграции многих сетей в единую мировую сеть. Такую "сеть сетей" теперь всюду называют Internet (в отечественных публикациях широко применяется и русскоязычное написание - Интернет).
В настоящее время на десятках миллионов компьютеров, подключенных к Интернету, хранится громадный объем информации (сотни миллионов файлов, документов и т. д.) и сотни миллионов людей пользуются информационными услугами глобальной сети.
Интернет — это глобальная компьютерная сеть, объединяющая многие локальные, региональные и корпоративные сети и включающая в себя десятки миллионов компьютеров.
В каждой локальной или корпоративной сети обычно имеется, по крайней мере, один компьютер, который имеет постоянное подключение к Интернету с помощью линии связи с высокой пропускной способностью (сервер Интернета).
Надежность функционирования глобальной сети обеспечивается избыточностью линий связи: как правило, серверы имеют более двух линий связи, соединяющих их с Интернетом.
Основу, «каркас» Интернета составляют более ста миллионов серверов, постоянно подключенных к сети.
К серверам Интернета могут подключаться с помощью локальных сетей или коммутируемых телефонных линий сотни миллионов пользователей сети.
Адресация в Интернет
Для того, чтобы связаться с некоторым компьютером в сети Интернет, Вам надо знать его уникальный Интернет - адрес. Существуют два равноценных формата адресов, которые различаются лишь по своей форме: IP - адрес и DNS - адрес.
IP - адрес состоит из четырех блоков цифр, разделенных точками. Он может иметь такой вид:
84.42.63.1
Каждый блок может содержать число от 0 до 255. Благодаря такой организации можно получить свыше четырех миллиардов возможных адресов. Но так как некоторые адреса зарезервированы для специальных целей, а блоки конфигурируются в зависимости от типа сети, то фактическое количество возможных адресов немного меньше. И тем ни менее, его более чем достаточно для будущего расширения Интернет.
С понятием IP - адреса тесно связано понятие "хост". Под хостом понимается любое устройство, использующее протокол TCP/IP для общения с другим оборудованием. Это может быть не только компьютер, но и маршрутизатор, концентратор и т.п. Все эти устройства, подключенные в сеть, обязаны иметь свой уникальный IP - адрес.
Если Вы вводите DNS - адрес, то он сначала направляется в так называемый сервер имен, который преобразует его в 32 - битный IP - адрес для машинного считывания.
DNS - адрес обычно имеет три составляющие (хотя их может быть сколько угодно).
Доменная система имен имеет иерархическую структуру: домены верхнего уровня - домены второго уровня и так далее. Домены верхнего уровня бывают двух типов: географические (двухбуквенные - каждой стране свой код) и административные (трехбуквенные).
России принадлежит географический домен ru.
gov - правительственное учреждение или организация
mil - военное учреждение
com - коммерческая организация
net - сетевая организация
org - организация, которая не относится не к одной из выше перечисленных
Среди часто используемых доменов - идентификаторов стран можно выделить следующие:
at - Австрия
au - Австралия
ca - Канада
ch - Швейцария
de - Германия
dk - Дания
es - Испания
fi - Финляндия
fr - Франция
it - Италия
jp - Япония
nl - Нидерланды
no - Норвегия
nz - Новая Зеландия
ru - Россия
se - Швеция
uk - Украина
za - Южная Африка
URL (Uniform Resource Locator, унифицированный определитель ресурсов) - это адрес некоторой информации в Интернет. Он имеет следующий формат:
тип ресурса://адрес узла/прочая информация
Наиболее распространенными считаются следующие типы ресурсов:
Ресурсная часть URL всегда заканчивается двоеточием и двумя или тремя наклонными чертами. Далее следует конкретный адрес узла, который Вы хотите посетить. За ним в качестве ограничителя моет стоять наклонная черта. В принципе, этого вполне достаточно. Но если Вы хотите просмотреть конкретный документ на данном узле и знаете точно его место расположения, то можете включить его адрес в URL. Ниже приведены несколько URL и расшифровка их значений:
Желание передавать информацию от одного компьютера к другому, обеспечить пользователям совместный доступ к техническим устройствам, программному обеспечению и информационным ресурсам компьютеров вызвало необходимость объединения компьютеров в единую сеть.
Компьютерная сеть — объединение компьютеров, обеспечивающее совместное использование сетевых ресурсов.
Компьютеры, расположенные на небольших расстояниях друг от друга, могут быть объединены в локальную сеть . Это, как правило, сеть одной организации, учебного заведения и др. (пример 19.1).
По способу организации локальные компьютерные сети делятся на одноранговые и сети с выделенным сервером.
В одноранговых сетях все компьютеры равноправны. Сеть с выделенным сервером имеет один высокопроизводительный компьютер, управляющий работой всей сети. Этот компьютер называется сервером . Он предоставляет свои ресурсы для совместного использования остальным компьютерам сети, называемым клиентами , и может управлять их работой.
По способу подключения компьютерные сети могут быть проводными и беспроводными .
Для организации работы компьютеров, объединенных в локальную сеть, необходимо соответствующее аппаратное (пример 19.2) и программное обеспечение.
Программную поддержку работы компьютеров в локальной сети выполняет операционная система.
Компьютеры объединяют в сети для совместного использования сетевых ресурсов. Сетевыми ресурсами (ресурсами сети) компьютеров могут являться:
технические устройства (принтеры, модемы, дисководы и др.);
программное обеспечение (системное, прикладное и инструментальное);
информационные ресурсы (файлы с информацией).
Для доступа к сетевым ресурсам часто бывает нужно указать имя пользователя и его пароль.
Пользователь, на компьютере которого находится ресурс (файл, диск, папка или устройство), является его владельцем и имеет полный доступ к этому ресурсу. Владелец ресурса может разрешить другим пользователям сети доступ к своему диску, папке, файлу.
Просмотр доступных сетевых ресурсов осуществляется в папке Сеть . В окне этой папки отображаются общие ресурсы сети, к которой подключен компьютер (компьютеры, папки, файлы, принтеры).
Важнейшей характеристикой работы локальной сети является скорость передачи информации в ней — количество информации, передаваемое за единицу времени. Скорость передачи информации по сети обычно измеряется в бит/с. (Рассмотрите решение задачи в примере 19.3.)
Пример 19.1.
Схема локальной сети
Пример локальной компьютерной сети — сеть в кабинете информатики. Она существует для того, чтобы учащиеся могли работать с одними и теми же информационными ресурсами и использовать общий принтер.
Пример 19.2. К аппаратному обеспечению работы локальной сети относятся сетевые платы (карты) и специальный кабель. Сетевыми платами должны быть оснащены все компьютеры сети. Они предназначены для приема и передачи информации в сети.
В беспроводных локальных сетях используется точка доступа, а на каждом компьютере должна быть установлена специальная беспроводная сетевая плата типа Wi-Fi.
Единых правил поведения пользователей в локальной сети не существует. Отметим лишь некоторые общие требования:
- не передавайте другим пользователям ваше имя и пароль для входа в сеть;
- по возможности сохраняйте информацию на диске вашего компьютера, а не на дисках общего пользования.
Определите объем файла компьютерной презентации, если передача его по сети происходит за 5 с при скорости 1 024 000 бит/с. Запишите полученный результат в килобайтах.
1 024 000 бит/с · 5 с = (2 10 · 10 3 · 5) бит = 2 10 · (2 3 · 5 4 ) бит = 2 13 · 5 4 бит.
Компьютерная сеть — это группа (два и более) компьютеров, соединенных каналами передачи данных.
Компьютерные сети обеспечивают:
— быстрый обмен данными;
— совместное использование ресурсов (сканеров, модемов, принтеров и т. д.);
— совместное использование программного обеспечения и баз данных;
— совместную работу пользователей над некоторым заданием и проектом;
— возможность удаленного управления компьютерами.
В зависимости от выполняемых в сети функций различают компьютеры-серверы и компьютеры-клиенты:
- Сервер — это компьютер, предоставляющий доступ к собственным ресурсам или управляющий распределением ресурсов сети.
- Клиент-компьютер, использующий ресурсы сервера.
По территориальному признаку сети разделяются на локальные и глобальные. Локальные сети — это сети, состоящие из близко расположенных компьютером (сеть здания, помещения и т. д.).
Глобальные сети — это сети, охватывающие большие территории и включающие большое число компьютеров.
По архитектуре различают: одноранговые сети и сети с выделенным сервером.
Одноранговые сети — это сети, в которых каждый может представлять свои ресурсы другим компьютерам сети и использовать другие.
Сети с выделенным сервером — это сети, в которых один или несколько компьютеров являются серверами, а все остальные — клиентами.
Компьютерные сети могут разделяться по скорости передачи данным. Пропускная способность сети — это максимальное количество бит, которые могут быть переданы за одну секунду.
Давайте рассмотрим локальные сети. Во многом большинство характеристик локальных сетей определяется конфигурацией или топологией сетей. Топология — это конфигурация сети, способ соединения ее элементов друг с другом.
Чаще всего используются следующие топологии сетей:
- Шинная топология. Все компьютеры сети подключаются к одному кабелю.
- Кольцевая топология. Данные передаются по кольцу от одного компьютера к другому.
- Радиальная топология. Каждый компьютер через специальные сетевой адаптер подключается отдельным кабелем к объединяющему устройству.
- Древовидная топология. Образуется соединением между собой несколькими звездообразных топологий.
Локальные сети ориентированы прежде всего на сравнительно небольшое количество компьютеров.
Что же касается глобальных сетей, то она ориентирована на обслуживание неограниченного круга пользователей. Самый впечатляющий пример глобальной сети — это ИНТЕРНЕТ.
Интернет — это глобальная сеть, в которой многочисленные научные, корпоративные, государственные и другие сети, а также персональные компьютеры отдельных пользователей соединены между собой каналам передачи данных.
Основной аппаратной структурой сети Интернет можно считать мощные компьютеры (узлы) и связывающие их высокоскоростные магистральные каналы передачи данных. Организации, имеющие в собственности и обслуживающие такое оборудование, называются провайдерами.
За каждым компьютерным узлом в Интернете закреплён постоянный адрес, называемый IP-адресом. Давайте рассмотрим технологию IP- адресации.
Такие адреса получают и пользователи сети Интернет, но в отличии от адресов узлов они действуют только во время подключения пользователя к сети и изменяются при каждом новом сеансе.
IP-адрес представляет собой 32-битный идентификатор, например:
Так как человеку сложно воспринимать такую длинную строку, ее делят на 4 равные части:
Чтобы пользователи было еще удобнее работать с IP-адресом каждую часть переводят в 10-ую систему счисления:
Таким образом число в IP-адресе не может превышать 255.
Мы говорили уже о том, что Интернет представляет собой сеть сетей, поэтому технология IP-адресов учитывает этот факт следующим образом:
Любой IP адрес состоит из двух частей: IP-адрес сети и IP-адрес узла этой сети. При этом деление адреса на части происходит с помощью маски — 32-битным числом, в двоичной записи которого сначала стоят единицы, потом — нули. Первая часть IP- адреса, соответствующая единичным битам маски, относится к адресу сети, а вторая, соответствующая нулям маски, — определяет числовой адрес узла сети. Адрес сети получается в результате поразрядной конъюнкции к IP адреса узла и маски.
Напомним, Конъю́нкция — логическая операция, по своему применению максимально приближённая к союзу "и". Пример:
Пусть дан IP-адрес узла 217.9.142.131 и с помощью маски 255.255.192.0 надо получить IP-адрес сети.
Сначала переведем IP-адрес узла и маски в двоичный вид и произведен поразрядную конъюнкцию:
При этом часть IP-адреса сети, соответствующая единицам в маске, указывает на IP-адрес сети, к которой привязана сеть, а часть, соответствующая нулям, отдается на нумерацию компьютеров пользователей этой сети.
Желтым цветом выделена часть IP-адреса сети, указывающей на узел, а зеленым — на нумерацию пользователей.
Таким образом на нумерацию пользователей такой IP-адрес сети выделяет 14 бит, при этом два адреса из них не используется (адрес сети и широковещательный) А значит она позволяет пользоваться одновременно 16382 компьютера.
Список обязательной и дополнительной литература для углубленного изучения темы
— Босова Л. Л., Босова А. Ю. Информатика. 11 класс. Базовый уровень. — М.: БИНОМ, 2016
— Угринович Н. Д. Информатика и ИКТ. Базовый курс. Учебник для 7—9 классов/ М.: БИНОМ. Лаборатория знаний, 2005
— Семакин И. Г., Е. К. Хеннер. Информатика и ИКТ. 10—11 класс/ М.: БИНОМ. Лаборатория знаний, 2008
— К. Ю. Поляков, Е. А. Еремин. Информатика. 11 класс. Базовый и углубленный уровни: учебник в 2 ч. Ч. 1 / М.: БИНОМ. Лаборатория знаний, 2016
Топология локальной сети
Первое к чему нужно приступать при изучении основ функционирования компьютерных сетей, это топология (структура) локальной сети. Существует три основных вида топологии: шина, кольцо и звезда.
Линейная шина
Кольцо
В данной топологии каждый из компьютеров соединен только с двумя участниками сети. Принцип функционирования такой ЛВС заключается в том, что один из компьютеров принимает информацию от предыдущего и отправляет её следующему выступая в роли повторителя сигнала, либо обрабатывает данные если они предназначались ему. Локальная сеть, построенная по кольцевому принципу более производительна в сравнении с линейной шиной и может объединять до 1000 компьютеров, но, если где-то возникает обрыв сеть полностью перестает функционировать.
Звезда
Топология звезда, является оптимальной структурой для построения ЛВС. Принцип работы такой сети заключается во взаимодействии нескольких компьютеров между собой по средствам центрального коммутирующего устройства (коммутатор или свитч). Топология звезда позволяет создавать высоконагруженные масштабируемые сети, в которых центральное устройство может выступать, как отдельная единица в составе многоуровневой ЛВС. Единственный минус в том, что при выходе из строя центрального коммутирующего устройства рушится вся сеть или её часть. Плюсом является то, что, если один из компьютеров перестаёт функционировать это никак не сказывается на работоспособности всей локальной сети.
Что такое MAC-адрес, IP-адрес и Маска подсети?
Прежде чем познакомиться с основными принципами взаимодействия сетевых устройств, необходимо подробно разобрать, что такое IP-адрес, MAC-адрес и Маска подсети.
Маска подсети – специальная запись, которая позволяет по IP-адресу вычислять адрес подсети и IP-адрес компьютера в данной сети. Пример записи маски подсети: 255.255.255.0. О том, как происходит вычисление IP-адресов мы рассмотрим чуть позже.
Что такое ARP протокол или как происходит взаимодействие устройств ЛВС?
Сетевой коммутатор и маршрутизатор (роутер)
Коммутатор содержит таблицу MAC-адресов устройств локальной сети непосредственно подключенных к его портам. Изначально таблица пуста и начинает заполняться при старте работы коммутатора, происходит сопоставление MAC-адресов устройств и портов, к которым они подключены. Это необходимо для того, чтобы коммутатор напрямую пересылал информационные пакеты тем участникам локальной сени, которым они предназначены, а не опрашивал все устройства ЛВС.
Маршрутизатор также имеет таблицу, в которую заносит IP-адреса устройств на основе анализа локальной сети. Роутер может самостоятельно раздавать IP-адреса устройствам ЛВС благодаря протоколу динамического конфигурирования узла сети (DHCP). Таблица маршрутизации позволяет роутеру вычислять наикратчайшие маршруты для отправки информационных пакетов между различными узлами ЛВС. Данные узлы (компьютеры) могут находиться в любом сегменте многоуровневой сети невзирая на архитектуру той или иной подсети. К примеру, маршрутизатор связывает локальную сеть с глобальной (интернет) через сеть провайдера.
Пример маршрутизации
Допустим, в таблице маршрутизации есть такая запись:
Сеть | Маска | Интерфейс |
192.168.1.0 | 255.255.255.0 | 192.168.1.96 |
Роутер получает пакет, предназначенный для хоста с IP-адресом 192.168.1.96, после чего начинает обход таблицы маршрутизации и обнаруживает, что при наложении маски подсети 255.255.255.0 на IP-адрес 192.168.1.96 вычисляется сеть с IP-адресом 192.168.1.0. Пройдя строку до конца роутер находит IP-адрес интерфейса 192.168.1.96, на который и отправляет полученный пакет.
Как происходит вычисление IP-адреса сети и компьютера?
Для вычисления IP-адреса сети используется маска подсети. Начнем с того, что привычная для наших глаз запись IP-адреса представлена в десятеричном формате (192.168.1.96). На самом деле, сетевое устройство данный IP-адрес видит, как набор нолей и единиц, то есть в двоичной системе исчисления (11000000.10101000.00000001.01100000). Так же выглядит и маска подсети (255.255.255.0 -> 11111111.11111111.11111111.00000000).
IP-адрес назначения | 192.168.1.96 | 11000000 10101000 00000001 01100000 |
Маска подсети | 255.255.255.0 | 11111111 11111111 11111111 00000000 |
IP-адрес сети | 192.168.1.0 | 11000000 10101000 00000001 00000000 |
Что получается? Какой бы у нас не был IP-адрес назначения (к примеру 192.168.1.96 или 192.168.1.54) при наложении на него маски подсети (255.255.255.0) будет получаться один и тот же результат (192.168.1.0). Происходит это из-за поразрядного (побитного) сравнения записей (1х1 = 1, 1х0 = 0, 0х1 = 0). При этом IP-адрес компьютера берётся из последней группы цифр IP-адреса назначения. Также стоит учитывать, что из общего диапазона адресов, в рамках одной подсети, доступно будет на два адреса меньше, потому что 192.168.1.0 – является IP-адресом самой сети, а 192.168.1.255 – служебным широковещательным адресом для передачи общих пакетов запросов.
Что такое NAT?
Принцип NAT заключается в следующем: при отправке пакета из ЛВС маршрутизатор подменяет IP-адрес локальной машины на свой собственный, а при получении производит обратную замену и отправляет данные на тот компьютер, которому они и предназначались.
Читайте также: