Какой тип связи соответствует базе данных представленной двумерным файлом один к одному
Существует три основные модели данных, которые используются в системах БД:
иерархическая (подразумевается древовидная структура);
сетевая (логическая модель данных, являющаяся расширением иерархического подхода);
реляционная (с двумерными файлами, связанными в определенные ассоциации элементов данных).
Разница между иерархической моделью данных и сетевой состоит в том, что в иерархических структурах запись-потомок должна иметь в точности одного предка, а в сетевой структуре данных у потомка может иметься любое число предков.
В нашем случае используется реляционная (relation - отношение) модель базы данных, в которой данные представлены в виде связанных между собой таблиц.
Нормализация данных
Теория реляционной базы данных была разработана в начале 70-х годов прошлого века Коддом (E. F. Codd) на основе математической теории отношений.
В реляционной базе данных все данные хранятся в виде таблиц, при этом все операции над базой данных сводятся к манипуляциям таблицами. Основными понятиями в этой теории являются: таблица, строка, столбец, индекс, первичный и внешний ключи, связи.
Таблица состоит из строк и столбцов и имеет уникальное имя в базе данных. База данных содержит множество таблиц, связь между которыми устанавливается с помощью совпадающих полей. В каждой из таблиц содержится информация о каких-либо объектах одного типа.
Э. Ф. Кодд доказал, что, следуя при создании таблиц и связей между ними только немногим формализованным правилам, можно обеспечить простоту манипулирования данными. Его методика получила наименование нормализации данных. Теория реляционных баз данных основана на концепции использования ключевых полей для определения отношений между таблицами. Чем больше таблиц, тем больше отношений требуется определить, чтобы связать их между собой.
Из теории Кодда отнюдь не следует, что каждая таблица должна быть напрямую связана с любой другой таблицей. Но, поскольку каждая таблица связана хотя бы с одной таблицей в базе данных, можно утверждать, что все таблицы в базе имеют прямые или косвенные отношения друг с другом.
Первая нормальная форма
Таблица находится в первой нормальной форме, если значения всех ее полей атомарные, и в ней отсутствуют повторяющиеся группы полей.
Известно, что если поле содержит несколько значений, то существенно усложняются формирование отношений между полями, считывание данных и выполнение других операций, а необходимость выполнения поиска подстрок и синтаксического анализа полей в значительной степени замедляет работу приложения.
Вторая нормальная форма
Таблица находится во второй нормальной форме, если она удовлетворяет условиям первой нормальной формы и любое неключевое поле однозначно идентифицируется полным набором ключевых полей.
Мощь реляционных баз данных, таких как Microsoft Access, опирается на их способность быстро найти и связать данные из разных таблиц при помощи запросов, форм и отчетов. Для этого каждая таблица должна содержать одно или несколько полей, однозначно определяющих каждую запись в таблице. Такие поля называют первичными ключами таблиц.
Если для таблицы определен первичный ключ, то Microsoft Access предотвращает дублирование значений полей или ввод значений Null в эти поля. В Microsoft Access можно выделить три типа ключевых полей: простой ключ, составной ключ и счетчик. Если поле содержит уникальные значения, то его можно определить как ключевое или простой ключ. Примеры из нашей реальной жизни: идентификационный номер налогоплательщика (ИНН), однозначно определяющий каждого жителя нашей страны, номер свидетельства пенсионного фонда, кадастровый номер земельного участка, реестровый номер строения, номер автомобиля -- все это уникальные номера в пределах страны
Третья нормальная форма
Таблица находится в третьей нормальной форме, если она удовлетворяет условиям второй нормальной формы и ни одно из неключевых полей таблицы не идентифицируется с помощью другого неключевого поля.
Связи между таблицами
Связь "один-к-одному" означает, что каждой записи одной таблицы соответствует только одна запись другой таблицы и наоборот.
Связь "один-ко-многим" - наиболее распространенный вид связи. При такой связи каждой строке таблицы А может соответствовать множество строк таблицы Б, однако каждой строке таблицы Б может соответствовать только одна строка таблицы А. Для связи этих таблиц используются составные первичные ключи.
Связь "многие-к-одному" аналогична типу "один-ко-многим". Тип связи между объектами полностью зависит от вашей точки зрения.
Связь "многие-ко-многим" возникает между двумя таблицами в тех случаях, когда одна запись из первой таблицы может быть связана более чем с одной записью из второй таблицы, а одна запись из второй таблицы может быть связана более чем с одной записью из первой таблицы. Таких связей следует избегать, т. к. реляционная модель не позволяет непосредственно работать с ними.
Часть 3.2: Виды связей между таблицами в базе данных. Связи в реляционных базах данных. Отношения, кортежи, атрибуты
Виды связей между таблицами в базе данных. Связи в реляционных базах данных. Отношения, кортежи, атрибуты.
Сразу скажу, что связей между таблицами в реляционной базе данных всего три. Поэтому их изучение, понимание и восприятие пройдет быстро, легко и безболезненно. Приступим к изучению.
Термины кортеж, атрибут и отношение в реляционных базах данных
В своей публикации я буду стараться объяснять теорию баз данных не с математической точки зрения, а на примерах. Грубо говоря, на пальцах. Во-первых, практические примеры позволяют легче усваивать материал. Во-вторых, с математической теорией проще разобраться, когда понимаешь суть происходящего.
Давайте разбираться с тем, что такое: отношение, кортеж, атрибут в реляционной базе данных.
Таблица с данными из базы данных World
У нас есть простая таблица City из базы данных World, в которой есть строки и столбцы. Но термины: таблица, строка, столбец – это термины стандарта SQL.
Кстати: ни одна из существующих в мире СУБД не имеет полной поддержки того или иного стандарта SQL, но и ни один стандарт SQL полностью не реализует математику реляционных баз данных.
В терминологии реляционных баз данных: таблица – это отношение (принимается такое допущение), строка – это кортеж, а столбец – атрибут. Иногда вы можете услышать, как некоторые разработчики называют строки записями. Чтобы не было путаницы в дальнейшем предлагаю использовать термины SQL.
Если рассматривать таблицу, как объект (например книга), то столбец – это характеристики объекта, а строки содержат информацию об объекте.
Виды и типы связей между таблицами в реляционных базах данных
Давайте теперь рассмотрим то, как могут быть связаны таблицы в реляционных базах данных. Сразу скажу, что всего существует три вида связей между таблицами баз данных:
• связь один к одному;
• связь один ко многим;
• связь многие ко многим.
Рассмотрим, как такие связи между таблицами могут быть реализованы в реляционных базах данных.
Реализация связи один ко многим в теории баз данных
Связь один ко многим в реляционных базах данных реализуется тогда, когда объекту А может принадлежать или же соответствовать несколько объектов Б, но объекту Б может соответствовать только один объект А. Не совсем понятно, поэтому смотрим пример ниже.
Реализация связи один ко многим в реляционных базах данных
У нас есть таблица, в которой содержатся данные о клиентах и у нас есть таблица, в которой хранятся их телефоны. Мы можем смело утверждать, что у одного клиента может быть несколько телефонов, но в тоже время мы можем быть уверены в том, что один конкретный номер может быть только у одного клиента. Это типичный пример связи один ко многим.
Связь многие ко многим
Связь многие ко многим реализуется в том случае, когда нескольким объектам из таблицы А может соответствовать несколько объектов из таблицы Б, и в тоже время нескольким объектам из таблицы Б соответствует несколько объектов из таблицы А. Рассмотрим простой пример.
Пример связи многие ко многим
У нас есть таблица с книгами и есть таблица с авторами. Приведу два верных утверждения. Первое: одну книгу может написать несколько авторов. Второе: автор может написать несколько книг. Здесь мы наблюдаем типичную ситуацию, когда связь между таблицами многие ко многим. Такая связь (связь многие ко многим) реализуется путем добавления третьей таблицы.
Связь один к одному
Связь один к одному – самая редко встречаемая связь между таблицами. В 97 случаях из 100, если вы видите такую связь, вам необходимо объединить две таблицы в одну.
Пример связи один к одному
Таблицы будут связаны один к одному тогда, когда одному объекту таблицы А соответствует один объект таблицы Б, и одному объекту таблицы Б соответствует один объект таблицы А. Как я уже говорил: если вы видите, что связь один к одному – смело объединяйте таблицы в одну, за исключением тех случаев, когда происходит модернизация базы данных.
Например, у нас была таблица, в которой хранились данные о сотрудниках компании. Но произошли какие-то изменения в бизнес-процессе и появилась необходимость создать таблицы с теми же самыми сотрудниками, но не для всей компании, а разбив их по отделам. Таблицы отделов будут дочерними по отношению к таблице, в которой хранятся данные обо всех сотрудниках компании, и связаны такие таблицы будут связью один к одному.
Мы рассмотрели все виды связей между таблицами и то, как они реализуются в базах данных. В дальнейшем, когда мы начнем создавать свои базы данных, информация о видах связи между таблицами нам очень поможет.
Примечание:
Во всех статьях текущей категории уроков по SQL используются примеры и задачи, основанные на учебной базе данных.
Приступая к изучению данного материала, рекомендуется ознакомиться с описанием учебной БД.
Практически всегда БД не ограничивается одной таблицей. Сложно представить себе какой-либо бизнес-процесс на предприятии, который мог бы сконцентрироваться только на одном предмете в плане информации.
Рассмотрим пример учебной базы данных. Имеется отдел, который занимается обработкой звонков, поступающих на различные линии. Линии обслуживаются конкретными операторами. Операторы состоят в разных группах под присмотром супервайзеров.
Только из данного краткого описания можно выделить несколько самостоятельных объектов:
Ознакомившись с диаграммой базы данных, можно обратить внимание на то, что некоторая информация из одних таблиц присутствует в других, т.е. между ними имеются связи.
В нашем конкретном случае, все таблицы можно соединить между собой. Чтобы понять, как это правильно сделать, необходимо рассмотреть типы связей.
Логику соединения таблиц в БД важно понять с самого начала изучения SQL, так как наверняка Вы не будете писать запросы только к одной таблице.
Всего существует 3 типа связей:
Примечание:
В данном материале обозначения связей приводятся на примере MS SQL Server. В иных СУБД они могут обозначаться по-разному, но у Вас не должно возникнуть проблем с определением их типа, т.к. они либо очень похожи, либо интуитивно понятны.
Связь «Один к одному»
Связь один к одному образуется, когда ключевой столбец (идентификатор) присутствует в другой таблице, в которой тоже является ключом либо свойствами столбца задана его уникальность (одно и тоже значение не может повторяться в разных строках).
На практике связь «один к одному» наблюдается не часто. Например, она может возникнуть, когда требуется разделить данных одной таблицы на несколько отдельных таблиц с целью безопасности.
В учебной безе данных нет подходящего примера, но гипотетически могла бы существовать необходимость разделения таблицы сотрудников.
Пример:
Представьте, что базой данных пользуются несколько менеджеров и аналитиков, а таблица «Сотрудники» содержит те же столбцы, что и учебная база. Следовательно, доступ к персональным данным может получить любой из упомянутых работников.
Чтобы устранить возможность утечки конфиденциальной информации, принимается решение о переносе информации паспортных данных в отдельную таблицу, доступ к которой предоставляется ограниченному кругу лиц.
Связь «Один ко многим»
В типе связей один ко многим одной записи первой таблицы соответствует несколько записей в другой таблице.
Рассмотрим связь учебной базы данных между должностями и сотрудниками, которая относится к рассматриваемому типу.
Записи должностей в таблице «Должность» уникальны, так как нет смысла повторно создавать имеющуюся запись. Записи в таблице «Сотрудники» также уникальны, но несколько различных сотрудников могут находиться на одинаковой должностной позиции.
Символ ключа на конце связи указывает, что таблица, к которой этой конец прилегает, находится на стороне «один» (связанный столбец является первичным ключом), а символ бесконечности находится на стороне «многие» (такой столбец является внешним ключом).
Связь «Многие ко многим»
Если нескольким записям из одной таблицы соответствует несколько записей из другой таблицы, то такая связь называется «многие ко многим» и организовывается посредством связывающей таблицы.
В нашей базе подобное наблюдается только между таблицами с сотрудниками и линиями.
Из диаграммы видно, что имеются две связи «один ко многим» (один сотрудник может обрабатывать несколько телефонных линий, и одну линию могут обрабатывать несколько сотрудников), но в совокупности они образуют связь «многие ко многим».
Для чего все это нужно?
Связи выполняют более важную роль, чем просто информация размещения данных по таблицам. Прежде всего они требуются разработчикам для поддержания целостности баз данных.
Правильно настроив связи, можно быть уверенным, что ничего не потеряется.
Представьте, что Вы решили удалить одну из групп в таблице учебной базы данных. Если бы связи не было, то для тех сотрудников, которые к ней были определены, остался идентификатор несуществующей группы. Связь не позволит удалить группу, пока она имеется во внешних ключах других таблиц. Для начала следовало определить сотрудников в другие имеющиеся или новые группы, а только затем удалить ненужную запись. Поэтому связи называют еще ограничениями.
Я уже показал вам как данные из разных таблиц могут быть связаны при помощи связи по внешнему ключу. Вы видели как заказы связываются с клиентами путем помещения customer_id в качестве внешнего ключа в таблице заказов.
Другой пример связи один-ко-многим – это связь, которая существует между матерью и ее детьми. Мать может иметь множество детей, но каждый ребенок может иметь только одну мать.
(Технически лучше говорить о женщине и ее детях вместо матери и ее детях потому, что, в контексте связи один-ко-многим, мать может иметь 0, 1 или множество потомков, но мать с 0 детей не может считаться матерью. Но давайте закроем на это глаза, хорошо?)
Когда одна запись в таблице А может быть связана с 0, 1 или множеством записей в таблице B, вы имеете дело со связью один-ко-многим. В реляционной модели данных связь один-ко-многим использует две таблицы.
Схематическое представление связи один-ко-многим. Запись в таблице А имеет 0, 1 или множество ассоциированных ей записей в таблице B.
Как опознать связь один-ко-многим?
Если у вас есть две сущности спросите себя:
1) Сколько объектов и B могут относится к объекту A?
2) Сколько объектов из A могут относиться к объекту из B?
Если на первый вопрос ответ – множество, а на второй – один (или возможно, что ни одного), то вы имеете дело со связью один-ко-многим.
Примеры.
Некоторые примеры связи один-ко-многим:
- Машина и ее части. Каждая часть машины единовременно принадлежит только одной машине, но машина может иметь множество частей.
- Кинотеатры и экраны. В одном кинотеатре может быть множество экранов, но каждый экран принадлежит только одному кинотеатру.
- Диаграмма сущность-связь и ее таблицы. Диаграмма может иметь больше, чем одну таблицу, но каждая из этих таблиц принадлежит только одной диаграмме.
- Дома и улицы. На улице может быть несколько домов, но каждый дом принадлежит только одной улице.
В данном случае все настолько просто, что только поэтому может оказаться трудным понимание. Возьмем последний пример с домами. На улице ведь действительно может быть любое количество домов, но у каждого дома именно на этой улице может быть только одна улица (не берем дома, которые на практике принадлежат разным улицам, возьмем, к примеру, дом в центре улицы). Ведь не может конкретно этот дом быть одновременно в двух местах, на двух разных улицах, а мы говорим не про какой-то абстрактный дом вообще, а про конкретный.
8. Связь многие-ко-многим.
Связь многие-ко-многим – это связь, при которой множественным записям из одной таблицы (A) могут соответствовать множественные записи из другой (B). Примером такой связи может служить школа, где учителя обучают учащихся. В большинстве школ каждый учитель обучает многих учащихся, а каждый учащийся может обучаться несколькими учителями.
Связь между поставщиком пива и пивом, которое они поставляют – это тоже связь многие-ко-многим. Поставщик, во многих случаях, предоставляет более одного вида пива, а каждый вид пива может быть предоставлен множеством поставщиков.
Обратите внимание, что при проектировании базы данных вы должны спросить себя не о том, существуют ли определенные связи в данный момент, а о том, возможно ли существование связей вообще, в перспективе. Если в настоящий момент все поставщики предоставляют множество видов пива, но каждый вид пива предоставляется только одним поставщиком, то вы можете подумать, что это связь один-ко-многим, но… Не торопитесь реализовывать связь один-ко-многим в этой ситуации. Существует высокая вероятность того, что в будущем два или более поставщиков будут поставлять один и тот же вид пива и когда это случится ваша база данных — со связью один-ко-многим между поставщиками и видами пива – не будет подготовлена к этому.
Создание связи многие-ко-многим.
Связь многие-ко-многим создается с помощью трех таблиц. Две таблицы – “источника” и одна соединительная таблица. Первичный ключ соединительной таблицы A_B – составной. Она состоит из двух полей, двух внешних ключей, которые ссылаются на первичные ключи таблиц A и B.
Все первичные ключи должны быть уникальными. Это подразумевает и то, что комбинация полей A и B должна быть уникальной в таблице A_B.
Пример проект базы данных ниже демонстрирует вам таблицы, которые могли бы существовать в связи многие-ко-многим между бельгийскими брендами пива и их поставщиками в Нидерландах. Обратите внимание, что все комбинации beer_id и distributor_id уникальны в соединительной таблице.
Таблицы “о пиве”.
Таблицы выше связывают поставщиков и пиво связью многие-ко-многим, используя соединительную таблицу. Обратите внимание, что пиво 'Gentse Tripel' (157) поставляют Horeca Import NL (157, AC001) Jansen Horeca (157, AB899) и Petersen Drankenhandel (157, AC009). И vice versa, Petersen Drankenhandel является поставщиком 3 видов пива из таблицы, а именно: Gentse Tripel (157, AC009), Uilenspiegel (158, AC009) и Jupiler (163, AC009).
Еще обратите внимание, что в таблицах выше поля первичных ключей окрашены в синий цвет и имеют подчеркивание. В модели проекта базы данных первичные ключи обычно подчеркнуты. И снова обратите внимание, что соединительная таблица beer_distributor имеет первичный ключ, составленный из двух внешних ключей. Соединительная таблица всегда имеет составной первичный ключ.
Есть еще одна важная вещь на которую нужно знать. Связь многие-ко-многим состоит из двух связей один-ко-многим. Обе таблицы: поставщики пива и пиво – имеют связь один-ко-многим с соединительной таблицей.
Другой пример связи многие-ко-многим: заказ билетов в отеле.
В качестве последнего примера позвольте мне показать как бы могла быть смоделирована таблица заказов номеров гостиницы посетителями.
Соединительная таблица связи многие-ко-многим имеет дополнительные поля.
В этом примере вы видите, что между таблицами гостей и комнат существует связь многие-ко-многим. Одна комната может быть заказана многими гостями с течением времени и с течением времени гость может заказывать многие комнаты в отеле. Соединительная таблица в данном случае является не классической соединительной таблицей, которая состоит только из двух внешних ключей. Она является отдельной сущностью, которая имеет связи с двумя другими сущностями.
Вы часто будете сталкиваться с такими ситуациями, когда совокупность двух сущностей будет являться новой сущностью.
9. Связь один-к-одному.
В связи один-к-одному каждый блок сущности A может быть ассоциирован с 0, 1 блоком сущности B. Наемный работник, например, обычно связан с одним офисом. Или пивной бренд может иметь только одну страну происхождения.
В одной таблице.
Связь один-к-одному легко моделируется в одной таблице. Записи таблицы содержат данные, которые находятся в связи один-к-одному с первичным ключом или записью.
В отдельных таблицах.
В редких случаях связь один-к-одному моделируется используя две таблицы. Такой вариант иногда необходим, чтобы преодолеть ограничения РСУБД или с целью увеличения производительности (например, иногда — это вынесение поля с типом данных blob в отдельную таблицу для ускорения поиска по родительской таблице). Или порой вы можете решить, что вы хотите разделить две сущности в разные таблицы в то время, как они все еще имеют связь один-к-одному. Но обычно наличие двух таблиц в связи один-к-одному считается дурной практикой.
Примеры связи один-к-одному.
- Люди и их паспорта. Каждый человек в стране имеет только один действующий паспорт и каждый паспорт принадлежит только одному человеку.
Проект реляционной базы данных – это коллекция таблиц, которые перелинковываются (связываются) первичными и внешними ключами. Реляционная модель данных включает в себя ряд правил, которые помогают вам создать верные связи между таблицами. Эти правила называются “нормальными формами”. В следующих частях я покажу как нормализовать вашу базу данных.
Какой же вид связи вам нужен?
Примеры связей таблиц на практике. Когда какие-то данные являются уникальными для конкретного объекта, например, человек и номера его паспортов, то имеем дело со связью один-ко-многим. Т.е. в одной таблице мы имеем список неких людей, а в другой таблице у нас есть перечисление номеров паспортов этого человека (напр., паспорт страны проживания и загранпаспорт). И эта комбинация данных уникальная для каждого человека. Т.е. у каждого человека может быть несколько номеров паспортов, но у каждого паспорта может быть только один владелец. Итого: нужны две таблицы.
А если есть некие данные, которые могу быть присвоены любому человеку, то имеем дело со связью многие-ко-многим. Например, есть таблица со списком людей и мы хотим хранить информацию о том, какие страны посетил каждый человек. В данном случае имеется две сущности: люди и страны. Любой человек может посетить любое количество стран равно, как и любая страна может быть посещена любым человеком. Т.е., в данном случае, страна не является уникальными данными для конкретного человека и может использоваться повторно.
А когда у вас есть набор уникальных данных, которые имеют отношение только друг к другу, то храните все в одной таблице. Ваш выбор – связь один-к-одному. Например, у вас есть небольшая коллекция автомобилей и вы хотите хранить информацию о них (цвет, марка, год выпуска и пр.).
Тип связи один — к — одному используется, когда необходимо отделить некоторый набор сведений, однозначно связанный с конкретным экземпляром исходного структурного элемента. Так, например, если есть необходимость выделить паспортные данные в отдельный структурный элемент, чтобы обеспечить разграничение прав доступа к соответствующим сведениям, то между элементом "Паспортные данные" и "Сотрудник" будет установлена связь один — к — одному.
К связи один — к — одному (1:1) относят такое взаимодействие структурных элементов, у которых один экземпляр одного элемента может быть связан не более чем с одним экземпляром другого элемента.
Очень важно правильно интерпретировать соответствующие структурные элементы и связи между ними. Рассматривая связь между элементами "Паспортные данные" и "Сотрудник", нужно задаться вопросом: "Нужно ли хранить в базе данных сведения о паспортных данных, если сотрудник сменил паспорт, или паспортные данные должны заменяться?"
Пример данных, по паспортным сведениям, сотрудников
Серия: 45 01 № 657954, выдан ОВД "Выхино" 25.01.2002
Серия: 43 02 № 324891, выдан ОВД "Митино" 15.05.1999
Правильная оценка возможных значений по связям между структурными элементами является залогом дальнейшего проектирования базы данных. Анализ предметной области в рассматриваемом примере показал, что каждому сотруднику устанавливается в соответствие только один вариант паспортных данных. Эго очевидно из структуры табл. 2.11 с данными предметной области. В этой таблице видно, что каждый сотрудник представлен только один раз и каждому представлены паспортные данные, которые также не дублируются.
Особенности предметной области, связанные с паспортными данными, указывают на тот факт, что каждый паспорт является уникальным и совокупность его сведений встречается только один раз и только у одного человека (сотрудника). При этом, совокупность серии и номера можно рассматривать набором атрибутов, которые составляют уникальную комбинацию значений для каждого паспорта. Можно, конечно, проанализировать все данные по паспортным данным в документе "Личный листок" каждого сотрудника организации, но это может оказаться достаточно проблематичной задачей по причине больших объемов анализируемых данных или конфиденциальности сведений. Именно эти факторы требуют от разработчика хорошего знания предметной области и особенностей работы с определенными данными. Но даже знания о предметной области не дадут ответ на поставленный вопрос о возможности наличия нескольких паспортных сведений у одного сотрудника. Здесь важно иметь информацию от сотрудников организации, получаемую в процессе анализа предметной области и деятельности в организации.
Поскольку в рассматриваемом варианте ответом является тот факт, что каждый сотрудник будет в базе данных описываться только одним набором сведений о паспортных данных, то можно сказать, что:
- • для одного сотрудника будут храниться сведения только по одному паспорту (это определяется особенностями хранения информации по сотрудникам в рассматриваемой организации);
- • один паспорт будет идентифицировать только одного сотрудника (это определяется особенностями работы с паспортными данными в предметной области).
В итоге, для рассматриваемого примера связь между структурными элементами "Сотрудник" и "Паспортные данные" можно представить, как на рисунке 2.38.
В дальнейшем, при анализе связи в момент формирования модели базы данных, разработчик определит дополнительные составляющие: смысловую нагрузку связи, количество связываемых экземпляров структурных элементов (мощность, кардинальность), возможность хранения пустого значения и т.д.
Читайте также: