Компьютер или человек за кем будущее
Более полувека человечество мечтает об искусственном интеллекте. Как появились достаточные вычислительные мощности, мы не перестаём задаваться вопросом: способна ли машина мыслить?
Мы любим фантазировать и по-детски наивно хотим верить в то, что разум, созданный искусственно, станет нам не просто помощником в повседневных делах, а другом, компаньоном и равноценным партнёром. Мы мечтаем о том, что искусственный разум будет способен общаться, творить, писать песни, развиваться самостоятельно, влюбляться и шутить.
Видео: отрывок из кинофильма «Двухсотлетний человек» по повести Айзека Азимова
Но будем реалистами: на настоящий момент то, что мы называем искусственным интеллектом — это компьютерные программы, призванные смоделировать процессы человеческого мышления. Собственно, так называется и наука, изучающая проблемы воссоздания разумных действий и рассуждений с помощью искусственных устройств и вычислительных систем. Проблема в том, что мы не понимаем всех механизмов человеческого интеллекта, поэтому и создать идентичный человеческому разум не можем. Более того, кажется, мы и не очень-то стремимся понять хоть что-то о нашем разуме. До сих пор в науке идут споры: насколько реально сознание. Именно при изучении нашего разума (с помощью нашего же разума) наука встаёт в тупик. Наука, как сфера деятельности, стремящаяся к объективности, не знает, с какой стороны подойти к субъективному явлению человеческого сознания (субъективному в том смысле, что оно состоит из субъективных ощущений, чувств и восприятия).
Основные вопросы о сознании:Каким местом человек думает?
Как он этим местом думает?
Этой проблемой с 80-х годов прошлого столетия занимается Джон Сёрль, известнейший американский философ, профессор Калифорнийского университета, ведущий мировой специалист по философии искусственного интеллекта. Ещё он человек с непередаваемым чувством юмора. Проведите 15 приятных минут с Джоном Сёрлем и его сознанием:
Именно Сёрль поднял проблематику так называемых «сильного и слабого искусственного интеллекта».
Слабый искусственный интеллект — это компьютерные программы, от которых ожидается решение узкого спектра заранее определённых задач.
Сильный искусственный интеллект — это такие программы, которые будут способны мыслить, принимать решения, осознавать себя и окружение; при этом необязательно при этом будут являться моделью именно человеческого разума. Появится ли у сильного искусственного интеллекта способность к сопереживанию — остаётся неизвестным даже в теории.
В середине XX века, когда были созданы первые компьютеры и зародилась теория алгоритмов, вопрос об искусственном интеллекте был впервые поднят в научном сообществе.
В 1950 году Алан Тьюринг, английский математик с непростой судьбой публикует статью под названием «Может ли машина мыслить?». В статье он ставит вопрос: насколько различается искусственное мышление от человеческого? С целью ответа на этот вопрос он изобретает эмпирический тест, который впоследствии стал известен как тест Тьюринга.
Предполагается, что этот тест поможет определить тот момент, когда машина сравняется в плане разумности с человеком.
В 2014 г. это произошло: программа-бот выиграла тест Тьюринга. Программа, созданная российскими разработчиками, притворялась тринадцатилетним подростком из Одессы под псевдонимом Eugene Goostman. Во время серии тестов в британском университете Рединга Юджин смог убедить 30% судей в том, что он — человек.
Значит ли это, что человечество уже добилось искусственного интеллекта? Нет. Сами разработчики говорят, что тест Тьюринга — отнюдь не лакмусовая бумажка, которая сможет сказать: «Всё, машины поумнели, а вы, жалкие людишки, можете отдыхать». Это свидетельствует лишь о развитии математических алгоритмов и способности программ оперировать синтаксическими средствами, свойственными человеческому языку. Вам же не придёт в голову назвать разумным смартфон, распознающий вашу речь и реагирующий на неё определённой последовательностью действий? Чат-бот Юджин скорее является представителем слабого интеллекта, чем сильного. Это не самообучающаяся и не осознающая себя система.
Кстати, о непростой судьбе самого Тьюринга:Этот английский учёный после Второй мировой войны занимался взломом шифров нацистской шифровальной машины «Энигма». Вскоре после начала работ он был обвинён в гомосексуализме и согласился на прохождение принудительной гормональной терапии. Помимо этого его лишили доступа к секретным материалам и был вынужден прекратить исследования. В 1954 году Тьюринг умер от отравления цианидом, по официальной версии — вследствие самоубийства. А в прошлом году великий криптограф и математик был посмертно помилован британской королевой.
В 1997 г. супермощный компьютер от IBM под названием Deep Blue выигрывает многократного чемпиона по шахматам Гарри Каспарова. Надо сказать, что Каспаров играл с этим компьютером годом ранее и одержал уверенную победу 4:2. За год компания IBM усилила его мощность почти в два раза. В этот раз Каспаров проиграл неожиданно, сдавшись на 45 ходу. Есть мнения, что при анализе спорного 44 хода чемпион и его команда вполне могли переоценить силу компьютера, что и привело к поспешной капитуляции.
Каспаров на церемонии закрытия этой исторической игры требовал реванша и обвинял IBM в нечестной игре (о, это так по-человечески!), но IBM вместо этого распустила команду Deep Blue. Но суперкомпьютеры продолжали свою жизнь, и их мощности используются сейчас для молекулярного моделирования в швейцарском центре Blue Brain.
Снова IBM со своей разработкой под названием Watson. Эта система способна воспринимать человеческую речь и производить поиск с помощью алгоритмов. Watson в 2011 г. сыграл в американской игре Jeopardy! (российский аналог — «Своя игра»), где и обошла обоих своих противников.
Google, несомненный лидер по производству сервисов будущего, в 2010 г. начал тестирование автомобилей, оснащённых специальной системой беспилотного управления. Система собирает информацию с Google Street View и считывает реальную ситуацию с видеокамер, датчика на крыше, в передней части авто и датчика на заднем колесе. В проекте участвуют 10 автомобилей, 12 водителей и 15 инженеров. К настоящему моменту беспилотные «гугломобили» проехали уже более 500 тысяч километров с минимальным участием человека.
Мы перечислили лишь одни из самых значимых примеров систем искусственного интеллекта и их достижения. Так получается, что даже самые продвинутые из них скорее относятся к слабому искусственному интеллекту, чем к сильному. Восстания машин можно не опасаться и продолжать разрабатывать более тонкие алгоритмы взаимодействия компьютера с человеком.
А под конец предлагаем посмотреть научно-философскую притчу от «ЦентрНаучФильма», снятую в 1976 г. Открывается она диалогом из беседы с Виктором Михайловичем Глушковым, основоположником компьютерной науки и кибернетики в СССР:
Идея создания искусственного интеллекта для разрешения сложных проблем витала в воздухе ещё в древние времена. Например, в Египте люди создали «оживающую» механическую статую бога Амона, у Гомера в «Илиаде» Гефест выковывал человекоподобные существа-автоматы.
Однако, прародителем искусственного интеллекта является средневековый испанский научный деятель Раймонд Луллий. Аристократ и философ, физик и алхимик, он давным-давно, ещё в XIII веке, пытался создать необычный механизм для вычислений, на основе всеобщей классификации понятий.
Зарождение понятия
Закрепление зарождения ИИ, как направление в науке, произошло после создания ЭВМ в 40-х годах 19-го века. Термин «искусственный интеллект» предложили в 1956 году на одном семинаре в Дартсмутском колледже в США. В английском словосочетание не имеет слегка фантастической антропоморфной окраски, которую оно приобрело в неудачно русском переводе, как «интеллект».
Слово intelligence значит «умение рассуждать разумно». После того, как признали термин "искусственный интеллект", отдельной областью науки произошло разделение его на нейрокибернетику и «кибернетику чёрного ящика». Нейрокибернетика ориентирована на создание программного обеспечения для моделирования структур, подобных работе человеческого мозга. В основе термина «кибернетика чёрного ящика» - «мыслящее» устройство, реагирующее на заданные входные воздействия также, как и человеческий мозг.
Дальнейшее развитие
С 1954 года в России начали детально изучать вопрос искусственного интеллекта. Появился семинар «Автоматы и мышление» под чутким руководством академика Ляпунова. Однако детальнее к научно-популярному термину вернулись в 1974 году, когда создали Научный совет по проблеме «Искусственный интеллект», который возглавил Поспелов Г.С. Вместе с тем, начиная с 80-х уровень исследования научно-популярного термина в России значительно ниже мирового. Отставание в области разработки интеллектуальных систем – 3-5 лет.
Сегодняшний день
На сегодняшний день в мире произведено множество научных открытий в области искусственного интеллекта – это и Deep Blue, и Mycin, 20q, ViaVoice. Банки применяют системы вычислений при содействии ИИ в страховой деятельности при игре на бирже и управлении капиталом.
Методы распознавания образов, регулируемыми алгоритмами ИИ, широко используют при оптическом и акустическом распознавании, диагностике в медицине, интернет-фильтрах, в системах ПВО и других. Создатели компьютерных игр вынуждены применять ИИ разного уровня проработанности.
В будущем рассматриваются два направления развития искусственного интеллекта:
- 1 - это решение проблем, которые не позволяют ИИ приблизиться к возможностям мозга человека;
- 2 - создание Искусственного Разума, представляющего интеграцию созданных систем ИИ в общую, которая сможет разбираться с проблемами человечества.
По прогнозам профессора Университетского колледжа Лондона и Principal Scientist Nokia Bell Labs Ника Лейна, человека станет окружать ещё большее количество «умных вещей». Например, сенсор, который ранее мог лишь осознавать, что кто-то прошёл мимо него, сейчас он размером с пуговицу сможет предупредить человека об опасности. Необычный путь развития цивилизации в синтезе человека и машины – палка, одежда, авто, телефон, кардиостимулятор. Всё чаще эти обычные инструменты напоминают продолжение наших тел.
На следующем этапе развития машины, вполне возможно, станут полноценными членами социума и будут жить в союзе с людьми. Впрочем, это все еще остается утопией, так как заставить ИИ осознать себя, обрести полноту сознания и создать полноценного члена социума пока что не представляется возможным. Компьютеры остаются союзниками людей, послушными механизмами с поставленной задачей и алгоритмом её выполнения. Когда же ИИ осознает свои возможности, то, вполне возможно, союз машины и человека будет разрушен.
Сегодня прослушала выступление Валентины Эдуардовны Киселёвой, участницы круглого стола «Проект «Цифровая школа» - путь к деградации человека» . Её выступление начинается с 1ч. 30 мин. Многое, что было ею сказано, уже озвучивалось другими выступающими, но есть нечто важное, о чём мог сказать только врач.
- Затрагивая тему трансгуманизма, идеи которого самым непосредственным образом соприкасаются с цифровизацией нашей жизни, нужно понимать, что этот процесс не является той неотвратимой реальностью, в которую людей заставляют верить.
В связи с чем, важно отметить одну деталь, о ней обычные люди, сознание которых уже втянуто в мир антиутопий и всевозможных иллюзий, даже не подозревают.
Всё дело в том, что трансгуманистический мир, это не проекты или наработки государственных институтов и коллективов учёных, которым мы привыкли доверять. Идеи трансгуманизма и создания «нового человека», это воплощение фантазий отдельных личностей, безусловно, с большим потенциалом творчества, но возникновение их идей о трансформации будущего мира для человечества, связано с неполадками в сфере духа, которые приводят к проявлению всевозможных психопаталогий. То есть мы имеем дело с людьми не очень здоровыми. Это нужно понимать и тогда нам будет проще иметь с ними дело.
Для примера был приведён основатель Университет Сингулярности Рэй Курцвэйл, которого называют отцом сингулярности, он же идеолог создания искусственного интеллекта. Его жизнь была окрашена очень сложными отношениями со своим отцом, а после ухода отца из жизни, он, со слов самого Рэя, сохранил тело своего отца, воспоминания, и собирается его реанимировать, как только технологически это будет возможно.
Рэймонд Курцвейл, известный американский писатель и футуролог Рэймонд Курцвейл, известный американский писатель и футуролог- Может быть, это будет не физическое тело, а некое кибернетическое. По рассуждениям Курцвэйла, мы должны относиться к жизни так, чтобы могли реанимировать всё с ней связанное. Так вот эти его фантазии основаны на собственных комплексах, на каких-то трудных детских воспоминаниях.
История жизни каждого человека это очень личная вещь и здесь нужно понимать, что человек, который выстраивал концепцию трансгуманизма, исходил из такого образа будущего, которое сформировалось в его больном воображении, его он и стремится реализовать.
Такие возможности у Курцвэйла появились, – он стал человеком очень состоятельным, долго шёл в заданном направлении и создал такой университет, который, по большому счету, ничему не учит, а занимается исключительно имплементацией последних технологических разработок. Приглашаются влиятельные люди, лидеры общественного мнения, которые занимают определённые должности. Им и демонстрируют самые последние разработки, которые уникальны в технологическом плане. Можно зайти на сайт Университета Сингулярности и всё увидеть своими глазами.
Первую ЭВМ создали почти 80 лет назад. Она была огромных размеров, да и «вычисляла» не очень-то быстро. Но это был прорыв. Благодаря ему в каждом доме сегодня есть компактный, но мощный компьютер, и человек активно пользуется этим благом. Однако возможности современных ПК и их влияние на человека гораздо шире, чем может показаться. Разберемся, какую роль играет компьютер в нашей жизни и какой таит потенциал.
Человек и компьютер: кто умнее?
Интеллектуальный потенциал современного компьютера поражает. Его можно описать двумя главными критериями:
- Компьютер способен вместить огромное количество информации и использовать ее для анализа.
- Искусственный интеллект (ИИ) за секунды анализирует миллионы вариантов развития событий и принимает наилучшее решение.
Эти способности доказывают регулярные матчи по шахматам и другим играм, в которых сталкиваются человек с компьютером. Так, еще в 1997 году состоялось легендарное противостояние чемпиона мира по шахматам россиянина Гарри Каспарова и программы от IBM Deep Blue. В матче победа впервые досталась ИИ. С тех пор прогресс не стоял на месте, и сегодня обыграть опытных гроссмейстеров может даже мобильное приложение.
Следует понимать, что игровая стратегия ИИ заключается лишь в перебирании доступных комбинаций. Многие эксперты, Каспаров в том числе, уверены: машине далеко до гибкого человеческого разума.
Но ИИ пошел дальше и вступил в схватку с чемпионами по го — логической настольной игре родом из Древнего Китая. Вот в чем ее суть: игроки по очереди ставят на поле черные и белые камни, стараясь занять территорию большую, чем противник.
Количество возможных комбинаций в го не сравнится с шахматами: здесь их больше, чем атомов во Вселенной. Грубое перебирание ходов в го попросту не сработает: нужно обладать мощной интуицией и абстрактным мышлением.
Однако продукту компании Google AlphaGo удалось произвести фурор в мире го:
- в 2015 году программа обыграла чемпиона Европы Фань Хуэя со счетом 5:0;
- в 2016-м состоялся легендарный матч с корейцем Ли Седолем, заставляющий иначе взглянуть на возможности ИИ.
Обычно машина просчитывает, какой ход обеспечит ей большую вероятность победы. Но в поединке с Седолем ИИ проявил креативность. Его 37-й ход поначалу казался нелогичным. Но позже выяснилось: программа поняла низкую вероятность такого хода у соперника и решила поставить его в тупик — и это, кстати, удалось. Эксперты высоко оценили такое решение, назвав ход красивым и творческим.
И все-таки машинному креативу далеко до человеческого. Да, нейросеть уже умеет писать картины, музыку и стихи. Однако ее творчество ограничено тем, что уже создал человек.
Выходит, компьютеры действительно обладают поразительными возможностями и способны значительно облегчить нам жизнь. Но, в отличие от человека, машина умеет анализировать только то, что уже существует, абстрактное мышление для нее непостижимо. И возможно, что так будет всегда.
Компьютер и человек: Pexels
Роль компьютера в жизни человека
Для чего нужен компьютер современному человеку? Благодаря интернету ЭВМ глубоко вошли в нашу повседневную жизнь:
- Компьютер — это практически универсальное средство связи. Общение больше не ограничено расстоянием.
- Работа многих людей заключена в компьютере.
- Невероятно упростился поиск информации: ответ практически на любой вопрос можно найти в несколько кликов.
- Компьютер предлагает развлечения даже в пределах дома.
- Многие покупки совершаются в онлайн-режиме.
- Компьютеры стали универсальными помощниками в быту, в передвижении и в обучении.
Компьютер в жизни человека играет более глобальную роль, чем кажется. ЭВМ влияют на все сферы развития общества — от производства до медицины:
- От компьютеров напрямую зависит развитие науки. Все виды исследований — от биологических до социальных — проводятся с использованием компьютерных технологий, обеспечивающих более точные и быстрые результаты.
- Компьютеры широко используют в медицине. Они способны поддерживать здоровье и жизнедеятельность человека.
- Развитие любых сфер производства напрямую зависит от технологического прогресса.
- Компьютеры — распространенный носитель информации. Благодаря этому человеку проще реализовать свой творческий и интеллектуальный потенциал. Меняется структура профессий и интеллектуальной собственности.
В 2020 году пошли разговоры о чипизации людей. В мае изобретатель и бизнесмен Илон Маск заявил о разработке нового устройства, которое будут имплантировать в человеческий мозг. По его словам, такое решение сможет не только обеспечить прямой контакт с компьютером и улучшить память, но и решит многие проблемы:
- заболевания, поражающие мозг, например болезнь Паркинсона и Альцгеймера;
- восстановление зрения, слуха, подвижности конечностей;
- контроля за состоянием здоровья, в частности за уровнем гормонов.
Кроме того, имплант позволит слушать музыку без наушников и скачивать на носитель собственные мысли. Так что сюжеты «Черного зеркала» не так уж далеки от реальности: возможно, уже в ближайшем будущем компьютер станет частью человеческого организма.
Компьютеры в повседневной жизни: Unsplash
Вред компьютера для здоровья человека
Чем больше технологии внедряются в нашу жизнь, тем острее вопрос: как компьютер влияет на человека? Может ли он негативно сказаться на нашем здоровье и продолжительности жизни?
Наибольшие споры вызывает электромагнитное излучение, создаваемое этими электроприборами. У компьютеров оно особенно интенсивное, однако его вред не подтвержден исследованиями. К тому же современные компьютеры обладают достаточной защитой, чтобы оградить человека от негативного эффекта.
Главные угрозы, от которых может пострадать человек за компьютером, намного банальнее. Зная их, можно минимизировать негативное влияние на организм:
- Динамичная картинка и специфичные мерцания экрана провоцируют усталость глаз, ухудшение зрение и раздражительность. Негативно на восприятии сказываются неудачно подобранные шрифты, цвета и пр.
- Привычка подолгу сидеть за компьютером способствует варикозному расширению вен и развитию заболеваний позвоночника. А неправильная осанка не только некрасиво выглядит, но и способна нарушить работу внутренних органов.
- Во время работы компьютер деионизирует воздух, пересушивая его, а также выделяет вредные вещества и притягивает пыль. Это негативно влияет на состояние кожи и дыхательных органов, также возможно развитие аллергии.
- Регулярное использование компьютера влияет на психику человека.
И речь даже не о зависимости. Упрощенный доступ к информации, бесконечная новостная лента и социальные сети создали для человечества новую угрозу — синдром упущенной выгоды. Это значит, что человек боится пропустить важную новость или возможность, выпасть из информационного поля, жертвуя отдыхом и качественным сном. Также чрезмерное использование компьютера становится причиной стрессов, упадка сил или депрессии.
Конечно, все вышеперечисленные проблемы могут возникнуть и без влияния компьютеров, да и его наличие еще не гарантирует негативных последствий. Все просто: чем больше времени проводит человек у компьютера, тем выше риски. Поэтому важно придерживаться здорового образа жизни и знать меру во всем — даже в полезном использовании технологий.
В науке возникает раскол. С одной стороны оказывается человеческий разум — источник любой истории, теории и объяснения, которыми дорожит наш вид. С другой стороны — машины, чьи алгоритмы обладают удивительной прогностической силой, но внутренняя работа которых остается радикально непрозрачной для наблюдающих за ними людей. Если мы, люди, стремимся понять фундаментальную природу мира, то машины создают измеримые, практические предсказания, которые, кажется, выходят за пределы нашего мышление. Теперь мы столкнулись с вопросом о том, какой вид знания важнее — а также стоит ли один из них на пути научного прогресса.
Наш же путь открытия наук таков, что он немногое оставляет остроте и силе дарований, но почти уравнивает их. Подобно тому как для проведения прямой линии или описания совершенного круга много значат твердость, умелость и испытанность руки, если действовать только рукой, — мало или совсем ничего не значит, если пользоваться циркулем и линейкой. Так обстоит и с нашим методом.
Бэкон предложил — совершенно разумно, — что человеческое восприятие и разум должны быть дополнены инструментами. Это поможет не заблудиться в лабиринте.
Исаак Ньютон принял эмпирическую философию Бэкона с энтузиазмом. Всю свою карьеру он разрабатывал инструменты: физические линзы и телескопы, а также ментальные приемы и математические описания (известные как формализмы), которые ускоряли темпы научных открытий. Но в этой растущей зависимости от инструментов были скрыты семена будущих разногласий: между тем, что человеческий разум может понять в основных механизмах мира, и тем, что способны измерять и моделировать инструменты.
Сегодня этот разрыв угрожает взорвать все здание науки. Похоже, что мы достигли границы, где понимание и прогноз — механизмы и модели — не совпадают. В эпоху Бэкона и Ньютона состояния мира, которые были понятны человеческому разуму, и прогнозы, которые можно было проверить, были успешно объединены. Убедительные теории, подкрепленные наблюдениями реального мира, продвинули вперед человеческие знания обо всем — от небесной механики до электромагнетизма и менделевской генетики. Ученые привыкли к интуитивным понятиям, выраженным в динамических правилах и законах, таких как теория естественного отбора Чарльза Дарвина или принцип независимого ассортимента Грегора Менделя, описывающий, как геном организма размножается посредством разделения и рекомбинации его родительской хромосомы.
Но в эпоху «больших данных» связи между пониманием и прогнозом больше нет. Современная наука достигла потрясающего прогресса в объяснении таких вещей, как атомы, свет и силы. Сейчас мы пытаемся осмыслить более сложный мир — от клеток до тканей, от мозга до когнитивных искажений, от рынков до климата. Новые алгоритмы позволяют прогнозировать некоторые особенности поведения этих адаптивных систем, которые учатся и развиваются, в то время как наши инструменты собирают беспрецедентное количество информации о них. И хотя статистические модели и прогнозы, создаваемые машинами, чаще всего оказываются правильными, почти невозможно понять, как именно они это делают. Инструментальный интеллект (обычно машинный) не только сопротивляется, но порой и враждебен попыткам его понять. Например, исследования геномных данных могут содержать сотни параметров — пациент, тип клетки, состояние, ген, местоположение гена и многое другое, — и связывать происхождение заболеваний с тысячами потенциально важных факторов. Но эти «многомерные» наборы данных и прогнозы, которые они предлагают, бросают вызов нашей способности их интерпретировать.
Большое расхождение между пониманием и прогнозом перекликается с пониманием истории Баруха Спинозы: «Расколы возникают не из любви к истине… а скорее из-за чрезмерного стремления к превосходству». Бой идет за то, кто будет властвовать в королевстве науки — мозг или алгоритмы.
Когнитивный ученый Ричард Грегори в замечательной книге «Видеть сквозь иллюзии» (2009) называет их «странными явлениями восприятия, которые бросают вызов нашему чувству реальности». Он объясняет, что они происходят потому, что наше понимание основано на предсказаниях различных правил мышления, которые здесь оказываются вне привычного контекста. В случае с кубом Неккера каждый вариант восприятия согласуется с данными восприятия в трехмерном пространстве. Но без подсказок о глубине мы не можем решить, какая интерпретация правильна. Таким образом, мы легко переключаемся между двумя прогнозами из-за отсутствия достаточного пространственного понимания.
Парадоксы, подобно иллюзиям, заставляют интуицию вступать в противоречие с очевидными основными фактами о мире. Парадоксы — это выводы из обоснованных аргументов или наблюдений, которые кажутся противоречивыми или логически несостоятельными. Они часто появляются в естественных науках — особенно в физике, как в философских, так и в научных ее воплощениях. Парадокс близнецов, парадокс Эйнштейна-Подольского-Розена и кот Шредингера — все это парадоксы, берущие начало в фундаментальной структуре относительности или квантовой механике. И они весьма отличаются от эмпирических парадоксов, таких как квантово-волновой дуализм, наблюдаемый в двухщелевом эксперименте. Тем не менее, в обеих этих категориях парадокса человеческое понимание, основанное на повседневном причинном осмыслении, не соответствует прогнозируемому результату экспериментов.
Это именно то, что может случиться с нейронными сетями, когда два алгоритма конкурируют за победу в игре. Одна сеть может быть обучена распознавать один набор объектов, например, знаки остановки. А ее оппонент, другая сеть, может намеренно внести небольшие изменения в набор данных — скажем, переместить какие-то пиксели в знаках остановки, — и первая сеть классифицирует эти изображения как знаки правого поворота или ограничения скорости. Такой подход к классификации выглядит как крайняя глупость с человеческой точки зрения. Но по мнению Геделя, это могут быть совершенно естественные ошибки с точки зрения невидимых систем, закодированных в нейронной сети.
Парадокс и иллюзия показывают нам, что способность прогнозировать и понимать зависит от существенных недостатков мышления, и что ограничения в понимании могут сильно отличаться от ограничений в плане возможности прогноза. Точно так же, как прогноз фундаментально ограничен тем, насколько чувствительны инструменты измерения и насколько точны вычисления, понимание может как улучшаться, так и ухудшаться в зависимости от того, какие правила применяются, чтобы сделать выводы.
Взаимосвязь между пониманием и прогнозом соответствует связи между онтологией (понимание истинной природы мира) и эпистемологией (процесс получения знаний о мире). Знания, основанные на экспериментах, могут преодолеть барьеры существующего понимания и дать оценку новым и фундаментальным аспектам реальности. В свою очередь, эти фундаментальные законы позволяют ученым генерировать новые прогнозы для проверки на практике. Когда оказалось, что раздел математики, известный как «теория множеств», порождает парадоксы, дальнейшее развитие «теории категорий» пришло на помощь, чтобы частично преодолеть эти ограничения. Когда модель Солнечной системы Птолемея или модель механики Ньютона породили неверные астрономические ожидания, появилась теория относительности, помогающая уловить аномальное поведение больших масс в быстром движении. Таким образом, онтологическая основа теории стала основой новых и более точных предсказаний — онтология породила эпистемологию.
Но как только научный прогресс достигает определенного предела, онтология и эпистемология становятся врагами. Принцип неопределенности в квантовой механике гласит, что импульс и положение частицы не могут быть точно установлены. Он описывает ограничение, из-за которого абсолютно точные измерения невозможны (эпистемология), и в то же время указывает на аргумент о принципиальной неотделимости положения и импульса в квантовом масштабе (онтология). На практике квантовая механика предполагает эффективное применение теории для прогнозирования результата, а не интуитивное понимание механизма, который производит результат. Другими словами, онтология поглощается эпистемологией.
Напротив, область фундаментальных механизмов в квантовой механике стремится прорвать этот предел и объяснить, почему квантовая теория может давать прогнозы. Например, интерпретация «многих миров» отменяет квантовую жуть в пользу невероятного предположения о том, что каждое наблюдение порождает новую вселенную. Задача различить эпистемологическую проблему и онтологическую не тривиальна: они тесно связаны, можно сказать, переплетены друг с другом.
Мало кто из ученых согласился бы на такую жалкую интеллектуальную сделку. Избитая истина в науке, что хорошая теория — это элегантная теория. Это простое (или «экономное») объяснение, которое можно интуитивно понять и передать. Хорошая теория при таком взгляде на вещи позволяет человеку держать в голове понятие в целом, под каждый случай создавать своего рода миниатюрную внутреннюю вселенную. В некоторых областях, особенно в математической физике, миниатюрная вселенная человеческого счета и большая вселенная реальности сходятся. И яблоки, и планеты движутся по траекториям, описанным одними и теми же уравнениями движения. Это счастливое совпадение можно называть по-разному: «созвучие», «соответствие» или существование «масштабно-инвариантных законов».
Наиболее поразительно среди этих созвучных теорий наблюдение, что величина определенных сил обратно пропорциональна квадрату расстояния от источника, что справедливо как для гравитации в больших масштабах, так и для электромагнетизма в малых. Как сказал физик Мюррей Гелл-Манн:
По мере того, как мы очищаем кожуру лука, проникая на все более и более глубокие уровни системы элементарных частиц, математика, которую мы узнаем благодаря ее полезности на одном уровне, предлагает новые типы математики, которые могут пригодиться на следующем уровне — или для понимания другого феномена на том же уровне. Иногда даже старой математики достаточно.
Но говорит ли то, что мы преодолели пределы человеческих возможностей в шахматах и распознавании речи, о преодолении пределов в наших предсказаниях физической реальности — то есть о научном прогрессе? Мешает ли научному успеху человеческая потребность в понимании?
Теории понимания дальше развивал Иммануил Кант в «Критике чистого разума» (1781). Кант проводит различие между материальным миром и ментальной репрезентации — реальность как онтология против ментального знания как эпистемологии. По Канту, существует только представление о мире в мыслях, и материальный мир может быть познан только через эти представления. Это означает, что наше так называемое понимание — не что иное, как приблизительное и несовершенное представление эмпирической реальности, платоновское бытие (или, возможно, небытие) которого служит конечным пределом знания. Аргумент Канта не помогает нам отличить понимание от знания; скорее он превращает понимание из убеждения, которое можно защитить, во внутреннее представление, которое невозможно проверить.
Философ Джон Серл исследовал различие между знанием и пониманием в книге «Сознание, мозг и наука» (1984), где он решил бросить вызов адептам машинного интеллекта. Серл просит нас представить в комнате человека, не понимающего китайского языка, но хорошо оснащенного набором словарей и правил грамматики. Ему демонстрируют предложения на китайском языке, и он может пользоваться этими ресурсами для перевода на родной английский. Если задуматься об этом эксперименте, станет ясно, что человеку не нужно понимать язык, с которого он переводит, — важно лишь, чтобы перевод был правильным.
Китайская комната — это метафорический инструмент для анализа ограничений алгоритмов, способных перечислять элементы в цифровой сцене или переводить предложения на веб-странице. В обоих случаях правильные решения создаются без какого-либо «понимания» содержания. Так какова природа этого недостающего понимания, которое ищет Серл?
У Бэкона есть много орудий, которые могут заменить комнату Серла — такие как правила для умножения больших чисел, геометрические конструкции, использующие компас и транспортиры для доказательства теорем, или интегралы для расчета больших или даже бесконечных сумм. Эти методы эффективны именно потому, что они устраняют необходимость понимания. Достаточно просто аккуратно проделать предписанные шаги, чтобы получить желаемый результат. В каждом из этих случаев понять — значит объяснить логику и правильное использование логарифмов, кинематико-геометрических свойств транспортира или компаса. Таким образом, даже в практике повседневной математики мы испытываем раскол между пониманием и прогнозом.
Понимание — это средство, с помощью которого мы преодолеваем мир парадоксов и иллюзий, открывая черный ящик знаний для модификации. Понимание — это объяснение оправданных ошибок. Как только мы понимаем, что каркасный куб интерпретируется как твердое тело в трех измерениях, становится понятно, почему мы видим только одну сторону куба.
Данные могут быть получены без объяснения причин и без понимания. Плохое образование — просто пичканье фактами: как в изучении истории путем запоминания дат и событий. Но истинное понимание — это ожидание того, что другие люди смогут объяснить нам, как и почему работают эти методы. Нам нужно как-то воспроизводить идеи и проверять их точность. Это требование распространяется на нечеловеческие устройства, предназначенные для интеллектуального решения проблем. Машины должны быть в состоянии дать отчет, что они сделали и почему.
Требование объяснения — это то, что связывает понимание с преподаванием и обучением. «Преподавание» — это эффективное донесение механизмов («если вы будете следовать этим правилам, вы поймете деление в столбик»), а «обучение» — это приобретение интуиции по поводу связи между причинами и их следствиями («вот как работают правила деления в столбик»). Природа понимания — это основа надежной передачи и накопления знаний в культуре. И как следствие, это также основа всех долгосрочных прогнозов.
Хорхе Луис Борхес, возможно, думал об этом, когда писал в эссе «Отголоски одного имени» (1955):
В разное время и в разных местах Бог, греза и безумец, сознающий, что он безумец, единодушно твердят что-то непонятное; разобраться в этом утверждении, а заодно и в том, как оно отозвалось в веках, — такова цель этих заметок.
Допустим, что бог — это Вселенная, греза — наше желание понять, а машины — это безумный человек. И все твердят что-то невнятное. Взятые вместе, их слова и отголоски образуют систему нашего научного исследования. Задача XXI века — объединить науки о сложности с машинным обучением и искусственным интеллектом. Наиболее успешными формами будущих знаний будут те, которые гармонизируют человеческую мечту о понимании со все более неясным эхом машин.
Интересная статья? Подпишитесь на наш канал в Telegram, чтобы получать больше познавательного контента и свежих идей.
Читайте также: