Компьютерные конденсаторы отличие от обычных
Конденсатор – это устройство накопления заряда, одна из самых распространённых деталей в современных электронных устройствах. Их другое название – ёмкости. Преимущественно на материнской плате эти радиодетали используются в схемах фильтров питающего напряжения различных узлов компьютера. Ёмкости являются одними из важнейших компонентов схем электропитания, поскольку стабильность питающих напряжений – залог долгой и безотказной работы всего ПК в целом.
Внимание! Выход из строя конденсаторов несет большую опасность для всего электронного прибора в целом, неважно, будет это компьютер или простой утюг. Любая поломка схемы электропитания чревата поломкой практически всей электронной «начинки» того или иного устройства.
У конденсатора есть две основные характеристики – ёмкость, измеряемая в фарадах и напряжение, измеряемое в вольтах.
Почему происходит вздутие конденсаторов
Причина вздутия (деформации) оболочки конденсатора одна – перегрев. А вот уже причин перегрева может быть несколько. Причём, они могут быть как внутренними (качество изготовления самого элемента, качество выпрямленного напряжения, величина нагрузки и т.д.), так и внешними, например, высокая температура в пространстве вокруг элемента.
Рассмотрим основные причины, почему вздуваются конденсаторы на материнской плате:
· различные виды внешнего перегрева;
· старение самого элемента;
· превышение номинальных значений тока и напряжения (основная причина);
· смена полярности напряжения;
Ещё каких-нибудь 30 лет назад ёмкости от вышеуказанных причин не вздувались, а вообще, взрывались. Но, современные конструкции позволяют избежать этого неприятного явления, благодаря особой конструкции крышки, способной немного деформироваться и создавая внешний эффект «вздутия». Именно вид такой крышки и говорит о том, что работоспособность элемента нарушена, и он требует замены.
Признаки неисправности вздутого конденсатора
Прямые признаки неисправности – уменьшение его ёмкости и изменение импеданса – могут быть обнаружены только при измерении его параметров, что в большинстве случаев обычному пользователю сделать невозможно. С уверенностью можно сказать, что вышеуказанные эксплуатационные характеристики вздутого конденсатора существенно отличаются от тех, которые должны быть.
Однако, чтобы визуально проверить работоспособность всех конденсаторов, не следует постоянно открывать крышку системного блока и заглядывать внутрь. Существует множество косвенных причин, по которым можно понять, случились ли с элементами что-то плохое.
Основным косвенными признаками наличия неработоспособных элементов является полная неработоспособность ПК, либо нестабильность его работы. Обычно, это появляется в критических режимах, когда в каком-то одном узле ПК (или в нескольких) наблюдается существенное увеличение производительности, а вследствие, и увеличение потребляемой мощности. При этом компьютер «зависает», «тормозит», а в некоторых случаях и перезагружается.
Как заменить вздутый конденсатор
Важно! Решать проблему придётся в любом случае. Даже если система работает стабильно, вздутие – это только начало. Очень скоро конденсатор может выйти из строя окончательно. И, если он задействован в цепи электропитания важного устройства (например, микропроцессора), то это может привести к выходу из строя последнего.
Если принято решение сделать замену самостоятельно, то для этой цели потребуются следующие инструменты:
· паяльник малой мощности (до 30 Вт);
· вакуумный отсос припоя;
· припой (желательно не содержащий свинца);
· любой паяльный флюс (в виде пасты, геля, спиртового раствора канифоли и т.д.);
· вата и спирт для удаления остатков флюса.
Естественно, понадобятся и новые детали для замены.
Внимание! Номинал элементов по ёмкости должен полностью соответствовать тому значению, которое написано на заменяемых деталях! Допускается использовать элементы с большим напряжением, но ёмкость должна быть точно такой же.
Последовательность действий при этом следующая:
· ножки элемента мажутся флюсом и поочередно прогреваются паяльником;
· как только припой на материнке на обеих ножках расплавится, следует аккуратно вынуть деталь из неё;
· отверстия следует прочистить при помощи отсоса припоя;
· далее необходимо, соблюдая полярность, вставить в материнку новый элемент, и кусачками отрезать ножки, чтобы они выступали не более, чем на 1-2 мм;
· покрыть ножки и посадочные площадки флюсом и осуществить запайку нового элемента;
· вымыть пространство вокруг места пайки при помощи ваты и спирта.
Как избежать вздутия конденсаторов
Главное – не допускать перегрева этих элементов. Для чего следует придерживаться простых, но эффективных правил:
· Вентиляция корпуса, в котором расположен ПК, должна быть достаточной. Не рекомендуется превышение температуры внутри корпуса выше +45°С.
· Блок питания должен иметь запас по мощности не менее 10-15% от той, которую потребляет ПК в пике своей производительности. Это поможет избежать больших токовых нагрузок и существенно уменьшить нагрев всех элементов в цепях питания.
· При сборке ПК и подключении его узлов друг к другу следует внимательно следить за правильностью подключения и полярностью тех или иных элементов.
· Не допускать механических повреждений конденсаторов.
· Не эксплуатировать ПК в режиме 24/7. Для этой цели существую совсем другие устройства – серверы. Комплектующие для серверов имеют гораздо лучшие эксплуатационные характеристики и рассчитаны на круглосуточную работу.
Спасибо всем, кто дочитал до конца.
Не забывайте ставить лайк, подписываться на канал и делиться публикациями с друзьями.
Со временем электролит высыхает и конденсатор теряет свою емкость, в большинстве случаев выход конденсатора из строя можно оценить по внешнему виду. Конденсатор вздувается вверху, где у него имеется специальная выштамповка.
Также может надуться и нижняя часть, где выходят ножки. А может вытечь и содержимое конденсатора.
Характерными признаками проблемных конденсаторов могут быть самопроизвольные выключения компьютера, монитора, телевизора и другой техники. Вначале это может проявляться только под нагрузкой, например при запуске требовательной к ресурсам компьютера игры.
Для самостоятельно замены конденсаторов в импульсном блоке питания не потребуется особых навыков и инструментов. Кроме паяльника, отвертки и кусачек, в принципе, больше ничего не понадобится.
Покажем замену конденсаторов на примере ремонта импульсного блока питания PC-ATX:
Откручиваем 4-ре винта и снимаем крышку БП:
К примеру, у нас под замену пошли конденсаторы 1000мкФ на 10В и на 16В. Заменить конденсатор с напряжением 10В на 16В можно, наоборот нельзя, т.е. напряжение может быть только выше. Однако на сегодня можно купить любой конденсатор, это до 2000-го года приходилось использовать то, что есть.
Выпаиваем конденсаторы:
Чем же отличаются компьютерные конденсаторы от обычных?
ОСОБЕННОСТИ КОНДЕНСАТОРОВ С НИЗКИМ ESR
До последнего времени четкое определение конденсатора с низким ESR отсутствовало.
Такие стандарты, как JIS5141 и EIA395, касаются только процедур испытаний конденсаторов.
Отсутствие стандартов заставило отдельных производителей самостоятельно определять, что же значит конденсатор с низким ESR.
В итоге большинство поставщиков установили согласованный критерий, определяющий такие конденсаторы как элементы, у которых:
- срок службы больше, чем у стандартных конденсаторов;
- максимальный импеданс задается на частоте 100 кГц и остается неизменным в диапазоне температур +20…-10°С;
- пульсирующий ток определяется на частоте 100 кГц;
- повышенная температурная стабильность (температурный коэффициент импеданса) .
Стоимость таких конденсаторов порядка 4-6 грн., т.е цена ремонта будет копеечной.
NIPPON CHEMI-CON CORPORATION, серия KZG, ультра низкое сопротивление (здесь, и дальше, будет иметься в виду ESR), 0.026 om/100kHz для номинала 1500/6.3 На некоторых форумах эту серию считают не очень надежной - тот самый случай с материнками ABIT.
Тогда эту серию только - только запустили в производство, подвел новый электролит в одной из партий конденсаторов. Партия эта досталась Abit -у.
NIPPON CHEMI-CON CORPORATION Серия SXE, с низким сопротивлением (снята с производства)
NIPPON CHEMI-CON CORPORATION, серия PSC, алюминиевые с полимерным электролитом, сверхнизкое сопротивление, высокие частоты. 0.01 om/ 300kHz для номинала 1500 мкф. Рекомендуется!
RUBYCON, серия MCZ, ультра низкое сопротивление, повышенные рабочие частоты, 0.016 om/100kHz для номинала 1500/6.3 Рекомендуется!
RUBYCON, серия MBZ ультра низкое сопротивление, 0.026 om/100kHz для номинала 1500/6.3. Серия уже снята с производства, на смену ей выпускается серия MCZ(см выше)
RUBYCON, серия YXG низкое сопротивление, 0.046 om/100kHz для номинала 1500/6.3. Это обычный хороший электролит с улучшенными параметрами. Для испльзования в фильтрах импульсных преобразователей питания процессоров /памяти не позиционируется, хотя для замены неисправных при отсуствии других вариантов сойдут. Для линейных стабилизаторов - более чем хороши.
NICHICON Corporation Серия НМ(на фото), повышенное качество, свернизкое сопротивление, 0,016 ом/100kHz для номинала 1500/6.3.
Серия НN имеет еще более низкое сопротивление, 0,012 ом/100kHz для номинала 1500/6.3. Рекомендуется!
А серия НZ имеет еще более низкое сопротивление, 0,009 ом/100kHz для номинала 1500/6.3, но уже не позиционируется производителем, как имеющая повышенную надежность.
Samsung Серия TLQ. Повышенное качество, свернизкое сопротивление, 0,015 ом/100kHz для номинала 1500/6.3. Рекомендуется!
SANYO Серия WG, сверхнизкое сопротивление, 0.016 om/ 100kHz для номинала 1800 мкф. Рекомендуется!
SANYO, OsCon, SP серия, конденсаторы с органическим полупроводниковым электролитом и сверхнизким сопротивлением, и вообще, крутая, но редкая штука. 0.008 om/ 300kHz для номинала 1500 мкф. Рекомендуется!
SANYO, OsCon, SVPC серия, алюминиевые с полимерным электролитом. повышенные частоты и надежность, сверхнизкое сопротивление, 0.01 om/ 300kHz для номинала 1500 мкф. Рекомендуется!
SANYO, OsCon, SVP серия, алюминиевые с полимерным электролитом.
0.012 om/ 300kHz для номинала 1500 мкф. Рекомендуется!
EPCOS Немецкий производитель первого эшелона, легендарное немецкое качество. Частенько продукцию этой фирмы можно увидеть в серьезных промышленных изделиях и в автоэлектронике. А вот на материнских платах-увы!
Серия В41886, ультра низкое сопроитвление, повышенная надежность. 0,028 ом/100kHz для номинала 1500/6.3. Если попадутся - смело берите, несмотря на средние показатели ESR, зато качество гарантировано.
Это были конденсаторы известных фирм, которые можно смело использовать для модификаций/ремонта.
Jamicon
Достаточно известный производитель, хотя не такой именитый как предыдущие.
Серия WL низкое сопротивление, пониженное на высоких частотах (так написано )) 0,036 ом/100kHz для номинала 1500/6.3
Серия MZ(без фото) пониженное низкое сопротивление, long life, 0,018 ом/100kHz для номинала 1500/6.3
CapXon У нас ими завален весь радиорынок, что весьма настораживает. Наверное в закупке дешевые очень. А может я и не прав. Во всяком случае их я не рисковал применять- зачем, при доступности именитых брендов?
Серия LZ, ультра низкое сопротивление, 0,02 ом/100kHz для номинала 1500/6.3.
А вот, для примера, малоизвестный экземпляр, G-luxon (весьма удачное название). В последнее время часто попадается на некоторых видеокартах и недорогих материнских платах.
Производитель, http://www.luxon.com.tw/products.htm, серия LW. Никакой дополнительной информации на сайте, кроме того, что это "105'C, 2000hrs
Ultra low ESR", найти не удалось.
И несколько фотографий танталовых конденсаторов, их тоже часто применяют в фильтрах импульсных источников питания.
На этом рисунке схематично показано устройство танталового конденсатора.
HITACHI серия TMCR. Ультра низкое сопротивление, 125*С. 0.1 om/ 100kHz для номинала 100 мкф. Для сравнения, Sanyo OsCon, SP серии на 100 мкф имеет сопротивление 0.03 ом
EPCOS. Серия SpeedPower, 470 мкф х 6v
Продолжение следует.
Дополняю небольшой табличкой с параметрами наиболее ходовых номиналов и марок:
марка размер емкость / вольт время ESR Ripple
NichiconHZφ8 * 20 1800uF6.3V2000h 9mΩ2880mA
NichiconHZφ8 * 20 1500uF6.3V2000h 9mΩ2880mA
RubyconMCZ φ8 * 20 1800uF6.3V2000h 12mΩ2350mA
NichiconHNφ8 * 20 1800uF6.3V2000h 12mΩ2220mA
NichiconHNφ8 * 20 1500uF6.3V2000h 12mΩ2220mA
Sanyo MV-WGφ8 * 20 1800uF6.3V3000h 16mΩ1950mA
Rubycon MBZφ8 * 20 1800uF6.3V2000h 19mΩ1870mA
PanasonicFMφ8 * 20 1200uF6.3V4000h 30mΩ1560mA
NipponKZHφ8 * 20 1500uF6.3V6000h 33mΩ1410mA
NipponKZEφ8 * 20 1200uF6.3V3000h 41mΩ1250mA
PanasonicFKφ8 * 20 1500uF6.3V3000h 44mΩ1220mA
NichiconHNφ10 * 25 3300uF6.3V2000h 9mΩ3190mA
Rubycon MBZφ10 * 23 3300uF6.3V2000h 12mΩ 2800mA
Sanyo MV-WXφ10 * 20 1500uF6.3V4000h 23mΩ1820mA
Приветствую, друзья!
Мы уже рассматривали, как устроены «кирпичики», из которых собран компьютер.
Вы уже знаете, как устроены и как работают полупроводниковые диоды, полевые и биполярные транзисторы.
Вы уже знакомы с таким понятием, как SMD компоненты.
Из всего многообразия конденсаторов мы рассмотрим лишь те, которые используются в компьютерах и периферийных устройствах.
Что такое конденсатор?
Конденсатор характеризуется такой величиной, как ёмкость.
Чем больше ёмкость конденсатора, тем больше энергии он может накопить и тем (грубо говоря) больше его габариты.
Конденсатор может не только накапливать энергию, но и отдавать ее.
Именно в таком режиме он чаще всего и работает.
Конденсатор, в отличие от транзистора, является пассивным компонентом, т.е. есть он не может генерировать или усиливать сигнал.
Как устроен конденсатор?
В простейшем случае конденсатор состоит из двух металлических пластин (обкладок) и диэлектрика (изолятора) между ними. Чем больше размер пластин и чем меньше зазор между ними, тем больше емкость конденсатора.Вообще говоря, конденсатор накапливает на обкладках заряд (множество элементарных частиц, каждая из которых обладает элементарным зарядом). Чем больший заряд накоплен, тем большая запасена энергия. Ёмкость конденсатора зависит также и от вида диэлектрика.
С помощью специальных материалов и технологических ухищрений научились достаточно большую ёмкость втискивать в очень небольшой объём.
В них две металлические обкладки в виде длинных полос (чаще всего из алюминиевой фольги) разделены слоем бумаги, пропитанной электролитом.
Электролит вызывает образование тонкой пленки оксида (окисла), которая является хорошим диэлектриком.
Поэтому электролитические конденсаторы называют ещё оксидными. Полосы сворачивают и помещают в цилиндрический алюминиевый корпус.
Раньше выводы конденсаторов делали из меди – как из материала с высокой электропроводностью. Теперь же их нередко делают из более дешевых сплавов на основе железа. В этом можно убедиться, если поднести к ним магнит. Фирмачи научились экономить!
В керамических конденсаторах диэлектриком служит пластинка из керамики, а обкладками – напыленные на керамику пленки металлических сплавов.
В каких единицах измеряется емкость конденсатора?
Основная единица для измерения ёмкости – Фарад (Ф, старое название – Фарада).
Один микрофарад = 1 000 нанофарад = 1 000 000 пикофарад.
В компьютерных блоках питания и в материнских платах используются электролитические конденсаторы ёмкостью несколько сотен или тысяч микрофарад.
Там же применяется малогабаритные керамические конденсаторы ёмкостью несколько сотен или тысяч пикофарад.
Керамические конденсаторы используются чаще всего в виде SMD компонентов.
Как обозначаются конденсаторы в электрических схемах?
Конденсаторы в электрических схемах обозначается в виде двух вертикальных черточек, разделенных небольшим пространством. Графическое изображение напоминает те самые две пластины, разделенные воздушным диэлектриком.
У электролитических конденсаторов возле одной из черточек (обкладок) помещается знак «+».
Это потому, что электролитические конденсаторы обычно имеют полярность, которую надо соблюдать при монтаже.
Отметим, что в некоторых случаях применяются электролитические неполярные конденсаторы.
Рядом наносится значение ёмкости конденсатора.
Записи вида 1000 p (1000 pF) и 3,9 n (3,9 nF) означают соответственно 1000 пикофарад и 3,9 нанофарад (или 3900 пикофарад).
Запись вида 1000uFx16V означает емкость 1000 микрофарад и рабочее напряжение 16 Вольт.
Напротив отрицательного электрода на корпусе конденсатора наносится соответствующая маркировка (знак «-»).
Где и как используются конденсаторы?
Таким образом, если переменное напряжение будет приложено к цепи с конденсатором, в ней будет протекать переменный ток. Поэтому конденсатор можно охарактеризовать такой величиной как емкостное сопротивление (обозначается в технической литературе как Хс).
Емкостное сопротивление зависит от ёмкости конденсатора и частоты приложенного напряжения. Чем ёмкость и частота больше, тем меньше емкостное сопротивление. На этих эффектах основано применение конденсаторов в схемах фильтрации источников питания.
В компьютерных блоках питания для получения постоянных напряжений +3,3, +5, и +12 В используется двухполупериодная схема выпрямление с двумя диодами и фильтрующим конденсатором. Без конденсатора на нагрузке будет пульсирующее напряжение одной полярности.
Генератор – это сумма постоянного и переменного напряжений (пульсирующее напряжение содержит в себе постоянную и переменную составляющую).
Таким образом, сигнал с генератора подается на частотно-зависимый делитель напряжения. Выходной сигнал снимается с нижнего плеча (конденсатора). Для постоянного напряжения сопротивление конденсатора очень велико, гораздо больше сопротивления выпрямителя. Поэтому уменьшения постоянного напряжения не происходит.
Для переменного напряжения сопротивления конденсатора очень мало, гораздо меньше сопротивления выпрямителя, поэтому происходит сильное ослабление переменной составляющей.
В реальной схеме ситуация несколько сложнее, так как к нижнему плечу делителя подключена нагрузка, обладающая сопротивлением. Поэтому полностью избавиться от пульсаций нельзя, можно только свести их к какому-то небольшому значению.
Вообще, такая комбинация активного сопротивления и конденсатора называется фильтром нижних частот, который пропускает постоянную составляющую и какой-то диапазон низких частот.
Чем выше частота входного переменного напряжения, тем сильнее оно ослабляется.
Так как необходимо сильное подавление пульсаций переменного напряжения, то используется электролитические конденсаторы большой емкости.
Приведем еще один пример разделения переменной и постоянной составляющей. Пусть в схеме на рисунке сигнал в точке А будет иметь постоянную составляющую 5 В и переменную амплитудой 2 В.
После конденсатора, в точке В будет уже только переменная составляющая той же амплитудой 2 В (если емкостное сопротивление конденсатора мало для такой частоты). Интересно, не правда ли?
По существу, это тоже частотно-зависимый делитель напряжения, где в виде нижнего плеча выступает сопротивление нагрузки. Такую комбинацию называют фильтром верхних частот, который не пропускает постоянную составляющие и низкие частоты, так как в емкостное сопротивление будет для них большим.
Заканчивая, отметим маленькую деталь: так как максимальное напряжение на конденсаторе будет равно сумме постоянной и переменной составляющей, его рабочее напряжение должно быть не менее этой величины.
Читайте также: