Классификация лвс по типам используемых компьютеров
Все локальные вычислительные сети можно классифицировать по следующим признакам:
2. По топологии сети;
3. По типу физической среды передачи;
4. По скорости передачи информации.
1. По классу, локальные вычислительные сети разделяются на одноранговые и иерархические.
Одноранговая сеть представляет собой сеть равноправных компьютеров - рабочих станций, каждая из которых имеет уникальное имя и адрес. Все рабочие станции объединяются в рабочую группу. В одноранговой сети нет единого центра управления - каждая рабочая станция сети может отвечать на запросы других компьютеров, выступая в роли сервера, и направлять свои запросы в сети, играя роль клиента.
Одноранговые сети являются наиболее простым для монтажа и настройки, а также дешевым типом сетей. Для построения одноранговой сети требуется всего лишь несколько компьютеров с установленными клиентскими ОС, и снабженных сетевыми картами. Все параметры безопасности определяются исключительно настройками каждого из компьютеров.
К основным достоинствам одноранговых сетей можно отнести:
· простоту работы в них;
· низкую стоимость, поскольку все компьютеры являются рабочими станциями;
· относительную простоту администрирования.
Недостатки одноранговой архитектуры таковы:
· эффективность работы зависит от количества компьютеров в сети;
· защита информации и безопасность зависит от настроек каждого компьютера.
В иерархических сетях выделяется один или несколько специальных компьютеров - серверов. Серверы обычно представляют собой высокопроизводительные ПК с серверной операционной системой, отказоустойчивыми дисковыми массивами и системой защиты от сбоев. Как правило, на этих компьютерах локальные пользователи не работают, поэтому принято говорить о выделенном сервере. Серверы управляют сетью и хранят информацию, которую совместно используют остальные компьютеры сети. Компьютеры, с которых осуществляется доступ к информации на сервере, называются клиентами.
По-настоящему иерархической сеть становится тогда, когда в ней задействуются службы Active Directory и создается домен Windows.
В иерархической сети один из компьютеров назначается сервером - контроллером домена. На этом компьютере может работать только серверная ОС. Именно этот сервер хранит все учетные записи пользователей и групп и параметры безопасности. Все остальные компьютеры присоединяются к домену. После присоединения изменяется сам принцип входа пользователей в систему. Теперь при входе пользователей в систему каждый компьютер должен запросить и получить разрешение у контроллера домена.
Иерархические сети обладают рядом преимуществ по сравнению с одноранговыми:
· выход из строя рабочих станций никак не сказывается на работоспособности сети в целом;
· проще организовать локальные сети с большим количеством рабочих станций;
· администрирование сети осуществляется централизованно - с сервера;
· обеспечивается высокий уровень безопасности данных.
Тем не менее, клиент-серверной архитектуре присущ ряд недостатков:
· неисправность или сбой единственного сервера может парализовать всю сеть;
· наличие выделенных серверов повышает общую стоимость сети;
· it-персонал должен обладать достаточными знаниями и навыками администрирования домена.
2. По топологии сети, локальные вычислительные сети разделяются на топологию типа шина, звезда, кольцо.
Топология шина - используется линейный моноканал передачи данных (Рис. 2.1) на концах которого устанавливаются оконечные сопротивления - терминаторы. Каждый компьютер подключается к коаксиальному кабелю. Данные от передающего узла сети передаются по шине в обе стороны, отражаясь от оконечных терминаторов. Терминаторы предотвращают отражение сигналов, то есть используются для гашения сигналов, которые достигают концов канала передачи данных. Таким образом, информация поступает на все узлы, но принимается только тем узлом, которому она предназначается.
Преимущества сетей шинной топологии:
· отказ одного из узлов не влияет на работу сети в целом;
· сеть легко настраивать и конфигурировать;
· сеть устойчива к неисправностям отдельных узлов.
Недостатки сетей шинной топологии:
· разрыв кабеля может повлиять на работу всей сети;
· ограниченная длина кабеля и количество рабочих станций;
· трудно определить дефекты соединений.
Топология звезда - В сети построенной по топологии типа звезда (Рис.2.2) каждая рабочая станция подсоединяется кабелем к сетевому коммутатору. Коммутатор обеспечивает параллельное соединение ПК и, таким образом, все компьютеры, подключенные к сети, могут общаться друг с другом.
Данные от передающей станции сети передаются через коммутатор по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физическая, звезда является широковещательной, сигналы от компьютера распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.
Преимущества сетей топологии звезда:
· легко подключить новый ПК;
· имеется возможность централизованного управления;
· сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.
Недостатки сетей топологии звезда:
· отказ хаба влияет на работу всей сети;
· большой расход кабеля.
Топология кольцо - В сети с топологией кольцо (Рис.2.3) все узлы соединены каналами связи в неразрывное кольцо, по которому передаются данные. Выход одного ПК соединяется со входом другого ПК. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении.
Данную сеть очень легко создавать и настраивать. К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети.
По типу физической среды передачи локальная вычислительная сеть делится на витую пару, коаксиальный кабель, оптоволоконный кабель.
Витая пара - это кабель в котором изолированная пара проводников скручена с небольшим числом витков на единицу длины. Скручивание проводов уменьшает электрические помехи извне при распространении сигналов по кабелю, а экранированные витые пары еще более увеличивают степень помехозащищенности сигналов.
Кабель типа витая пара (Рис.2.4) используется во многих сетевых технологиях. Кабели на витой паре подразделяются на: неэкранированные UTP и экранированные медные кабели. Последние подразделяются на две разновидности: с экранированием каждой пары и общим экраном STP и с одним только общим экраном FTP.
Наличие или отсутствие экрана у кабеля вовсе не означает наличия или отсутствия защиты передаваемых данных, а говорит лишь о различных подходах к подавлению помех. Отсутствие экрана делает неэкранированные кабели более гибкими и устойчивыми к изломам. Кроме того, они не требуют дорогостоящего контура заземления для эксплуатации в нормальном режиме, как экранированные. Неэкранированные кабели идеально подходят для прокладки в помещениях внутри офисов, а экранированные лучше использовать для установки в местах с особыми условиями эксплуатации, например, рядом с очень сильными источниками электромагнитных излучений, которых в офисах обычно нет.
Коаксиальный кабель - коаксиальные кабели (Рис.2.5) используются в радио и телевизионной аппаратуре. Коаксиальные кабели могут передавать данные со скоростью 10 Мбит/с на максимальное расстояние от 185 до 500 метров. Они разделяются на толстые и тонкие в зависимости от толщины.
Кабель Thinnet, известный как кабель RG-58, является наиболее широко используемым физическим носителем данных. Сети при этом не требуют дополнительного оборудования и являются простыми и недорогими. Хотя тонкий коаксиальный кабель позволяет передачу на меньшее расстояние, чем толстый, но для соединений с тонким кабелем применяются стандартные байонетные разъемы BNC типа СР-50 и ввиду его небольшой стоимости он становится фактически стандартным для офисных ЛВС. Используется в технологии Ethernet 10Base2.
Оптоволоконный кабель - отличительная особенность оптоволоконных систем - высокая стоимость как самого кабеля (Рис.2.6), так и специализированных установочных элементов. Правда, главный вклад в стоимость сети вносит цена активного сетевого оборудования для оптоволоконных сетей.
Оптоволоконные сети применяются для горизонтальных высокоскоростных каналов, а также все чаще стали применяться для вертикальных каналов связи.
Оптоволоконный кабель обеспечивает высокую скорость передачи данных на большом расстоянии. Они также невосприимчивы к интерференции и подслушиванию. В оптоволоконном кабеле для передачи сигналов используется свет. Волокно, применяемое в качестве световода, позволяет передачу сигналов на большие расстояния с огромной скоростью, но оно дорого, и с ним трудно работать.
Для установки разъемов, создания ответвлений, поиска неисправностей в оптоволоконном кабеле необходимы специальные приспособления и высокая квалификация. Оптоволоконный кабель состоит из центральной стеклянной нити толщиной в несколько микрон, покрытой сплошной стеклянной оболочкой. Все это, в свою очередь, спрятано во внешнюю защитную оболочку.
Оптоволоконные линии очень чувствительны к плохим соединениям в разъемах. В качестве источника света в таких кабелях применяются светодиоды, а информация кодируется путем изменения интенсивности света. На приемном конце кабеля детектор преобразует световые импульсы в электрические сигналы.
Существуют два типа оптоволоконных кабелей - одномодовые и многомодовые. Одномодовые кабели имеют меньший диаметр, большую стоимость и позволяют передачу информации на большие расстояния. Поскольку световые импульсы могут двигаться в одном направлении, системы на базе оптоволоконных кабелей должны иметь входящий кабель и исходящий кабель для каждого сегмента. Оптоволоконный кабель требует специальных коннекторов и высококвалифицированной установки.
4. По скорости передачи данных локальные вычислительные сети разделяются на низкоскоростные (скорость передачи до 10 Мбит/с), среднескоростные (скорость передачи до 100 Мбит/с), высокоскоростные (скорость передачи информации свыше 100 Мбит/с).
Если несколько компьютеров соединены между собой таким образом, что между ними могут передаваться данные, то это локальная вычислительная сеть.
Её использование является значительно более эффективным по сравнению с одиночными компьютерами. Локальные сети уже стали частью повседневной жизни.
Что такое локальная сеть
Передача информации между компьютерами присутствует практически с самого начала их использования.
Совместное использование нескольких вычислительных устройств позволяет объединить их ресурсы или распределить между ними конкретные функции, сделав использование вычислительной техники более продуктивным.
Локальные сети могут иметь различный масштаб: от двух или нескольких компьютеров объединённых между собой, до сотен.
Совместная работа увеличивает эффективность и позволяет сделать использование вычислительной техники более рациональным.
Классификация локальных вычислительных сетей
В соответствии со способами использования сегментов связи между отдельными компьютерами, вычислительные устройства можно разделить следующим образом:
использование двухточечных соединений;
многоточечная связь между компьютерами.
В первом случае каждое из устройств соединено только с одним соседом. При многоточечном типе соединений каждый имеет сегмент кабеля для подсоединения с каждым другим.
В разных случаях для связи между компьютерами могут использоваться различные способы:
специально проложенные кабели;
существующие провода телефонной сети;
соединения, сделанные на основе беспроводной связи;
смешанные решения, определение их особенностей зависит от конкретной ситуации.
Степень использования приоритетности может быть установлена следующим образом:
Отсутствие его использования. В этом случае каждый из компьютеров имеет право работать с каждым другим.
Соединение может быть выполнено для компьютера с таким же или более низким приоритетом.
Последний способ обеспечивает более высокий уровень безопасности при подсоединении к интернету.
Структура локальной вычислительной сети
В информатике их можно классифицировать по способу соединения компьютеров между собой. Таким образом можно говорить о двух классах локальных сетей:
Отличительные признаки одноранговой локальной сети:
У каждого из них имеется уникальный идентификатор.
При таком устройстве сети не применяются выделенные серверы, поэтому каждая из входящих в структуру единиц в конкретных ситуациях может работать как клиент или сервер.
Сети такого типа более дешёвые в эксплуатации. Их сопровождение является более простым по сравнению с иерархическим типом. Их часто применяют для небольших домашних или офисных сетей.
В компьютерах доступ к информации практически не ограничен. С каждого из них можно посмотреть данные с другой машины.
Ещё одним недостатком такого является то, что производительность здесь не оптимизирована и является очень низкой.
Характерные особенности иерархической сети:
Наличие одного или нескольких выделенных серверов. На них хранятся приложения и данные для доступа с других компьютеров.
В этом случае уровень безопасности существенно выше, чем в одноранговой сети.
Сервер может входить в качестве составной части в сеть более высокого ранга.
Конкретный способ соединения компьютеров называется топологией сети. Наиболее известными вариантами являются:
Шинная топология
Понятие шинной топологии предусматривает наличие общего кабеля, ответвления от которого подсоединены к каждому из имеющихся компьютеров.
При этом все вычислительные устройства могут взаимодействовать друг с другом. Сеть легко может быть расширена.
Если по какой-то причине один из узлов станет неработоспособным, то это не окажет никакого влияния ни на один из остальных.
Такая топология не является безопасной. Устройство, подключённое к общей шине, может получить доступ ко всей информации, хранящейся в этой сети.
Эта топология уязвима к повреждению центрального кабеля — своей основы. Поэтому при организации такой локальной сети нужно уделять особое внимание качеству соединения отдельных сегментов с обще шиной.
Топология «звезда»
Построение топологии «звезда» предусматривает наличие одного компьютера, соединённого со всеми остальными. При этом остальные не имеют непосредственной связи с другими устройствами.
Вся связь выполняется только через центральный компьютер и определяется его возможностями.
Затраты на организацию такого типа сети зависят от того, насколько центральное вычислительное устройство близко расположено к каждому из остальных.
Если необходимо провести расширение, то к новой машине будет необходимо протянуть ещё один кабель из центра.
Топология «кольцо»
При использовании топологии, которая называется «кольцо», каждая машина соединена с двумя другими таким образом, что все вместе они объединены в кольцо.
При выходе из строя одного компьютера, локальная сеть станет неработоспособной. Чтобы этого избежать, могут быть применены резервные кольца или обходные переключатели.
Иерархическая топология
Древовидная структура создается путём соединения нескольких участков типа «звезда». При этом соединения имеют несколько иерархических уровней.
Такой вариант выгодно применять для организации глобальных сетей большого масштаба.
Комбинированный вариант
Иногда локальные сети состоят из участков, в которых используются различные схемы соединения. Такая топология является комбинированной.
Аппаратное обеспечение
Для объединения нескольких вычислительных устройств в одну сеть необходимо специальное оборудование:
Приём и передача данных осуществляется с помощью специальных кабелей. Наиболее распространено использование витой пары. Кабели делят в соответствии с их назначением. Могут применяться те, с помощью которых связываются отдельные вычислительные устройства, или такие, которые рассчитаны на высокую скорость связи. Последние называют магистральными. Они применяются, в частности, для подключения к провайдеру.
В каждом из компьютеров должна присутствовать сетевая плата с разъёмом для соединительного кабеля для расшифровки сигналов, приходящих из сети. В случае, если речь идёт о беспроводной связи, необходимо применять соответствующий адаптер.
Иногда сеть организована таким образом, что соединения имеют значительную длину. В этом случае мощности сигналов может не хватить, и тогда используются специальные устройства — повторители. Их устанавливают на определённом расстоянии, чтобы они выполняли усиление сигнала.
В некоторых ситуациях нужно сделать так, чтобы кабель передавал сигнал на несколько других - здесь применяются хабы, в которых предусмотрены специальные гнёзда для подключения.
Трансиверы осуществляют передачу сигнала между различными средами распространения сигнала.
Маршрутизаторы представляют собой компьютеры, оснащённые двумя или большим количеством сетевых плат. Они осуществляют соединения двух сегментов сети, передавая между ними сигналы.
Если использовать перечисленное оборудования, присовокупить сетевые драйвера, правильно произвести настройку, то будет создана локальная сеть.
Основные характеристики ЛВС
Существует огромное разнообразие локальных сетей. Однако основных характеристик немного:
скорость приёма и передачи данных;
адаптируемость, т. е. насколько легко проводить расширение существующей сети;
надёжность характеризует работоспособность сети в случае повреждения одного или нескольких сегментов;
безопасность подразумевает, насколько трудно внешним устройствам получить информацию из локальной сети при несанкционированном доступе.
Существуют также другие виды оценок, но эти являются основными.
Области применения ЛВС
Сети можно классифицировать по различным признакам. Одним из них является её назначение.
В соответствии с этим критерием локальные сети могут быть предназначены для решения следующих задач:
Те, которые необходимы для выполнения терминального обслуживания.
Задачей распределённых вычислительных систем является проведение вычислений, требующих значительных ресурсов. В этом случае локальная сеть организована таким образом, чтобы совместно использовать вычислительные ресурсы нескольких компьютеров.
Офисные сети предназначены для того, чтобы рационально организовать работу коллектива. Например, могут быть выделены отдельные устройства для печати, хранения данных, связи с интернетом.
Задачей сетей организационного управления является оптимизация деятельности компании.
В промышленности активно используются локальные компьютерные сети, объединяющие не только компьютеры, но и оборудование. Они помогают организовать работу на уровне современных требований.
Эти виды использования не единственные, но они являются наиболее распространёнными.
Локальные вычислительные сети подразделяются на два кардинально различающихся класса: одноранговые (одноуровневые или Peer to Peer) сети и иерархические (многоуровневые).
Одноранговая сеть представляет собой сеть равноправных компьютеров, каждый из которых имеет уникальное имя (имя компьютера) и обычно пароль для входа в него во время загрузки ОС. Имя и пароль входа назначаются владельцем ПК средствами ОС. Одноранговые сети могут быть организованы с помощью таких операционных систем, как LANtastic, Windows’3.11, Novell NetWare Lite. Указанные программы работают как с DOS, так и с Windows. Одноранговые сети могут быть организованы также на базе всех современных 32-разрядных операционных систем – Windows’95 OSR2, Windows NT Workstation версии, OS/2) и некоторых других.
В иерархических локальных сетях имеется один или несколько специальных компьютеров – серверов, на которых хранится информация, совместно используемая различными пользователями.
Сервер в иерархических сетях – это постоянное хранилище разделяемых ресурсов. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Поэтому иерархические сети иногда называются сетями с выделенным сервером. Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, с винчестерами большой емкости, с высокоскоростной сетевой картой (100 Мбит/с и более). Компьютеры, с которых осуществляется доступ к информации на сервере, называются станциями или клиентами.
ЛКС классифицируются по назначению:
- Сети терминального обслуживания. В них включается ЭВМ и периферийное оборудование, используемое в монопольном режиме компьютером, к которому оно подключается, или быть общесетевым ресурсом.
- Сети, на базе которых построены системы управления производством и учрежденческой деятельности. Они объединяются группой стандартов МАР/ТОР. В МАР описываются стандарты, используемые в промышленности. ТОР описывают стандарты для сетей, применяемых в офисных сетях.
- Сети, которые объединяют системы автоматизации, проектирования. Рабочие станции таких сетей обычно базируются на достаточно мощных персональных ЭВМ, например фирмы Sun Microsystems.
По классификационному признаку локальные компьютерные сети делятся на кольцевые, шинные, звездообразные, древовидные;
- по признаку скорости – на низкоскоростные (до 10 Мбит/с), среднескоростные (до 100 Мбит/с), высокоскоростные (свыше 100 Мбит/с);
- по типу метода доступа – на случайные, пропорциональные, гибридные;
- по типу физической среды передачи – на витую пару, коаксиальный или оптоволоконный кабель, инфракрасный канал, радиоканал.
1.2 Технические средства локально-вычислительных сетей
1.2.1 Модель взаимодействия OSI
Модель OSI (Open System Interconnect Reference Model, Эталонная модель взаимодействия открытых систем) представляет собой универсальный стандарт на взаимодействие двух систем (компьютеров) через вычислительную сеть.
Эта модель описывает функции семи иерархических уровней и интерфейсы взаимодействия между уровнями. Каждый уровень определяется сервисом, который он предоставляет вышестоящему уровню, и протоколом - набором правил и форматов данных для взаимодействия между собой объектов одного уровня, работающих на разных компьютерах.
Идея состоит в том, что вся сложная процедура сетевого взаимодействия может быть разбита на некоторое количество примитивов, последовательно выполняющихся объектами, соотнесенными с уровнями модели. Модель построена так, что объекты одного уровня двух взаимодействующих компьютеров сообщаются непосредственно друг с другом с помощью соответствующих протоколов, не зная, какие уровни лежат под ними и какие функции они выполняют. Задача объектов - предоставить через стандартизованный интерфейс определенный сервис вышестоящему уровню, воспользовавшись, если нужно, сервисом, который предоставляет данному объекту нижележащий уровень.
Например, некий процесс отправляет данные через сеть процессу, находящемуся на другом компьютере. Через стандартизованный интерфейс процесс-отправитель передает данные нижнему уровню, который предоставляет процессу сервис по пересылке данных, а процесс-получатель через такой же стандартизованный интерфейс получает эти данные от нижнего уровня. При этом ни один из процессов не знает и не имеет необходимости знать, как именно осуществляет передачу данных протокол нижнего уровня, сколько еще уровней находится под ним, какова физическая среда передачи данных и каким путем они движутся.
Эти процессы, с другой стороны, могут находиться не на самом верхнем уровне модели. Предположим, что они через стандартный интерфейс взаимодействуют с приложениями вышестоящего уровня и их задача (предоставляемый сервис) - преобразование данных, а именно фрагментация и сборка больших блоков данных, которые вышестоящие приложения отправляют друг другу. При этом сущность этих данных и их интерпретация для рассматриваемых процессов совершенно не важны.
Возможна также взаимозаменяемость объектов одного уровня (например, при изменении способа реализации сервиса) таким образом, что объект вышестоящего уровня не заметит подмены.
Вернемся к примеру: приложения не знают о том, что их данные преобразуются именно путем фрагментации/сборки, им достаточно знать то, что нижний уровень предоставляет им некий “правильный” сервис преобразования данных. Если же для какой-то другой сети понадобится не фрагментация/сборка пакетов, а, скажем, перестановка местами четных и нечетных бит, то процессы рассматриваемого уровня будут заменены, но приложения ничего не заметят, так как их интерфейсы с нижележащим уровнем стандартизованы, а конкретные действия нижележащих уровней скрыты от них.
Объекты, выполняющие функции уровней, могут быть реализованы в программном, программно-аппаратном или аппаратном виде. Как правило, чем ниже уровень, тем больше доля аппаратной части в его реализации.
Организация сетевого взаимодействия компьютеров, построенного на основе иерархических уровней, как описано выше, часто называется протокольным стеком.
Ниже перечислены (в направлении сверху вниз) уровни модели OSI и указаны их общие функции.
Уровень приложения (Application) - интерфейс с прикладными процессами.
Уровень представления (Presentation) - согласование представления (форматов, кодировок) данных прикладных процессов.
Сеансовый уровень (Session) - установление, поддержка и закрытие логического сеанса связи между удаленными процессами.
Транспортный уровень (Transport) - обеспечение безошибочного сквозного обмена потоками данных между процессами во время сеанса.
Сетевой уровень (Network) - фрагментация и сборка передаваемых транспортным уровнем данных, маршрутизация и продвижение их по сети от компьютера-отправителя к компьютеру-получателю.
Канальный уровень (Data Link) - управление каналом передачи данных, управление доступом к среде передачи, передача данных по каналу, обнаружение ошибок в канале и их коррекция.
Физический уровень (Physical) - физический интерфейс с каналом передачи данных, представление данных в виде физических сигналов и их кодирование (модуляция).
Все вычислительные сети можно классифицировать по ряду признаков. В зависимости от расстояний между ПК различают следующие вычислительные сети: локальные вычислительные сети - ЛВС (LAN - Local Area Networks) - компьютерные сети, расположенные в пределах небольшой ограниченной территории (здании или в соседних зданиях) не более 10-15 км; территориальные вычислительные сети, которые охватывают значительное географическое пространство. К территориальным сетям можно отнести сети региональные (MAN - Metropolitan Area Network) и глобальные (WAN - Wide Area Network), имеющие региональные или глобальные масштабы соответственно. Региональные сети связывают абонентов района, города или области. Глобальные сети объединяют абонентов, удаленных между собой на значительное расстояние, находящихся в различных странах или континентах.
В настоящее время на предприятиях и в учреждениях нашли широкое применение локальные вычислительные сети, основное назначение которых обеспечить доступ к разделяемым или сетевым (общим, то есть совместно используемым) ресурсам, данным и программам. Кроме того, ЛВС позволяют сотрудникам предприятий оперативно обмениваться между собой информацией.
Локальные вычислительные сети обеспечивают:
1. Распределение данных (Data Sharing). Данные в ЛВС хранятся на центральном ПК и могут быть доступны на рабочих станциях, поэтому на каждом рабочем месте не надо иметь накопители для хранения одной и той же информации.
2. Распределение информационных и технических ресурсов (Resource Sharing):
логические диски и другие внешние запоминающие устройства (накопителир на CD-ROM, DVD, ZIP и так далее);
каталоги (папки) и содержащиеся в них файлы;
подключенные к ПК устройства: принтеры, модемы и другие внешние устройства (позволяет экономно использовать ресурсы, например, печатающие устройства, модемы).
3. Распределение программ (Software Sharing). Все пользователи локальных вычислительных сетей могут совместно иметь доступ к программам (сетевым версиям), которые централизованно устанавливаются в сети.
Классификация ЛВС
По уровню управления выделяют следующие ЛВС:
ЛВС рабочих групп, которые состоят из нескольких ПК, работающих под одной операционной системой. В такой ЛВС, как правило, имеется несколько выделенных серверов: файл-сервер, сервер печати;
ЛВС структурных подразделений (отделов). Данные ЛВС содержат несколько десятков ПК и серверы типа: файл-сервер, сервер печати, сервер баз данных;
ЛВС предприятий (фирм). Эти ЛВС могут содержать свыше 100 компьютеров и серверы типа: файл-сервер, сервер печати, сервер баз данных, почтовый сервер и другие серверы.
По назначению сети подразделяются на:
вычислительные сети, предназначенные для расчетных работ;
информационно-вычислительные сети, которые предназначены, как для ведения расчетных работ, так и для предоставления информационных ресурсов;
информационно-советующие, которые на основе обработки данных вырабатывают информацию для поддержки принятия решений;
информационно-управляющие сети, которые предназначены для управления объектов на основе обработки информации.
По типам используемых компьютеров можно выделить:
однородные сети, которые содержат однотипные компьютеры и системное программное обеспечение;
неоднородные сети, которые содержат разнотипные компьютеры и системное программное.
По административным отношениям между компьютерами можно выделить:
ЛВС с централизованным управлением (с выделенными серверами). Централизованные локальные сети строятся на основе архитектуры "клиент-сервер", которая предполагает выделение в сети "серверов" и "клиентов";
ЛВС без централизованного управления (децентрализованные) или одноранговые (одноуровневые) сети. Одноранговые ЛВС основаны на равноправной (peer-to-peer) модели взаимодействия компьютеров, в которой каждый компьютер может быть как сервером, так и клиентом.
По топологии (основным топологиям) ЛВС делятся на:
По архитектуре (основным типам архитектур) ЛВС делятся на:
Выбор типа ЛВС зависит от потребностей пользователей и финансовых возможностей предприятия.
Локально-вычислительные сети (LAN) являются "транспортной" системой передачи данных любого предприятия. По LAN передается весь внутренний информационный трафик, по ним поступает информация извне и по ним уходит опять во внешний мир.
Независимо от объема передаваемого трафика должна быть правильно выстроена вся структура сети, включая систему маршрутизации внутренних сетевых информационных потоков.
При проектировании LAN учитывается ряд самых разных факторов, основными из которых являются:
объем информационных потоков;
количество существующих пользователей сети;
необходимость расширения (масштабируемости) сети в будущем.
От совокупности сочетания вышеназванных факторов для каждого клиента разрабатывается топология будущей сети, на основе которой в дальнейшем осуществляется проектирование локально-вычислительных сетей ( LAN ).
Построение сети
Существует множество способов классификации сетей. Основным критерием классификации принято считать способ администрирования. То есть в зависимости от того, как организована сеть и как она управляется, её можно отнести к локальной, распределённой, городской или глобальной сети. Управляет сетью или её сегментом сетевой администратор. В случае сложных сетей их права и обязанности строго распределены, ведётся документация и журналирование действий команды администраторов.
Компьютеры могут соединяться между собой, используя различные среды доступа: медные проводники (витая пара), оптические проводники (оптоволоконные кабели) и через радиоканал (беспроводные технологии). Проводные связи устанавливаются через Ethernet, беспроводные - через Wi-Fi, Bluetooth, GPRS и прочие средства. Отдельная локальная вычислительная сеть может иметь шлюзы с другими локальными сетями, а также быть частью глобальной вычислительной сети (например, Интернет) или иметь подключение к ней.
Оборудование ЛВС можно подразделить на:
активное - коммутаторы, маршрутизаторы и т.д.
пассивное - кабели, монтажные шкафы, кабельные каналы, коммутационные панели, информационные розетки компьютерное и периферийное - серверы, рабочие станции, принтеры, сканеры.
Чаще всего локальные сети построены на технологиях Ethernet или Wi-Fi. Следует отметить, что ранее использовались протоколы Frame Relay, Token ring, которые на сегодняшний день встречаются всё реже, их можно увидеть лишь в специализированных лабораториях, учебных заведениях и службах. Для построения простой локальной сети используются маршрутизаторы, коммутаторы, точки беспроводного доступа, беспроводные маршрутизаторы, модемы и сетевые адаптеры. Реже используются преобразователи (конвертеры) среды, усилители сигнала (повторители разного рода) и специальные антенны.
Маршрутизация в локальных сетях используется примитивная, если она вообще необходима. Чаще всего это статическая либо динамическая маршрутизация (основанная на протоколе RIP).
Иногда в локальной сети организуются рабочие группы - формальное объединение нескольких компьютеров в группу с единым названием.
Сетевой администратор - человек, ответственный за работу локальной сети или её части. В его обязанности входит обеспечение и контроль физической связи, настройка активного оборудования, настройка общего доступа и предопределённого круга программ, обеспечивающих стабильную работу сети.
Адресация
В локальных сетях, основанных на протоколе IP, могут использоваться специальные адреса, назначенные IANA (стандарты RFC 1918 и RFC 1597):
Такие адреса называют локальными или серыми, эти адреса не маршрутизируются в Интернет. Необходимость использовать такие адреса возникла из-за того, что, когда разрабатывался протокол IP, не предусматривалось столь широкое его распространение, и постепенно адресов стало не хватать. Как вариант был придуман протокол IPv6. Однако он пока не стал популярным и поэтому стали использовать локальные адреса. В различных непересекающихся LAN адреса могут повторяться, и это не является проблемой, так как доступ в другие сети происходит с применением технологий, подменяющих или скрывающих адрес внутреннего узла сети за её пределами - NAT или proxy дают возможность подключить ЛВС к глобальной сети (WAN). Для обеспечения связи локальных сетей с глобальными применяются маршрутизаторы (в роли шлюзов и файрволов).
Конфликт адресов - распространённая ситуация в локальной сети, при которой в одной IP подсети оказываются два или более компьютеров с одинаковыми IP адресами. Для предотвращения таких ситуаций и облегчения работы сетевых администраторов применяется протокол DHCP, с помощью которого можно автоматически назначать адреса компьютерам.
Топология сетей
Топология сети определяется размещением узлов в сети и связей между ними. Из множества возможных построений выделяют следующие структуры: звезда, кольцо, шина, дерево.
Star (network) - звезда - топология сети, в которой соединения между станциями или узлами сети устанавливаются через концентратор.
Ring (network) - кольцо - топология сети, все станции которой соединены только с двумя соседними (слева и справа). Все данные в этой сети передаются от одной станции к другой в одном направлении. Каждая станция работает как повторитель.
Bus (network) - шина - топология сети, все станции которой подсоединены к одному кабелю. Каждая станция принимает сигналы, переданные любой другой станцией, распознает предназначенные ей пакеты и имеет возможность проигнорировать к ней не относящиеся.
Tree (network) - дерево - топология сети с более чем двумя оконечными и по крайней мере двумя промежуточными узлами (концентраторами). В такой сети между любыми двумя узлами существует только один путь.
Звездообразная структура чаще всего предполагает нахождение в центральном узле специализированной ЭВМ или концентратора.
простота периферийного оборудования;
каждый пользователь может работать независимо от остальных пользователей;
высокий уровень защиты данных;
легкое обнаружение неисправности в кабельной сети.
выход из строя центрального устройства ведет к остановке всей сети;
высокая стоимость центрального устройства;
уменьшение производительности сети с увеличением числа компьютеров, подключенных к сети.
Топология "кольцо". Все компьютеры соединяются друг с другом в кольцо. Здесь пользователи сети равноправны. Информация по сети всегда передается в одном направлении. Кольцевая сеть требует специальных повторителей, которые, приняв информацию, передают ее дальше как бы по эстафете; копируют в свою память (буфер), если информация предназначается им; изменяют некоторые служебные разряды, если это им разрешено. Информацию из кольца удаляет тот узел, который ее послал.
отсутствие дорогого центрального устройства;
легкий поиск неисправных узлов;
отсутствует проблема маршрутизации;
пропускная способность сети разделяется между всеми пользователями, поэтому все пользователи гарантированно последовательно получают доступ к сети;
простота контроля ошибок.
трудно включить в сеть новые компьютеры;
каждый компьютер должен активно участвовать в пересылке информации, для этого нужны ресурсы, чтобы не было задержек в основной работе этих компьютеров;
время отклика в кольце зависит от числа подключенных к нему станций - чем их больше, тем длительнее задержка передаваемых данных;
в случае выхода из строя хотя бы одного компьютера или отрезка кабеля вся сеть парализуется. Однако большинство сетей, основанных на этой топологии, имеют средства автоматического восстановления работоспособности после отказа узла. Например, в сетях Token Ring и FDDI неисправная рабочая станция просто исключается из кольца, так что соседние с нею станции соединяются напрямую. В этих сетях предусмотрены также средства восстановления магистрального кабеля между концентраторами.
Топология "общая шина". Общая шина наиболее широко распространенна в локальных вычислительных сетях. Топология "общая шина" предполагает использование одного кабеля (шины), к которому непосредственно подключаются все компьютеры сети. В данном случае кабель используется всеми станциями по очереди, т.е. шину может захватить в один момент только одна станция. Доступ к сети (к кабелю) осуществляется путем состязания между пользователями. В сети принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать данные. Возникающие конфликты разрешаются соответствующими протоколами. Информация передается на все станции сразу.
Достоинства "обшей шины":
простота построения сети;
сеть легко расширяется;
эффективно используется пропускная способность канала;
надежность выше, т.к. выход из строя отдельных компьютеров не нарушит работоспособности сети в целом.
Недостатки "общей шины":
ограниченная длина шины;
возможность возникновения столкновений (коллизий) на шине, когда пытаются передать информацию сразу несколько станций;
низкая защита данных;
выход из строя какого-либо отрезка кабеля ведет к нарушению работоспособности сети;
трудность нахождения места обрыва.
Топология "дерево". Эта структура позволяет объединить несколько сетей, в том числе с различными топологиями или разбить одну большую сеть на ряд подсетей.
Разбиение на сегменты позволит выделить подсети, в пределах которых идет интенсивный обмен между станциями, разделить потоки данных и увеличить, таким образом, производительность сети в целом. Объединение отдельных ветвей (сетей) осуществляется с помощью устройств, называемых мостами или шлюзами. Шлюз применяется в случае соединения сетей, имеющих различную топологию и различные протоколы. Мосты объединяют сети с одинаковой топологией, но может преобразовывать протоколы. Разбиение сети на подсети осуществляется с помощью коммутаторов и маршрутизаторов.
Заключение
Локальная вычислительная сеть (ЛВС, локальная сеть; англ. Local Area Network, LAN) - компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры). Несмотря на такие расстояния, подобные сети всё равно относят к локальным.
ЛВС - это транспортная инфраструктура передачи данных в территориально ограниченном пространстве. ЛВС является ключевым элементом инфраструктуры предприятия и от того, насколько предсказуемо ведет себя ЛВС, во многом зависит стабильность работы информационных систем, а следовательно, и стабильность бизнеса. С ростом числа пользователей управление и поддержка Вычислительной Сети становится все более ответственными и сложным процессом.
Создание ЛВС обеспечивает:
возможность совместного использования ресурсов сети (файлов, принтеров, модемов и т.д.)
оперативный доступ к любой информации сети
надежные средства резервирования и хранения информации
защиту информации от несанкционированного доступа
возможность использования современных технологий, в частности, системы электронного документооборота, сетевых баз данных, приема/передачи факсов, доступа в Интернет
ЛВС является обязательным компонентом информационной инфраструктуры любого крупного предприятия (банка, проектного института и т.п.). Для таких компаний надежность и защищенность бизнеса неразделима с функционированием их вычислительной инфраструктуры
Читайте также: