L7810cv стабилизатор напряжения схема подключения
DataSheet
Техническая документация к электронным компонентам на русском языке.
Главная › Даташиты › LM78XX / LM78XXA 3-х выводной 1 А положительный стабилизатор напряженияLM78XX / LM78XXA 3-х выводной 1 А положительный стабилизатор напряжения
Функции
- Выходной ток до 1 А
- Выходные напряжения: 5, 6, 8, 9, 10, 12, 15, 18, 24 В
- Тепловая защита от перегрузки
- Защита от короткого замыкания
- Защита выхода транзистора в рабочей области
Описание
Серия трехвыводных положительных стабилизаторов LM78XX доступна в корпусе TO-220 и с несколькими фиксированными выходными напряжениями, делая их полезными в широком спектре применений. Каждый тип использует внутреннее ограничение тока, тепловое отключение и защиту рабочей области. Если предусмотрено достаточное теплоотведение, они могут обеспечивать выходной ток более 1 А. Несмотря на то, что эти устройства предназначены главным образом в качестве фиксированных регуляторов напряжения, также могут использоваться с внешними компонентами для регулирования напряжений и токов.
Рис. 1. Корпус ТО-220
Информация для заказа (1)
Номер продукта | Допуск выходного напряжения | Корпус | Рабочая температура | Способ упаковки |
LM7805CT | ±4% | TО-220 (один стандарт) | -40 … +125°C | Шина |
LM7806CT | ||||
LM7808CT | ||||
LM7809CT | ||||
LM7810CT | ||||
LM7812CT | ||||
LM7815CT | ||||
LM7818CT | ||||
LM7824CT | ||||
LM7805ACT | ±2% | 0 … +125°C | ||
LM7809ACT | ||||
LM7810ACT | ||||
LM7812ACT | ||||
LM7815ACT |
- Допуск выходного напряжения при превышении 25 °C.
Блок-схема
Рис. 2. Блок-схема
Абсолютные максимальные значения
Напряжения, превышающие абсолютные максимальные значения, приводят к повреждению устройства. Устройство не может функционировать или работать выше рекомендуемых рабочих условий эксплуатации, а также не рекомендуется устанавливать детали на эти уровни. Кроме того, повышенное воздействие напряжений выше рекомендуемых рабочих условий эксплуатации влияет на надежность устройства. Абсолютные максимальные значения – это значения при перегрузках. Значения указаны при TA = 25°C, если не указано иное.
Диапазон рабочих температур
Диапазон температур хранения
Электрические характеристики (LM7805)
См. тестовую схему, -40 °C < TJ < 125 °C, IO = 500 мA, VI = 10 В, CI = 0.1 мкФ, если не указано иное.
Примечание:
2. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
3. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Электрические характеристики (LM7806)
См. тестовую схему, -40 °C < TJ < 125 °C, IO = 500 мA, VI = 11 В, CI = 0.33 мкФ, CO = 0.1 мкФ, если не указано иное.
Примечание:
4. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
5. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Электрические характеристики (LM7808)
См. тестовую схему, -40 °C < TJ < 125 °C, IO = 500 мA, VI = 14 В, CI = 0.33 мкФ, CO = 0.1 мкФ, если не указано иное.
Примечание:
6. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
7. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Электрические характеристики (LM7809)
См. тестовую схему, -40 °C < TJ < 125 °C, IO = 500 мA, VI = 15 В, CI = 0.33 мкФ, CO = 0.1 мкФ, если не указано иное.
Примечание:
8. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
9. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Электрические характеристики (LM7810)
См. тестовую схему, -40 °C < TJ < 125 °C, IO = 500 мA, VI = 16 В, CI = 0.33 мкФ, CO = 0.1 мкФ, если не указано иное.
Примечание:
10. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
11. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Электрические характеристики (LM7812)
См. тестовую схему, -40 °C < TJ < 125 °C, IO = 500 мA, VI = 19 В, CI = 0.33 мкФ, CO = 0.1 мкФ, если не указано иное.
Примечание:
12. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
13. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Электрические характеристики (LM7815)
См. тестовую схему, -40 °C < TJ < 125 °C, IO = 500 мA, VI = 23 В, CI = 0.33 мкФ, CO = 0.1 мкФ, если не указано иное.
Примечание:
14. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
15. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Электрические характеристики (LM7818)
См. тестовую схему, -40 °C < TJ < 125 °C, IO = 500 мA, VI = 27 В, CI = 0.33 мкФ, CO = 0.1 мкФ, если не указано иное.
Примечание:
16. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
17. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Электрические характеристики (LM7824)
См. тестовую схему, -40 °C < TJ < 125 °C, IO = 500 мA, VI = 33 В, CI = 0.33 мкФ, CO = 0.1 мкФ, если не указано иное.
Примечание:
18. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
19. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Электрические характеристики (LM7805A)
См. тестовую схему, 0 °C < TJ < 125 °C, IO = 1 A, VI = 10 В, CI = 0.33 мкФ, CO = 0.1 мкФ, если не указано иное.
Примечание:
20. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
21. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Электрические характеристики (LM7809A)
См. тестовую схему, 0 °C < TJ < 125 °C, IO = 1 A, VI = 15 В, CI = 0.33 мкФ, CO = 0.1 мкФ, если не указано иное.
Примечание:
22. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
23. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Электрические характеристики (LM7810A)
См. тестовую схему, 0 °C < TJ < 125 °C, IO = 1 A, VI = 16 В, CI = 0.33 мкФ, CO = 0.1 мкФ, если не указано иное.
Примечание:
24. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
25. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Электрические характеристики (LM7812A)
См. тестовую схему, 0 °C < TJ < 125 °C, IO = 1 A, VI = 19 В, CI = 0.33 мкФ, CO = 0.1 мкФ, если не указано иное.
Примечание:
26. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
27. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Электрические характеристики (LM7815A)
См. тестовую схему, 0 °C < TJ < 125 °C, IO = 1 A, VI = 23 В, CI = 0.33 мкФ, CO = 0.1 мкФ, если не указано иное.
Примечание:
28. Линейное регулирование и регулирование нагрузки указаны для постоянной температуры перехода. Изменения выходного напряжения VO из-за эффектов нагрева должны учитываться отдельно. При тестировании в импульсном режиме используется низкая нагрузка.
29. Эти параметры, несмотря на то, что и заявлены, на 100% не тестируются на производстве.
Номинальные эксплуатационные характеристики
Рис. 3. Ток покоя Рис. 4. Пиковый выходной ток Рис. 5. Выходное напряжение Рис. 6. Ток покоя
Стандартные применения
Рис. 7. Параметры постоянного тока Рис. 8. Регулировка нагрузки Рис. 9. Подавление пульсаций Рис. 10. Стабилизатор с фиксированным выходом Рис. 11. Стабилизатор постоянного тока
Примечание:
Физические размеры
Рис. 20. TO-220, литой, 3-х выводной, JEDEC VARIATION AB (ACTIVE)
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
L7805 схема источника тока
L7805-CV линейный стабилизатор постоянного напряжения
На рисунке выше, представлена типичная схема линейного стабилизатора L7805 с положительной полярностью 5v и номинальным рабочим током 1.5А. Данные микросхемы приобрели такую известность, что за их производство взялись большинство мировых компаний. А вот на снимке ниже, представлена схема немного усовершенствованная, за счет увеличения емкости конденсаторов С1-С2.
Кто еще не сталкивался с данными электронными компонентами на практике и мало, что о них знает, то вот вам для наглядности небольшое видео по сборке схемы:
Стабилизатор напряжения 5v! На микросхеме L7805CV
Безымянные стабилизаторы или от мало известных фирм, как правило всегда стоят дешевле, чем аналогичные от известных брендов. Но и качество таких деталей не всегда на должном уровне, особенно сказывается в их работе существенный разброс напряжения на выходе.
Схема источника тока выполненная на микросхемах из серии L78xx
Величина тока на выходе источника L78хх
Неприятный момент, который можно наблюдать в схеме, это суммирование тока покоя Id с током на выходе. Параметры тока покоя обозначены в документации на микросхему. В основном такие стабилизаторы имеют постоянную величину тока покоя, составляющую 8мА. Это значение является наименьшим током выходной цепи чипа. Следовательно, при попытке создать источник тока, у которого значение будет меньше, чем 8мА, никак не получится.
Здесь можно скачать документацию на микросхему L78xx L78_DataSheet.pdf
Корректность выходного тока и величина напряжения
В тоже время не постоянность тока покоя формируется как ΔId = 0.5мА. Данное значение показывает верность настройки тока в выходном тракте. Соответственно и точность установки выходного тока зависит от сопротивления нагрузки микросхемы R*. В этом случае, желательно применять прецизионные резисторы, обладающие высокой стабильностью и существенной точностью, от ±0,0005% до ±0,5%.
Оптимальное сопротивление нагрузки
Одновременно с этим нужно принять во внимание значение сопротивления нагрузки. Здесь все просто, то есть используя закон Ома можно все высчитать. Например:
Исходя их таких несложных расчетов мы выяснили, какое должно быть напряжение на нагрузке с сопротивлением 100 Ом, чтобы создать выходной ток 100 мА. Согласно эти расчетам получается, что оптимальным вариантом будет использовать микросхему 7812 либо 7815, рассчитанную на 12v и 15v в соответствии, с целью иметь запас.
Заключение
Естественно, в такой схеме источника тока присутствуют ограничительные моменты. Хотя она может быть полезна для большого количества решений, в которых высокая точность не играет особой роли. Отсутствие какой либо сложности в схеме, дает возможность изготовить источник тока практически в любых условиях, тем более комплектующие для нее приобрести не составит труда.
Читайте также: