Компьютер который подключен к компьютерной сети и пользуется ее ресурсами называется
Презентация на тему: " Компьютерные сети компьютер информация сеть прием-передача - Что? Сколько? - Где? Как много? - Через что? Как быстро? - С помощью чего? Как удобно?" — Транскрипт:
2 Компьютерные сети компьютер информация сеть прием-передача - Что? Сколько? - Где? Как много? - Через что? Как быстро? - С помощью чего? Как удобно?
3 Назначение и классификация компьютерных сетей Современное производство требует высоких скоростей обработки информации, удобных форм её хранения и передачи. Для этих целей создаются компьютерные сети. В зависимости от территориального расположения абонентских систем информационные сети можно разделить на 3 основных класса: глобальные сети; региональные сети; локальные сети. лвс Глобальная сеть Региональная сеть лвс Региональная сеть
4 Иерархия компьютерных сетей Глобальная сеть объединяет абонентов, расположенных в различных странах, на различных континентах. Глобальные вычисли- тельные сети позволят решить проблему объединения информационных ресурсов всего человечества и организации доступа к этим ресурсам. Региональная сеть объединяет абонентов, расположенных на значительном расстоянии друг от друга в пределах большого города, экономического региона, отдельной страны. Обычное расстояние между абонентами десятки-сотни километров. Локальная сеть (ЛВС) объединяет абонентов, расположенных в пределах небольшой территории, обычно не более 2–2.5 км.
5 Средства передачи Чтобы обеспечить передачу информации из ЭВМ в коммуникационную среду, необходимо согласовать сигналы внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адаптерами или сетевыми адаптерами. Каналы связи ЛВС тремя типами кабелей: витая пара состоит из двух изолированных проводов, свитых между собой; скручивание проводов уменьшает влияние внешних электромагнитных полей на передаваемые сигналы; самый дешёвый тип кабеля, скорость передачи информации 0,25–1 Мбит/сек; коаксиальный кабель отличается более высокой механической прочностью, помехозащищённостью и обеспечивает скорость передачи информации 10–50 Мбит/сек; оптоволоконный кабель идеальная передающая среда, он не подвержен действию электромагнитных полей, скорость передачи информации более 50 Мбит/сек.
6 Локальные вычислительные сети Локальная вычислительная сеть – совокупность серверов и рабочих станций. ЛВС Сервер – компьютер, подключённый к сети и обеспечивающий её пользователей определёнными услугами. Рабочая станция – персональный компьютер, подключённый к сети, через которую пользователь получает доступ к её ресурсам.
7 Связанные одной сетью Локальная сеть HUB Сервер Аппаратное согласование Программное согласование Сетевая карта, кабель
8 Кольцевая топология локальной сети Локальная сеть
9 Сеть типа «Звезда»
10 Шинная топология локальной сети
11 Древовидное соединение. Имеется один центральный сервер для всей сети и несколько файловых серверов для разных рабочих групп.
12 Иерархия компьютерных сетей Глобальная Региональная Локальная Средства передачи: Витая пара Коаксильный кабель Оптоволоконный кабель Локальная вычислительная сеть состоит: Сервер Рабочая станция Топология: Кольцевая Типа «Звезда» шинная
15 Тест 1 1.Сеть, которая объединяет абонентов, расположенных в пределах небольшой территории (обычно не более км) называется … a) глобальная; b) региональная; c) локальная. 2. Сеть, которая объединяет абонентов, расположенных на значительном расстоянии друг от друга, но в пределах большого города, региона, страны называется … a) глобальная; b) региональная; c) локальная. 3. По скорости передачи, какой кабель передает информацию Мбит/сек.? a) витая пара; b) коаксиальный кабель; c) оптоволоконный кабель. 4. Компьютер, который подключен к компьютерной сети и пользуется её ресурсами называется… a) рабочая станция; b) сервер; c) персональный компьютер. 5. Какой вид топологии изображен на рисунке: a) кольцевая; b) шинная; c) топология типа «Звезда» Тест 2 1. Сеть, которая объединяет абонентов, расположенных в различных странах, на различных континентах называется … a) глобальная; b) региональная; c) локальная. 2. По скорости передачи, какой кабель передает информацию от 0,25-1 Мбит/сек.? a) витая пара; b) коаксиальный кабель; c) оптоволоконный кабель. 3. По скорости передачи, какой кабель передает информацию более 50 Мбит/сек.? a) витая пара; b) коаксиальный кабель; c) оптоволоконный кабель. 4. Компьютер, который подключен к компьютерной сети и обеспечивающий её пользователей определенными услугами называется… a) рабочая станция; b) сервер; c) персональный компьютер. 5. Какой вид топологии изображен на рисунке: a) кольцевая; b) шинная; c) топология типа «Звезда»
Сервер – мощный компьютер, обслуживающий другие компьютеры в локальной сети. ComputerBild расскажет, чем сервер отличается от обычного ПК.
В любой сколько-нибудь крупной компьютерной сети постоянно возникает необходимость совместного использования ресурсов несколькими компьютерами, будь то общее подключение к Интернету, доступ к мультимедийным файлам или печать документов на одном принтере. Компьютер, который предоставляет эти ресурсы другим машинам, называется сервером. Характер этих ресурсов определяет тип сервера. На файловом сервере хранятся данные, сервер печати принимает документы и отправляет их на подключенный к нему принтер, подключаясь к прокси-серверу для выхода в Интернет, компьютеры совместно используют канал доступа. Эти и другие функции могут выполнять как разные машины, так и один компьютер.
Отличие сервера от обычного ПК
Серверы, которые используются в домашних «локалках» и на мелких предприятиях, как правило, отличаются от обычных ПК лишь установленным на них программным обеспечением. Другое дело – серверы крупных организаций. Нагрузка на их вычислительные ресурсы и устройства хранения данных очень велика. Эти машины должны вмещать большие объемы документов и обеспечивать высокую скорость доступа к ним. Также, что не менее важно, от сервера требуется бесперебойная работа и высокая отказоустойчивость. Поэтому крупные серверы, в основном, состоят из более сложного и высокопроизводительного «железа», нежели обычные ПК. При этом некоторые аппаратные компоненты, функции которых являются вторичными для сервера, оказываются более слабыми, чем их аналоги в составе домашнего ПК. Вот те комплектующие, которые отличают серверы от простых компьютеров.
Мощные процессоры. Серверы используют специальные ЦП, например Xeon фирмы Intel или Opteron от AMD. Применяются и более экзотические «камни», например Intel Itanium. Серверы начального уровня, как и простые ПК, имеют один процессор, более крупные – от двух до восьми. Самые могучие серверы представляют собой кластеры из сотен процессоров с сопутствующей «обвязкой» – материнскими платами, накопителями и т.д.
Большой объем оперативной памяти. Если домашнему ПК для полноценной работы за глаза хватает пары гигабайт «оперативки», в худших случаях – 4, то мощному серверу требуется 8–16 Гб и даже больше. Сами серверные модули памяти, как правило, обладают функцией коррекции ошибок – ЕСС (Error Correction Code). Благодаря этому ошибки записи и чтения данных, вызванные сбоем в работе электроники или дефектом микросхем памяти, не приведут к перебоям в работе «софта» или зависанию системы, как это случилось бы с обычным компьютером.
Емкие накопители. В большинстве серверов данные хранятся на быстрых и емких жестких дисках, которые объединяются в RAID-массивы. Так как от сервера одновременно требуются высокая скорость и отказоустойчивость, то форматы массивов сочетают разделение данных по нескольким жестким дискам с дублированием информации на других «винтах». Нередко встречается и возможность отключать и подключать накопители «на горячую» – т.е. не прерывая работу системы.
Широкополосное сетевое подключение. Если сервер используется для совместного доступа в Интернет десятков компьютеров, то он подключается к глобальной Сети с помощью «толстого» канала с высокой пропускной способностью. Для этого используются оптоволоконные линии или радиоканалы. Клиентские компьютеры подключаются к серверу с помощью привычных технологий Ethernet или Wi-Fi.
Аппаратные средства, выполняющее вторичные обслуживающие функции, у серверов также отличаются от периферии клиентских ПК.
Корпус. Задачи сервера определяют его конструкцию. Серверы младшего уровня выглядят, как обычные ПК, только увеличенные в размерах так, чтобы в корпус уместились более крупная материнская плата и массив накопителей. У серверов помощнее в качестве корпусов – шкафы-стойки, и нередко они состоят из нескольких блоков (компьютеров, маршрутизаторов и т.д.) в отдельных корпусах. Очень мощный серверный кластер может состоять из нескольких десятков таких шкафов. Компьютер, заключенный в компактный корпус для монтажа в стойку, называется тонким сервером (blade server).
Блок питания. Серверы начального уровня оснащены одним или двумя БП. По мере возрастания числа функциональных блоков сервера и увеличения их «аппетитов» увеличиваются число и мощность блоков питания. Часто существует возможность «горячей» замены или подключения дополнительного БП.
Устройства вывода. Так как вывод видео и звука входит в число клиентских, а не серверных задач, устройства подобного назначения у серверов либо отсутствуют вовсе (тогда управление системой осуществляется удаленно с клиентского ПК), либо достаточно примитивны.
Особенности работы и аппаратного обеспечения мощного сервера диктуют и необходимость его специфического обслуживания.
Бесперебойное энергоснабжение. Промышленные сетевые фильтры и источники бесперебойного питания предотвращают потери данных в случае «провалов» напряжения в электрической сети, а также снижают вероятность повреждения «железа» и файлов при его резких перепадах. В ряде случаев, когда требуется бесперебойная работа вопреки всему, используются генераторы резервного питания.
Усиленное охлаждение. Большинство серверов, как и клиентские ПК, охлаждается воздухом. Проблема возрастающего вместе с производительностью тепловыделения решается с помощью усиленной вентиляции корпусов и помещений, где устанавливаются серверы. Усиленное охлаждение отдельных компонентов серверам не требуется, поэтому системы водяного охлаждения в них не встречаются
Специализированное програмное обеспечение. На серверах устанавливаются операционные системы, адаптированные к серверным задачам, например Windows Server 2003, специальные версии Linux или Free BSD или сугубо серверные ОС – такие, как Solaris фирмы Sun Microsystems. В качестве основного программного обеспечения используются программы-серверы, например Apache для поддержки веб-сайтов или Microsoft Exchange Server для приема и отправки электронной почты.
Типы серверов
Сервером называют не только компьютер, но и программное обеспечение, управляющее разделяемыми ресурсами и доступом к ним. На одном компьютере может работать одновременно несколько программ-серверов. В обиходе, говоря, например, о «почтовом сервере», подразумевают совокупность «железа» и «софта». В зависимости от функций, которые выполняет ПО, можно выделить несколько разновидностей серверов. Все их можно разделить на две группы: серверы, задачей которых является хранение данных и предоставление доступа к ним пользователям, и серверы, управляющие транспортом данных в сети и поддерживающие ее работу. К первой группе относятся следующие типы серверов.
Файловый сервер. В его задачи входит хранение файлов и обеспечение доступа к ним клиентских ПК, например по протоколу FTP. Ресурсы файл-сервера могут быть либо открыты для всех компьютеров в сети, либо защищены системой идентификации и правами доступа.
Мультимедийные серверы являются разновидностью файл-серверов. Они предназначены для хранения фотографий, музыки, фильмов и другого мультимедийного контента. В качестве такого сервера не обязательно использовать компьютер. Можно купить устройство NAS или даже обойтись компактным внешним жестким диском, подключаемым к сети через интерфейс Ethernet или Wi-Fi.
Сервер печати принимает запросы на печать от компьютеров локальной сети и отправляет их на один или несколько подключенных к нему принтеров.
Игровые серверы. Разработчики компьютерных игр открывают специальные серверы, на которых пользователи могут играть друг с другом. Некогда наибольшей популярностью пользовались серверы 3D-шутеров и стратегий, позволяющие идти только одному матчу в отдельно взятый промежуток времени или нескольким одновременно. Редкая домовая или квартальная «локалка» обходится без такого сервера. В наше время более востребованы серверы различных MMORPG (Massive Multiplayer Online Role Playing Game), на которых одновременно могут играть сотни и тысячи человек (пример: игры Lineage 2 и World of Warcraft).
Веб-серверы. Эти серверы предоставляют доступ к веб-страницам и сопутствующим ресурсам, например картинкам. Сайты с высокой посещаемостью или расширенной функциональностью размещаются сразу на нескольких серверах.
Серверы данных хранят различного рода материалы, необходимые для функционирования серверов другого назначения. К примеру, некоторые тексты, рисунки и стилевые элементы веб-сайта могут быть расположены на отдельном сервере данных. Когда пользователь открывает стартовую страницу сайта, то веб-сервер передает серверу данных запрос на получение необходимых материалов. Сервер баз данных осуществляет поиск запрошенных данных и посылает их веб-серверу. Он, в свою очередь, формирует веб-страницу и посылает ее клиентскому компьютеру.
В список серверов, управляющих транспортом трафика, входят следующие разновидности.
DHCP-серверы. Dynamic Host Configuration Protocol обеспечивает автоматическое распределение IP-адресов между компьютерами в сети. Такая технология широко применяется в локальных сетях с общим выходом в Интернет.
DNS-серверы. Функция DNS-сервера заключается в преобразовании доменных имен серверов в IP-адреса. Передача данных в сетях осуществляется с помошью IP-адресов, сайт с неизменным доменным именем может не раз «переезжать» с одного сервера на другой, меняя свой IP-адрес. Поэтому таблицы соответствия IP-адресов и доменных имен в системе DNS (Domain Name System) регулярно обновляются, и серверы синхронизируют их между собой.
Прокси-серверы выступают в качестве посредников при передаче данных по сети – с компьютера на компьютер. Они используются либо для организации разделяемого доступа в Интернет, когда требуется контроль и фильтрация трафика, либо для сокрытия IP-адреса ПК от компьютера-«собеседника», т.к. последний при коммуникации через прокси-сервер будет «видеть» только адрес прокси.
Кэш-серверы. Чтобы при каждом открытии веб-страницы клиентскому компьютеру не приходилось запрашивать заново все составляющие ее данные, используются промежуточные накопители – кэш-серверы. Если страница, запрошенная пользователем, не изменилась с времен последнего запроса, то ее можно загрузить не с «родного» хранилища, а из недр кэш-сервера.
Архитектуры «клиент-сервер» и Peer-to-Peer
На архитектуре «клиент-сервер» основано большинство традиционных интернет-сервисов. Но в последнее время получила распространение принципиально другая организация сети.
В архитектуре Peer-to-Peer (P2P) все компьютеры равноправны и каждый хранит часть общего объема данных. При этом каждая машина выступает одновременно и в качестве клиента, и в роли сервера. Самый успешный пример реализации P2P – файлообменные сети (eDonkey2000, BitTorrent). Получая файл из такой сети, вы одновременно скачиваете его фрагменты с десятков компьютеров. Благодаря распределению данных пиринговые (иначе одноранговые, децентрализованные) сети отличаются высокой отказоустойчивостью и скоростью работы.
Справедливости ради надо признать, что большинство пиринговых сетей не обходится без серверов совсем. К примеру, файлообменные сети используют серверы (трекеры) для управления трафиком и его учета.
Домашний сервер
Все современные операционные системы имеют серверные возможности. С их помощью можно открывать пользователям других ПК доступ к данным на жестком диске или к подключенному к компьютеру принтеру, а также «делиться» подключением к Интернету. Кроме того, домашний сервер можно использовать для резервного хранения данных или, сделав его доступным через Интернет, работать с документами на нем с любого ПК, подключенного к глобальной Сети.
«Поднять» домашний сервер для хранения файлов и разделения доступа к Интернету не так сложно, как может показаться неискушенному пользователю. Для этого понадобятся следующие компоненты.
Компьютер. Для файлового или простого веб-сервера достаточно компьютера с процессором не слабее Pentium II или Athlon, оперативной памятью объемом 256 Мб и приводом CD-ROM. Если же на компьютере планируется запуск игрового сервера (весьма популярная инициатива в небольших локальных сетях), потребуется машина мощнее.
В качестве первого шага на нем можно запустить сервер Linux с диска Live-CD. Побаловавшись с ним, вы решите, стоит ли вам переходить к более серьезным мероприятиям. Если вы все-таки решите использовать компьютер в качестве сервера постоянно, то Linux необходимо будет установить на жесткий диск. Для этого достаточно 10 Гб свободного места. Все остальное пространство останется для файлов и дополнительного программного обеспечения (в первую очередь – программ-серверов).
Неплохая идея – использовать в качестве сервера старый ноутбук. При продолжительной эксплуатации это позволит сэкономить на счетах за электроэнергию. Кроме того, сложенный ноутбук занимает совсем немного места. Единственный недостаток ноутбука в данном случае – ограниченные возможности по подключению накопителей.
Дистрибутив Linux. С помощью бесплатной версии Linux (Open SuSe, Ubuntu или Knoppix) вы можете создать сервер, который обладает всеми функциями, необходимыми для домашнего использования.
Большинство дистрибутивов Linux также имеет и платные версии – например, в случае с SuSe она называется SuSe Enterprise Server. Эта версия Linux отличается дополнительной технической поддержкой производителя и расширенным комплектом программ.
Интернет. Перейдя по этим ссылкам, вы можете скачать различные дистрибутивы Linux для домашнего сервера:
WLAN-маршрутизаторы и сетевые жесткие диски
Работа домашней сети редко требует использования в качестве сервера отдельного ПК. В зависимости от количества данных, которое он будет хранить, и задач, которые будет выполнять, можно выбрать один из двух более дешевых вариантов.
WLAN-маршрутизатор плюс внешний жесткий диск
Многие беспроводные маршрутизаторы имеют порт USB, к которому можно подключить внешний жесткий диск. К сохраненным на нем данным будет иметь доступ любой компьютер в сети.
Сетевые жесткие диски
Сетевое хранилище данных (Network Attached Storage –NAS) представляет собой компактный и недорогой (по сравнению с отдельным ПК) сервер, который выполняет только одну функцию – хранение данных. Мощные NAS обладают богатым набором интерфейсов и возможностью удаленной конфигурации через веб-интерфейс (подобно маршрутизаторам). Более простые варианты такого решения – обычные внешние жесткие диски с сетевым интерфейсом Ethernet или Wi-Fi.
Сервер на базе полноценного компьютера имеет смысл устанавливать лишь в том случае, если функциональности NAS уже не хватает: например, требуется «поднять» небольшой игровой сервер в домовой сети или веб-сайт. Для этих целей будет достаточно старого компьютера с ОС Linux, хотя можно использовать и Windows.
Компьютерная сеть — это группа (два и более) компьютеров, соединенных каналами передачи данных.
Компьютерные сети обеспечивают:
— быстрый обмен данными;
— совместное использование ресурсов (сканеров, модемов, принтеров и т. д.);
— совместное использование программного обеспечения и баз данных;
— совместную работу пользователей над некоторым заданием и проектом;
— возможность удаленного управления компьютерами.
В зависимости от выполняемых в сети функций различают компьютеры-серверы и компьютеры-клиенты:
- Сервер — это компьютер, предоставляющий доступ к собственным ресурсам или управляющий распределением ресурсов сети.
- Клиент-компьютер, использующий ресурсы сервера.
По территориальному признаку сети разделяются на локальные и глобальные. Локальные сети — это сети, состоящие из близко расположенных компьютером (сеть здания, помещения и т. д.).
Глобальные сети — это сети, охватывающие большие территории и включающие большое число компьютеров.
По архитектуре различают: одноранговые сети и сети с выделенным сервером.
Одноранговые сети — это сети, в которых каждый может представлять свои ресурсы другим компьютерам сети и использовать другие.
Сети с выделенным сервером — это сети, в которых один или несколько компьютеров являются серверами, а все остальные — клиентами.
Компьютерные сети могут разделяться по скорости передачи данным. Пропускная способность сети — это максимальное количество бит, которые могут быть переданы за одну секунду.
Давайте рассмотрим локальные сети. Во многом большинство характеристик локальных сетей определяется конфигурацией или топологией сетей. Топология — это конфигурация сети, способ соединения ее элементов друг с другом.
Чаще всего используются следующие топологии сетей:
- Шинная топология. Все компьютеры сети подключаются к одному кабелю.
- Кольцевая топология. Данные передаются по кольцу от одного компьютера к другому.
- Радиальная топология. Каждый компьютер через специальные сетевой адаптер подключается отдельным кабелем к объединяющему устройству.
- Древовидная топология. Образуется соединением между собой несколькими звездообразных топологий.
Локальные сети ориентированы прежде всего на сравнительно небольшое количество компьютеров.
Что же касается глобальных сетей, то она ориентирована на обслуживание неограниченного круга пользователей. Самый впечатляющий пример глобальной сети — это ИНТЕРНЕТ.
Интернет — это глобальная сеть, в которой многочисленные научные, корпоративные, государственные и другие сети, а также персональные компьютеры отдельных пользователей соединены между собой каналам передачи данных.
Основной аппаратной структурой сети Интернет можно считать мощные компьютеры (узлы) и связывающие их высокоскоростные магистральные каналы передачи данных. Организации, имеющие в собственности и обслуживающие такое оборудование, называются провайдерами.
За каждым компьютерным узлом в Интернете закреплён постоянный адрес, называемый IP-адресом. Давайте рассмотрим технологию IP- адресации.
Такие адреса получают и пользователи сети Интернет, но в отличии от адресов узлов они действуют только во время подключения пользователя к сети и изменяются при каждом новом сеансе.
IP-адрес представляет собой 32-битный идентификатор, например:
Так как человеку сложно воспринимать такую длинную строку, ее делят на 4 равные части:
Чтобы пользователи было еще удобнее работать с IP-адресом каждую часть переводят в 10-ую систему счисления:
Таким образом число в IP-адресе не может превышать 255.
Мы говорили уже о том, что Интернет представляет собой сеть сетей, поэтому технология IP-адресов учитывает этот факт следующим образом:
Любой IP адрес состоит из двух частей: IP-адрес сети и IP-адрес узла этой сети. При этом деление адреса на части происходит с помощью маски — 32-битным числом, в двоичной записи которого сначала стоят единицы, потом — нули. Первая часть IP- адреса, соответствующая единичным битам маски, относится к адресу сети, а вторая, соответствующая нулям маски, — определяет числовой адрес узла сети. Адрес сети получается в результате поразрядной конъюнкции к IP адреса узла и маски.
Напомним, Конъю́нкция — логическая операция, по своему применению максимально приближённая к союзу "и". Пример:
Пусть дан IP-адрес узла 217.9.142.131 и с помощью маски 255.255.192.0 надо получить IP-адрес сети.
Сначала переведем IP-адрес узла и маски в двоичный вид и произведен поразрядную конъюнкцию:
При этом часть IP-адреса сети, соответствующая единицам в маске, указывает на IP-адрес сети, к которой привязана сеть, а часть, соответствующая нулям, отдается на нумерацию компьютеров пользователей этой сети.
Желтым цветом выделена часть IP-адреса сети, указывающей на узел, а зеленым — на нумерацию пользователей.
Таким образом на нумерацию пользователей такой IP-адрес сети выделяет 14 бит, при этом два адреса из них не используется (адрес сети и широковещательный) А значит она позволяет пользоваться одновременно 16382 компьютера.
Список обязательной и дополнительной литература для углубленного изучения темы
— Босова Л. Л., Босова А. Ю. Информатика. 11 класс. Базовый уровень. — М.: БИНОМ, 2016
— Угринович Н. Д. Информатика и ИКТ. Базовый курс. Учебник для 7—9 классов/ М.: БИНОМ. Лаборатория знаний, 2005
— Семакин И. Г., Е. К. Хеннер. Информатика и ИКТ. 10—11 класс/ М.: БИНОМ. Лаборатория знаний, 2008
— К. Ю. Поляков, Е. А. Еремин. Информатика. 11 класс. Базовый и углубленный уровни: учебник в 2 ч. Ч. 1 / М.: БИНОМ. Лаборатория знаний, 2016
Тема 3.1 ИТ в локальных и глобальных сетях. Корпоративные сети
Тема 3.1. Информационные технологии в локальных и глобальных сетях. Корпоративные сети.
1. Понятие сети. Виды сетей. Классификация. Модели. Локальные сети. Топологии. Сетевые устройства.
2. Протоколы передачи данных. Понятие сетевого адреса, порта.
С появлением персональных компьютеров вопросы обмена данными приняли глобальный характер. Благодаря специальным программным и аппаратным средствам стало возможным организовать взаимодействие между людьми, отдаленными друг от друга на расстояние в десятки тысяч километров.
Создание компьютерных сетей вызвано потребностью совместного использования информации на удаленных друг от друга компьютерах. Сети представляют пользователям ПК возможность не только обмена информацией, но также совместного использования оборудования и одновременной работы с документами.
Компьютерной вычислительной сетью называют совокупность взаимосвязанных через каналы передачи данных компьютеров, обеспечивающих пользователя средствами обмена информацией и коллективного использования ресурсов сети (аппаратных, программных и информационных).
Основное назначение компьютерных сетей – обеспечить совместный доступ пользователей к информации (базам данных , документам и т.д .) и ресурсам ( жесткие диски , принтеры , накопители CDROM, модемы , выход в глобальную сеть и т.д .).
Применение вычислительных сетей позволяет решить следующие задачи обработки и хранения информации в условиях современного предприятия.
1. Образование единого информационного пространства, способного охватить всех пользователей предприятия и предоставить им информацию, созданную в разное время и с использованием разного программного обеспечения.
2. Обеспечение эффективной системы накопления, хранения и поиска финансово- экономической информации по текущей работе предприятия, а также по проделанной некоторое время назад (архивная информация) с помощью создания глобальной базы данных.
3. Повышение достоверности информации и надежности ее хранения путем создания устойчивой к сбоям информационной системы.
4. Обеспечение своевременной обработки документов и построения на базе этого действующей системы анализа, прогнозирования и оценки обстановки с целью принятия оптимального решения и выработки стратегии развития.
Все сети независимо от сложности основываются на принципе совместного доступа к информации.
Для эффективной работы сетей используются специальные ОС, которые в отличие от персональных ОС предназначены для решения специальных задач по управлению работой сети и называются сетевыми. Сетевые ОС устанавливаются на специально выделенные компьютеры, называемые серверами.
Все устройства, подключаемые к сети, можно разделить на три функциональные группы: рабочие станции, серверы сети и коммутационные узлы.
Рабочая станция ( workstation ) – это персональный компьютер, подключенный к сети, на котором пользователь выполняет свою работу. Каждая рабочая станция обрабатывает свои локальные файлы и использует свою операционную систему, но при этом ему доступны ресурсы сети.
Сервер сети ( server ) – это компьютер, подключенный к сети и предоставляющий пользователям сети определенные услуги, например хранение данных общего пользования, печать документов. По выполненным функциям серверы подразделяются на файловый сервер, сервер без данных и сервер прикладных программ.
К коммутационным узлам сети относятся следующие устройства: повторители, коммутаторы (мосты), маршрутизаторы и шлюзы.
КЛАССИФИКАЦИЯ СЕТЕЙ ПО МАСШТАБАМ
Существующие сети по широте охвата пользователей можно классифицировать следующим образом: глобальные, региональные (городские) и локальные.
Глобальные вычислительные сети ( WAN ) объединяют пользователей, расположенных на значительном расстоянии друг от друга. В общем случае компьютер может находиться в любой точке земного шара. Это обстоятельство делает экономически невозможным прокладку линий связи, например телефонные линии связи. Абоненты таких сетей могут находиться на расстоянии 10…15 тыс. км. Обычно скорости WAN лежат в диапазоне от 9,6 Кбит/с до 45 Мбит/с.
Региональные вычислительные сети ( MAN ) объединяют различные города, области и небольшие страны. Абоненты могут находиться в 10…100 км. В настоящее время каждая такая сеть является частью некоторой глобальной сети и особой спецификой по отношению к глобальным сетям не отличается. Типичные MAN работают со скоростями от 56 Кбит/с до 100 Мбит/с.
К орпоративные (отраслевые) сети могут объединять тысячи и десятки тысяч компьютеров какой-либо корпорации, размещенных в различных странах и городах
Локальные вычислительные сети (ЛВС, или LAN ) объединяют компьютеры, как правило, одной организации, которые располагаются компактно в одном или нескольких зданиях. Размер локальных сетей не превышает нескольких километров (до 10 км). В качестве физической линии связи в таких сетях применяются витая пара, коаксиальный кабель, оптико-волоконный кабель. Например, типичная LAN занимает пространство такое же, как одно здание или небольшой научный городок, и работает со скоростями от 4 Мбит/с до 21 Гбит/с.
Локальная вычислительная сеть – это совокупность компьютеров и других средств вычислительной техники (сетевого оборудования, принтеров, сканеров и т.п.), объединенных с помощью кабелей и сетевых контроллеров, работающая под управлением сетевой операционной системы.
Для ускорения передачи информации между компьютерами в локальной сети используются специальные сетевые контроллеры, а все компьютеры в сети работают под управлением сетевого программного обеспечения.
КЛАССИФИКАЦИЯ СЕТЕЙ ПО ТОПОЛОГИИ, ИЛИ АРХИТЕКТУРЕ
Топология сети – это логическая схема соединения компьютеров каналами связи. Чаще всего в локальных сетях используется одна из трех основных топологий: моноканальная (шинная), кольцевая или звездообразная.
Шинная топология. При шинной топологии среда передачи информации представляется в форме пути, доступного для всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступить в контакт с любой рабочей станцией, имеющейся в сети. На концах коммуникационного пути размещаются терминаторы, служащие для гашения сигнала.
Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции. При повреждении кабеля в любом месте сети вся сеть становится неработоспособной. Максимальная пропускная способность таких сетей составляет 10 Мбит/с. Такая пропускная способность недостаточна для современных видео- и мультимедийных приложений, поэтому почти повсеместно применяются сети со звездообразной архитектурой.
Достоинствами шинной топологии являются низкая стоимость, простота построения и наращивания сети. Недостатки – низкая скорость работы сети и малая надежность.
Кольцевая топология. При кольцевой топологии сети рабочие станции связаны одна с другой по кругу: последняя рабочая станция связана с первой, при этом коммуникационная связь замыкается в кольцо.
Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географическое расположение рабочих станций далеко от формы кольца (например, в линию).
Основная проблема, которая возникает в сетях кольцевой топологии, заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Подключение новой рабочей станции требует краткосрочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно определяется исключительно расстоянием между двумя рабочими станциями.
Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий. Отдельные звезды включаются с помощью специальных концентраторов. В зависимости от числа станций и длины кабеля между рабочими станциями применяют активные или пассивные концентраторы.
Активные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключительно разветви- тельным устройством (максимум на три рабочие станции). Каждой рабочей станции присваивают соответствующий ей адрес, по которому передается управление (от старшего к младшему и от самого младшего к самому старшему).
Звездообразная топология. Этот тип топологии предполагает, что головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных.
Вся информация между двумя периферийными рабочими местами проходит через узел вычислительной сети. Для построения сети со звездообразной архитектурой в центре сети необходимо поместить концентратор. Его основная функция – обеспечение связи между компьютерами, входящими в сеть, т.е. все компьютеры, включая файловый сервер, не связываются непосредственно друг с другом, а присоединяются к концентратору.
При использовании топологии этого типа пропускная способность сети определяется вычислительной мощностью узла сети и гарантируется для каждой рабочей станции. Столкновений данных в такой сети не возникает.
Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями происходит через центральный узел по отдельным линиям, используемым только этими рабочими станциями. Частота запросов на передачу информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.
Достоинством является также и то, что повреждение одного из кабелей приводит к выходу из строя только того луча «звезды», где находится поврежденный кабель, при этом остальная часть сети остается работоспособной.
Недостатком этой архитектуры является более высокая стоимость, более сложная структура, а также особенности наращивания, заключающиеся в том, что концентраторы имеют ограниченное количество портов для подключения компьютеров.
СРЕДА ПЕРЕДАЧИ ДАННЫХ
В современных сетях в качестве такой среды чаще всего используются различные виды кабелей и радиосвязь в различных диапазонах.
В локальных сетях широкое распространение получила именно кабельная связь. Кабель представляет собой проводник, помещенный в изолирующие материалы. Наиболее часто используются витая пара, коаксиальный кабель и оптико-волоконные линии.
Витая пара – это наиболее распространенное и дешевое кабельное соединение, представляющее собой пару скрученных проводов. Она обеспечивает достаточную скорость передачи данных (до 100 Мбит/с), проста в монтаже и нетребовательна в эксплуатации. Монтаж сети на витой паре ведется только по звездообразной топологии. Единственным недостатком применения этого вида кабеля является небольшая длина луча «звезды» (до 100 м), что необходимо учитывать при построении сетей в многоэтажных зданиях, а также в больших офисах.
Коаксиальный кабель имеет среднюю цену, хорошо помехозащищен и применяется для связи на большие расстояния (несколько километров). Скорость передачи данных по коаксиальному кабелю от 1 до 10 Мбит/с, а в некоторых случаях может достигать 50 Мбит/с. Коаксиальный кабель используется для передачи информации в широкополосном диапазоне частот.
Оптико-волоконные линии (стекловолоконный кабель) являются наиболее дорогими. Скорость распространения информации по ним достигает 100 Мбит/с. Допустимое расстояние между компьютерами – более 50 км. Внешнее воздействие помех на передачу информации практически отсутствует. Такие сети применяются при передаче информации на большие расстояния без повторителей.
ТИПЫ КОМПЬЮТЕРНЫХ СЕТЕЙ
Компьютер, подключенный к локальной компьютерной сети, является рабочей станцией или сервером в зависимости от выполняемых им функций. Эффективно эксплуатировать мощности локальной сети позволяет применение технологии «Клиент – Сервер». В этом случае приложение делится на две части: клиентскую и серверную.
Локальные сети с выделенным сервером
В сетях с выделенным сервером именно ресурсы сервера, чаще всего дисковая память, доступны всем пользователям. Серверы, разделяемым ресурсом которых является дисковая память, называются файл-серверами (файловыми серверами). Файл-сервер обычно используется администратором сети и не предназначен для решения прикладных задач.
Сетевое программное обеспечение, управляющее ресурсами файлового сервера и предоставляющее к нему доступ всех абонентов сети, – сетевая операционная система. Основная часть системы находится в файловом сервере, а ее небольшая часть размещается в компьютерах пользователей, получивших название рабочих станций. На рабочих станциях может использоваться любая операционная система, и должна быть запущена программа – драйвер, обеспечивающий доступ к локальной сети.
При выборе компьютера на роль файлового сервера необходимо учитывать следующие факторы:
ü быстродействие процессора;
ü скорость доступа к файлам, размещенным на жестком диске;
ü емкость жесткого диска;
ü объем оперативной памяти;
ü уровень надежности сервера.
Наиболее важным компонентом файлового сервера является дисковый накопитель. На нем хранятся все файлы пользователей сети. Быстрота доступа, емкость и надежность накопителя во многом определяют, насколько эффективным будет использование сети.
Сетевой контроллер , установленный на сервере, – это устройство, через которое проходят практически все данные, циркулирующие в локальной сети, поэтому к быстродействию этого контроллера предъявляются повышенные требования.
Одноранговые локальные сети
В небольших локальных сетях все компьютеры обычно равноправны, и пользователи самостоятельно решают, какие ресурсы своего компьютера сделать общедоступными в сети. При этом любой компьютер может быть и файловым сервером, и рабочей станцией одновременно. Такие сети называются одноранговыми. Преимущество одноранговых сетей заключается в том, что нет необходимости копировать используемые сразу несколькими пользователями файлы на сервер.
Основной недостаток работы одноранговой сети заключается в значительном увеличении времени решения прикладных задач. Это связано с тем, что каждый компьютер сети отрабатывает все запросы, идущие к нему со стороны других пользователей. Следовательно, в одноранговых сетях каждый компьютер работает значительно интенсивнее, чем в автономном режиме.
ПРЕИМУЩЕСТВА РАБОТЫ В ЛОКАЛЬНОЙ СЕТИ
1. Разделение ресурсов
Это позволяет экономно использовать ресурсы, например, управлять периферийными устройствами, такими, как принтеры, внешние устройства хранения информации, модемы и т.д., со всех подключенных рабочих станций.
2. Разделение данных
Разделение данных предоставляет возможность доступа и управления базами данных с периферийных рабочих мест, нуждающихся в информации.
3. Разделение программных средств
В этом случае появляется возможность одновременного использования централизованных, ранее установленных программных средств.
4. Разделение ресурсов процессора
В этом случае возможно использование вычислительных мощностей для обработки данных другими системами, входящими в сеть.
5. Многопользовательский режим
Этот режим позволяет одновременно использовать централизованные прикладные программные средства, которые обычно устанавливаются на сервере приложений.
Изучив теоретический материал, ответьте на следующие вопросы:
1) Дайте определение компьютерной сети. Каково основное назначение компьютерной сети?
Читайте также:
- Не удается продолжить выполнение кода поскольку система не обнаружила unityplayer dll
- Смарт дисплей что это
- Для вашего расположения планы недоступны onedrive
- Для доступа в компьютерную сеть оператору необходимо набрать пароль из 4 цифр
- Тесты чипов памяти на 16 гбит в том числе samsung a die обновление 2