Какое напряжение в электрической сети компьютерного класса
Часто задаваемые вопросы по организации работы компьютерного класса
Все ответы на часто задаваемые вопросы даются на основании СанПиН «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы. СанПиН 2.2.2/2.4.1340-03». Гигиена детей и подростков. Гигиенические требования к персональным электронно-вычислительным машинам и организация работы (в редакции от 21.06.2016 г.)
Какое количество компьютеров должно быть в классе?
Площадь одного рабочего места пользователей ПЭВМ с ВДТ на базе электронно-лучевой трубки (ЭЛТ) должна составлять не менее 6 м 2 , в помещениях культурно-развлекательных учреждений и с ВДТ на базе плоских дискретных экранов (жидкокристаллические, плазменные) – 4,5 м 2 .
При использовании ПВЭМ с ВДТ на базе ЭЛТ (без вспомогательных устройств – принтер, сканер и др.), отвечающих требованиям международных стандартов безопасности компьютеров, с продолжительностью работы менее 4 часов в день допускается минимальная площадь 4,5 м 2 на одно рабочее место пользователя (взрослого и учащегося высшего профессионального образования). Раздел 3 пункт 4.
Можно ли сажать одновременно двух учеников за 1 компьютер?
Не допускается одновременное использование одного ВДТ для двух и более детей независимо от их возраста (пункт 4.16. Приложения 7 к СанПиН 2.2.2/2.4.1340-03).
Какое расстояние должно быть между компьютерными столами?
9.1. При размещении рабочих мест с ПЭВМ расстояние между рабочими столами с видеомониторами (в направлении тыла поверхности одного видеомонитора и экрана другого видеомонитора) должно быть не менее 2,0 м, а расстояние между боковыми поверхностями видеомониторов – не менее 1,2 м.
9.4. Экран видеомонитора должен находиться от глаз пользователя на расстоянии 600–700 мм, но не ближе 500 мм с учётом размеров алфавитно-цифровых знаков и символов.
Какие требования предъявляются к размещению компьютерных столов в компьютерном классе?
6.1. Рабочие столы следует размещать таким образом, чтобы видеодисплейные терминалы были ориентированы боковой стороной к световым проемам, чтобы естественный свет падал преимущественно слева.
6.12. Общее освещение при использовании люминесцентных светильников следует выполнять в виде сплошных или прерывистых линий светильников, расположенных сбоку от рабочих мест, параллельно линии зрения пользователя при рядном расположении видеодисплейных терминалов. При периметральном расположении компьютеров линии светильников должны располагаться локализовано над рабочим столом ближе к его переднему краю, обращённому к оператору.
Сколько времени могут работать дети за компьютером?
Согласно части 4 Приложения 7 к СанПиН 2.2.2/2.4.1340-03 «Организация занятий с ПЭВМ детей школьного возраста и занятий с игровыми комплексами на базе ПЭВМ детей дошкольного возраста»,
4.1. Рекомендуемая непрерывная длительность работы, связанной с фиксацией взора непосредственно на экране ВДТ, на уроке не должна превышать:
- для обучающихся в I–IV классах – 15 мин.;
- для обучающихся в V–VII классах – 20 мин.
- для обучающихся в VIII–IX классах – 25 мин.;
- для обучающихся в X–XI классах на первом часу учебных занятий – 30 мин., на втором – 20 мин.
4.2. Оптимальное количество занятий с использованием ПЭВМ в течение учебного дня:
- для обучающихся I–IV классов составляет 1 урок,
- для обучающихся в V–VIII классах – 2 урока,
- для обучающихся в IX–XI классах – 3 урока.
4.3. При работе на ПЭВМ для профилактики развития утомления необходимо осуществлять комплекс профилактических мероприятий.
4.4. Во время перемен следует проводить сквозное проветривание с обязательным выходом обучающихся из класса (кабинета).
4.5. Для обучающихся в старших классах при организации производственного обучения продолжительность работы с ПЭВМ не должна превышать 50% времени занятия.
4.6. Длительность работы с использованием ПЭВМ в период производственной практики, без учебных занятий, не должна превышать 50% продолжительности рабочего времени при соблюдении режима работы и профилактических мероприятий.
4.7. Внеучебные занятия с использованием ПЭВМ рекомендуется проводить не чаще 2 раз в неделю общей продолжительностью:
- для обучающихся в II–V классах – не более 60 мин.;
- для обучающихся в VI классах и старше – не более 90 мин.
Время проведения компьютерных игр с навязанным ритмом не должно превышать 10 мин. для учащихся II–V классов и 15 мин. для учащихся более старших классов. Рекомендуется проводить их в конце занятия.
4.8. Условия и режим дня в оздоровительно-образовательных лагерях, реализующих образовательные программы с использованием ПЭВМ в течение 2–4 недель, должны соответствовать санитарным нормам и правилам к устройству, содержанию и организации режима детских оздоровительных загородных учреждений или оздоровительных учреждений с дневным пребыванием в период каникул в городских условиях.
4.9. Занятия с ПЭВМ в оздоровительно-образовательных лагерях, реализующих образовательные программы с использованием ПЭВМ, организуемые в период школьных каникул, рекомендуется проводить не более 6 дней в неделю.
4.10. Общую продолжительность занятий с ПЭВМ в оздоровительно-образовательных лагерях, реализующих образовательные программы с использованием ПЭВМ, организуемые в период школьных каникул, рекомендуется ограничить:
- для детей 7–10 лет – одним занятием в первую половину дня продолжительностью не более 45 мин.;
- для детей 11–13 лет – двумя занятиями по 45 мин.: одно – в первой половине дня и другое – во второй половине дня;
- для детей 14–16 лет – тремя занятиями по 45 мин. каждое: два в первой половине дня и одно во второй половине дня.
4.11. В оздоровительно-образовательных лагерях в период школьных каникул компьютерные игры с навязанным ритмом рекомендуется проводить не более одного раза в день продолжительностью:
- до 10 мин. для детей младшего школьного возраста;
- до 15 мин. для детей среднего и старшего школьного возраста.
Запрещается проводить компьютерные игры перед сном.
4.12. В дошкольных образовательных учреждениях (ДОУ) рекомендуемая непрерывная продолжительность работы с ПЭВМ на развивающих игровых занятиях для детей 5 лет не должна превышать 10 мин., для детей 6 лет – 15 мин.
4.13. Игровые занятия с использованием ПЭВМ в ДОУ рекомендуется проводить не более одного в течение дня и не чаще трёх раз в неделю в дни наиболее высокой работоспособности детей: во вторник, в среду и в четверг. После занятия с детьми проводят гимнастику для глаз.
4.14. Не допускается проводить занятия с ПЭВМ в ДОУ за счёт времени, отведённого для сна, дневных прогулок и других оздоровительных мероприятий.
4.15. Занятиям с ПЭВМ должны предшествовать спокойные игры.
4.16. Не допускается одновременное использование одного ВДТ для двух и более детей независимо от их возраста.
4.17. Занятия с ПЭВМ независимо от возраста детей должны проводиться в присутствии воспитателя или педагога.
Какие требования предъявляются к ученической мебели компьютерного класса?
Стол
9.5. Конструкция рабочего стола должна обеспечивать оптимальное размещение на рабочей поверхности используемого оборудования с учетом его количества и конструктивных особенностей, характера выполняемой работы. При этом допускается использование рабочих столов различных конструкций, отвечающих современным требованиям эргономики. Поверхность рабочего стола должна иметь коэффициент отражения 0,5–0,7.
Рабочий стул (кресло)
9.6. Конструкция рабочего стула (кресла) должна обеспечивать поддержание рациональной рабочей позы при работе на ПЭВМ, позволять изменять позу с целью снижения статического напряжения мышц шейно-плечевой области и спины для предупреждения развития утомления. Тип рабочего стула (кресла) следует выбирать с учетом роста пользователя, характера и продолжительности работы с ПЭВМ.
Рабочий стул (кресло) должен быть подъемно-поворотным, регулируемым по высоте и углам наклона сиденья и спинки, а также расстоянию спинки от переднего края сиденья, при этом регулировка каждого параметра должна быть независимой, легко осуществляемой и иметь надежную фиксацию.
9.7. Поверхность сиденья, спинки и других элементов стула (кресла) должна быть полумягкой, с нескользящим, слабо электризующимся и воздухопроницаемым покрытием, обеспечивающим легкую очистку от загрязнений.
Какие требования предъявляются к организации и оборудованию рабочих мест с ПЭВМ для обучающихся в образовательных учреждениях?
К организации и оборудованию рабочих мест с ПЭВМ для обучающихся в общеобразовательных учреждениях и учреждениях начального и высшего профессионального образования предъявляются следующие требования (п.11 СанПиН 2.2.2/2.4.1340-03):
1. Помещения для занятий оборудуются одноместными столами, предназначенными для работы с ПЭВМ.
2. Конструкция одноместного стола для работы с ПЭВМ должна предусматривать:
- две раздельные поверхности: одна горизонтальная для размещения ПЭВМ с плавной регулировкой по высоте в пределах 520–760 мм и вторая – для клавиатуры с плавной регулировкой по высоте и углу наклона от 0 до 15 градусов с надёжной фиксацией в оптимальном рабочем положении (12–15 градусов);
- ширину поверхностей для ВДТ и клавиатуры не менее 750 мм (ширина обеих поверхностей должна быть одинаковой) и глубину не менее 550 мм;
- опору поверхностей для ПЭВМ или ВДТ и для клавиатуры на стояк, в котором должны находиться провода электропитания и кабель локальной сети. Основание стояка следует совмещать с подставкой для ног;
- увеличение ширины поверхностей до 1200 мм при оснащении рабочего места принтером.
11.3. Высота края стола, обращенного к работающему с ПЭВМ, и высота пространства для ног должны соответствовать росту обучающихся в обуви в соответствии с таблицей приложения 4 к СанПиН 2.2.2/2.4.1340-03 (обязательное):
Продолжаем статью, цель которой — поделиться опытом и показать ключевые особенности и частые ошибки возникающие при проектировании и организации подсистем электроснабжения ИТ-инфраструктуры и ЦОД в целом. Но хотелось бы немного расширить аудиторию и посвятить несколько разделов базовым элементам обеспечения электробезопасности и защиты оборудования и людей.
Тем, кто пропустил первую часть или хочет вспомнить первую часть можно пройти сюда.
Для тех кто понимает, что такое автомат и УЗО, для чего они необходимы, что и от чего защищают – переходите к разделу Нужны ли УЗО для IT-оборудования, серверной, ЦОДа?.
Часть вторая
Посмотрим какая взаимосвязь между энергетикой и конечным ИТ-оборудованием, будем разбираться в вопросе- в каких случаях перебоев в сети питания операционная система гарантированно должна работать без сбоев.
Вопросы переключения на резервный источник питания
Электроснабжение информационного оборудования организовывается с резервированием. Рассмотрим организацию электроснабжения в части ЩБП-БРП-БП (щит бесперебойного питания-блок распределения питания- блок питания). Типы резервирования бывают следующих типов:
- Резервирование кабелей к стойке, оборудованию, с использованием отдельных блоков распределения питания, БРП (рисунок 1)
- Резервирование шин питания в щите электроснабжения, с использованием отдельных блоков распределения питания, БРП (рисунок 2)
Для переключения между основным и резервным вводом могут использоваться:
- в сфере информационных систем: шкафы АВР/STS (Static Transfer Swith) для систем большой мощности, для перехода на питание от резервного ИБП в момент работы полноценной системы 2N или комбинаций систем N+1;
- в сфере систем электроснабжения различного вида схемы АВР (на контакторах, на контроллерах);
- на уровне серверной стойки: автоматические быстродействующие стоечные АВР\ATS (Automatic Transfer Switсh);
- на уровне конкретного информационного оборудование: дублированные блоки питания.
Заказчик внедряет локальную серверную вместе с IT-инфраструктурой двух этажей под офис фирмы. На этапе обсуждения системы электропитания у него возникает желание поставить все информационное оборудование с одним блоком питания (БП), а второй слот под БП серверов оставить свободным, и на всю стойку смонтировать единый ATS стоечного исполнения. (рис.4, схема).
Внешний вид тыльной стороны сервера с дублированными блоками питания
Как Заказчик аргументировал свое желание:
- Экономия средств ($500-800 с каждого устройства в стойке)
- Можно поставить два простейших БРП и применить их уже для распределения питания после ATS
- Абсолютно аналогичный уровень надежности системы, по сравнению с классическим способом распределения
- стоимости (экономии) капитальных затрат при внедрении (CAPEX)
- стоимости затрат на амортизацию, содержание ЗИП, трудозатрат персонала клиента (OPEX)
- сравнения алгоритмов работы и времени переключения на резервную линию в обоих вариантах, проверка на «единые точки отказа»
- уровня рисков зависания и/или перезагрузки операционных систем информационного оборудования, падения информационных сервисов, которые на них работают.
Согласно нормативной базе ГОСТ 32144-2013 (Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электроэнергии в сетях общего назначения. Дата введения – 1 июля 2014 года), основной причиной сбоев в работе информационного оборудования могут стать провалы напряжения, которые
обычно происходят из-за неисправностей в электрических сетях или в электроустановках потребителей, а также при подключении мощной нагрузки
длительность провалов напряжения может быть до 1 минуты
Эта фраза говорит нам, что информационное оборудование должно обеспечиваться ИБП и/или быстродействующими АВР, так как провалы напряжения подобной длительности являются допустимыми и нормальными с точки зрения большой энергетики, но будут являться фатальными для ИТ-оборудования и сервисов.
В последние годы государственные стандарты в области измерений параметров электрической энергии, относящихся к КЭ, активно развивались и были неоднократно переработаны
"
Важным изменением стала замена ГОСТ 13109-97 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» [16] на ГОСТ 32144-2013. Данные стандарты определяют различную номенклатуру показателей качества электроэнергии.
А вот насколько быстродействующим? Как определить то время в миллисекундах, за которое сервис (и сервер) заказчика не упадет, а операционная система не уйдет в «critical error»?
Существует стандарт CBEMA (Computer and Business Equipment Manufacturers Association), который после некоторых корректировок ныне известен как «кривые ITIC» (Information Technology Industry Council), а ее варианты включены в стандарты IEEE 446 ANSI. Согласно этим нормативам, электронные схемы блоков питания должны сохранять работоспособность в течение 20 мс (или 0,02 секунды, то есть период).
Те самые кривые ITIC
Согласно требованиям к блокам питания серверных и компьютерных систем Server System Infrastructure можем сказать, что параметр блока питания Tvout_holdup во время провала напряжения питающей сети обеспечивает работу информационного оборудования минимум 21 мсек. То есть, полный период сети – это гарантированное время нормальной работы сервера или коммутатора. Параметр Tpwok_holdup определен минимально 20мсек.
некоторые подробности по параметрам SSI можно посмотреть тутСправка: Hold-up time (время удержания) — это временной промежуток, в течение которого блок питания может поддерживать выходные напряжения в определенных пределах после пропадания на его входе питающего напряжения. В большинстве компьютерных блоков питания Hold-up time характеризует еще и через какой промежуток времени power good сигнал (PWR_OK) скажет системе, что напряжения, вырабатываемые блоком питания, нестабильны (для компьютерных блоков питания этот параметр обычно более 16 мс).
Вот одна из таблиц из документа
А это диаграмма (time-line) с регламентируемыми алгоритмами работы БП
Можем сделать вывод, что время переключения на резервный ввод для стоечного переключателя нагрузки соответствует спецификации работы блока питания серверного оборудования. Получается, что сбоев в работе информационного оборудования не будет.
А что у нас с экономической составляющей и какой из вариантов более выгоден и отказоустойчив?
Предположим, у нас в стойке имеются три небольших сервера, в которые можно поставить по два блока питания и три устройства с недублированными блоками питания. Все критически важны и отказ любого из устройств выведет в отказ всю систему заказчика в целом. Стоечный переключатель нагрузки нам в любом случае понадобится. Это порядка 18 тыс. рублей.
Заказчик заявляет, что PDU (БРП) им не нужны, значит, в бюджете будет лишь стоимость ATS – те же 18 тыс. рублей. В качестве замены блокам распределения питания (PDU) Заказчик предлагает использовать распределение питания «на борту» стоечного переключателя нагрузки. Также Заказчик планирует купить сервера с двумя слотами под блоки питания, но в комплектации с одним БП ради экономии. (рисунок 4)
Классический вариант (рисунок 3) предполагает комплект из 2-х PDU – около 32 000 рублей, 3 дополнительных блока питания в серверы по $500 каждый за 84 тыс. рублей итого. ATS за те же 18 тыс. рублей. Сложив все, мы понимаем, что классическое решение обойдется Заказчику примерно в 134 тыс. рублей.
Вроде бы действительно, Заказчик прав, деньги совершенно другие. Но давайте посмотрим с точки зрения отказоустойчивости и удобства обслуживания обоих вариантов:
Вариант заказчика: Единая точка отказа – стоечный переключатель нагрузки. Если с ним что-то случится, то мы теряем всю стойку целиком. Значит, надо иметь ЗИП прямо на площадке, что прибавляет к смете 18 000 рублей. Блоки питания в серверах стоят по одному, они тоже являются точками отказа. Значит, желательно иметь хотя бы один, а лучше все три блока питания в резерве на площадке. Примем, что нужны три БП в ЗИП – это еще плюс 36 тыс. рублей. Нужно проверять мощность, которую может коммутировать стоечный ATS. Cейчас мы исходим из того, что 3 кВт или 16А нам хватит на все оборудование стойки. Если нам понадобится ATS на 32А (7кВт), то это будет уже значительно дороже (более 100 тыс. руб). То есть бюджет варианта Заказчика при детальном рассмотрении надежности вырастает до 160 тыс. рублей. При этом в случае ЧП несмотря на то, что запасные части будут на площадке понадобится down-time для замены устройства.
Единая точка отказа (SPOF, Single Point Of Failure) — узел, линия связи или объект системы доступности данных, отказ которого может вывести из строя всю систему, или вызвать недоступность данных
Вариант Открытых Технологий: По рисунку 3, но при необходимости добавляется ATS для мелкого сетевого оборудования с единственным блоком питания.
Точка отказа – тот самый ATS. Если с ним что-то случится, то мы теряем всю стойку целиком. Согласны с тем, что надо иметь ЗИП прямо на площадке. Но в нашем случае, если отказывает только ATS, то это может повлиять лишь на работу коммутаторов и вспомогательного оборудования. Сами серверы спокойно продолжат работу. Блоки питания в ЗИП не нужны. Так как при выходе из строя одного из дублированных блоков питания сервер продолжит работу на оставшемся, и, скорее всего, дождется нового блока питания от вендора, вне зависимости от удаленности площадки.
Интерпретация термина SPOF применительно к ИТ-системам Единая точка отказа (SPOF, Single Point Of Failure) – узел, устройство или точка схемы, отказ которого может вывести из строя всю систему, вызвать недоступность данных и сервисов. Рассматривается при разработке и проектировании любых критически важных систем. Полное отсутствие единых точек отказа ведет к значительному увеличению капитальных затрат при внедрении, поэтому критичность работы той или иной системы, сервиса определяется на этапе проектирования исходя из бюджета проекта, а также пожеланий и требований Заказчика. Мы всегда находим вариант идеального решения для каждого Заказчика, определяя несколько вариантов реализации проекта, и предлагая их Заказчику. В результате на этапе сдачи проекта заказчик получает именно то решение, которое он хотел видеть по соотношению цена/качество/надежность.Таким образом, подключать все оборудование стойки на единый ATS можно, но не рационально, так как в этом случае получаем единую точку отказа по питанию. Закупка серверов с дублированными блоками питания предпочтительна в любом случае, так как отказоустойчивость на уровне информационного оборудования увеличивается в разы.
Стоечный переключатель нагрузки обеспечивает корректное и почти мгновенное переключение на резервный ввод, информационное оборудование даже не почувствует этого, программные продукты и операционные системы продолжат корректно работать. Стоечные блоки распределения питания в любом случае нужны и экономить на них не надо. Видимая экономия на капитальных затратах по распределению питания может обернуться нерешаемыми проблемами при эксплуатации, например, необходимости «гасить» всю стойку только для того, чтобы переместить ATS в другой юнит или провести ревизию стоечного переключателя нагрузки. В любом случае для дублированных блоков питания должен быть ЗИП, а он не всегда возможен или имеется.
Внешний вид съемного блока питания сервера:
Работа информационного оборудования с двумя блоками питания была хорошо описана в статье Вадима Синицкого @dimskiy . Как видим, есть свои достоинства и недостатки. И наличие резервных блоков питания для информационного оборудования в любом случае необходимо, особенно если объект находится вне зоны быстрой поставки блока питания от вендора. Кроме того, хотим заметить, что онлайн калькуляторы расчета мощности новых серверов от вендоров могут применяться лишь как ориентир для системных администраторов, персонала Заказчика.
Реальные возможности подключения нового мощного сервера к существующей стойке должны оцениваться с учетом изначального проекта электроснабжения, текущего состояния и нагрузки электросети стойки, серверной, ИБП, генератора…. С точки зрения подключения в стойке также стоит учитывать:
- текущие возможности PDU, типа свободных разъемов в них
- номиналов автоматов в щитах и сечения и фазность кабельной линии к стойке.
А как у вас построена система распределения в стойке?
Каков ресурс БП для ИТ-оборудования и алгоритм их программного резервирования?
Какие вы предпочитаете БРП использовать: базовые, с мониторингом? насколько полезна в практике функция «управляемый БРП/PDU» и помогла ли она вам когда либо?
Часто задаваемые вопросы по организации работы компьютерного класса
Все ответы на часто задаваемые вопросы даются на основании СанПиН «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы. СанПиН 2.2.2/2.4.1340-03». Гигиена детей и подростков. Гигиенические требования к персональным электронно-вычислительным машинам и организация работы (в редакции от 21.06.2016 г.)
Какое количество компьютеров должно быть в классе?
Площадь одного рабочего места пользователей ПЭВМ с ВДТ на базе электронно-лучевой трубки (ЭЛТ) должна составлять не менее 6 м 2 , в помещениях культурно-развлекательных учреждений и с ВДТ на базе плоских дискретных экранов (жидкокристаллические, плазменные) – 4,5 м 2 .
При использовании ПВЭМ с ВДТ на базе ЭЛТ (без вспомогательных устройств – принтер, сканер и др.), отвечающих требованиям международных стандартов безопасности компьютеров, с продолжительностью работы менее 4 часов в день допускается минимальная площадь 4,5 м 2 на одно рабочее место пользователя (взрослого и учащегося высшего профессионального образования). Раздел 3 пункт 4.
Можно ли сажать одновременно двух учеников за 1 компьютер?
Не допускается одновременное использование одного ВДТ для двух и более детей независимо от их возраста (пункт 4.16. Приложения 7 к СанПиН 2.2.2/2.4.1340-03).
Какое расстояние должно быть между компьютерными столами?
9.1. При размещении рабочих мест с ПЭВМ расстояние между рабочими столами с видеомониторами (в направлении тыла поверхности одного видеомонитора и экрана другого видеомонитора) должно быть не менее 2,0 м, а расстояние между боковыми поверхностями видеомониторов – не менее 1,2 м.
9.4. Экран видеомонитора должен находиться от глаз пользователя на расстоянии 600–700 мм, но не ближе 500 мм с учётом размеров алфавитно-цифровых знаков и символов.
Какие требования предъявляются к размещению компьютерных столов в компьютерном классе?
6.1. Рабочие столы следует размещать таким образом, чтобы видеодисплейные терминалы были ориентированы боковой стороной к световым проемам, чтобы естественный свет падал преимущественно слева.
6.12. Общее освещение при использовании люминесцентных светильников следует выполнять в виде сплошных или прерывистых линий светильников, расположенных сбоку от рабочих мест, параллельно линии зрения пользователя при рядном расположении видеодисплейных терминалов. При периметральном расположении компьютеров линии светильников должны располагаться локализовано над рабочим столом ближе к его переднему краю, обращённому к оператору.
Сколько времени могут работать дети за компьютером?
Согласно части 4 Приложения 7 к СанПиН 2.2.2/2.4.1340-03 «Организация занятий с ПЭВМ детей школьного возраста и занятий с игровыми комплексами на базе ПЭВМ детей дошкольного возраста»,
4.1. Рекомендуемая непрерывная длительность работы, связанной с фиксацией взора непосредственно на экране ВДТ, на уроке не должна превышать:
- для обучающихся в I–IV классах – 15 мин.;
- для обучающихся в V–VII классах – 20 мин.
- для обучающихся в VIII–IX классах – 25 мин.;
- для обучающихся в X–XI классах на первом часу учебных занятий – 30 мин., на втором – 20 мин.
4.2. Оптимальное количество занятий с использованием ПЭВМ в течение учебного дня:
- для обучающихся I–IV классов составляет 1 урок,
- для обучающихся в V–VIII классах – 2 урока,
- для обучающихся в IX–XI классах – 3 урока.
4.3. При работе на ПЭВМ для профилактики развития утомления необходимо осуществлять комплекс профилактических мероприятий.
4.4. Во время перемен следует проводить сквозное проветривание с обязательным выходом обучающихся из класса (кабинета).
4.5. Для обучающихся в старших классах при организации производственного обучения продолжительность работы с ПЭВМ не должна превышать 50% времени занятия.
4.6. Длительность работы с использованием ПЭВМ в период производственной практики, без учебных занятий, не должна превышать 50% продолжительности рабочего времени при соблюдении режима работы и профилактических мероприятий.
4.7. Внеучебные занятия с использованием ПЭВМ рекомендуется проводить не чаще 2 раз в неделю общей продолжительностью:
- для обучающихся в II–V классах – не более 60 мин.;
- для обучающихся в VI классах и старше – не более 90 мин.
Время проведения компьютерных игр с навязанным ритмом не должно превышать 10 мин. для учащихся II–V классов и 15 мин. для учащихся более старших классов. Рекомендуется проводить их в конце занятия.
4.8. Условия и режим дня в оздоровительно-образовательных лагерях, реализующих образовательные программы с использованием ПЭВМ в течение 2–4 недель, должны соответствовать санитарным нормам и правилам к устройству, содержанию и организации режима детских оздоровительных загородных учреждений или оздоровительных учреждений с дневным пребыванием в период каникул в городских условиях.
4.9. Занятия с ПЭВМ в оздоровительно-образовательных лагерях, реализующих образовательные программы с использованием ПЭВМ, организуемые в период школьных каникул, рекомендуется проводить не более 6 дней в неделю.
4.10. Общую продолжительность занятий с ПЭВМ в оздоровительно-образовательных лагерях, реализующих образовательные программы с использованием ПЭВМ, организуемые в период школьных каникул, рекомендуется ограничить:
- для детей 7–10 лет – одним занятием в первую половину дня продолжительностью не более 45 мин.;
- для детей 11–13 лет – двумя занятиями по 45 мин.: одно – в первой половине дня и другое – во второй половине дня;
- для детей 14–16 лет – тремя занятиями по 45 мин. каждое: два в первой половине дня и одно во второй половине дня.
4.11. В оздоровительно-образовательных лагерях в период школьных каникул компьютерные игры с навязанным ритмом рекомендуется проводить не более одного раза в день продолжительностью:
- до 10 мин. для детей младшего школьного возраста;
- до 15 мин. для детей среднего и старшего школьного возраста.
Запрещается проводить компьютерные игры перед сном.
4.12. В дошкольных образовательных учреждениях (ДОУ) рекомендуемая непрерывная продолжительность работы с ПЭВМ на развивающих игровых занятиях для детей 5 лет не должна превышать 10 мин., для детей 6 лет – 15 мин.
4.13. Игровые занятия с использованием ПЭВМ в ДОУ рекомендуется проводить не более одного в течение дня и не чаще трёх раз в неделю в дни наиболее высокой работоспособности детей: во вторник, в среду и в четверг. После занятия с детьми проводят гимнастику для глаз.
4.14. Не допускается проводить занятия с ПЭВМ в ДОУ за счёт времени, отведённого для сна, дневных прогулок и других оздоровительных мероприятий.
4.15. Занятиям с ПЭВМ должны предшествовать спокойные игры.
4.16. Не допускается одновременное использование одного ВДТ для двух и более детей независимо от их возраста.
4.17. Занятия с ПЭВМ независимо от возраста детей должны проводиться в присутствии воспитателя или педагога.
Какие требования предъявляются к ученической мебели компьютерного класса?
Стол
9.5. Конструкция рабочего стола должна обеспечивать оптимальное размещение на рабочей поверхности используемого оборудования с учетом его количества и конструктивных особенностей, характера выполняемой работы. При этом допускается использование рабочих столов различных конструкций, отвечающих современным требованиям эргономики. Поверхность рабочего стола должна иметь коэффициент отражения 0,5–0,7.
Рабочий стул (кресло)
9.6. Конструкция рабочего стула (кресла) должна обеспечивать поддержание рациональной рабочей позы при работе на ПЭВМ, позволять изменять позу с целью снижения статического напряжения мышц шейно-плечевой области и спины для предупреждения развития утомления. Тип рабочего стула (кресла) следует выбирать с учетом роста пользователя, характера и продолжительности работы с ПЭВМ.
Рабочий стул (кресло) должен быть подъемно-поворотным, регулируемым по высоте и углам наклона сиденья и спинки, а также расстоянию спинки от переднего края сиденья, при этом регулировка каждого параметра должна быть независимой, легко осуществляемой и иметь надежную фиксацию.
9.7. Поверхность сиденья, спинки и других элементов стула (кресла) должна быть полумягкой, с нескользящим, слабо электризующимся и воздухопроницаемым покрытием, обеспечивающим легкую очистку от загрязнений.
Какие требования предъявляются к организации и оборудованию рабочих мест с ПЭВМ для обучающихся в образовательных учреждениях?
К организации и оборудованию рабочих мест с ПЭВМ для обучающихся в общеобразовательных учреждениях и учреждениях начального и высшего профессионального образования предъявляются следующие требования (п.11 СанПиН 2.2.2/2.4.1340-03):
1. Помещения для занятий оборудуются одноместными столами, предназначенными для работы с ПЭВМ.
2. Конструкция одноместного стола для работы с ПЭВМ должна предусматривать:
- две раздельные поверхности: одна горизонтальная для размещения ПЭВМ с плавной регулировкой по высоте в пределах 520–760 мм и вторая – для клавиатуры с плавной регулировкой по высоте и углу наклона от 0 до 15 градусов с надёжной фиксацией в оптимальном рабочем положении (12–15 градусов);
- ширину поверхностей для ВДТ и клавиатуры не менее 750 мм (ширина обеих поверхностей должна быть одинаковой) и глубину не менее 550 мм;
- опору поверхностей для ПЭВМ или ВДТ и для клавиатуры на стояк, в котором должны находиться провода электропитания и кабель локальной сети. Основание стояка следует совмещать с подставкой для ног;
- увеличение ширины поверхностей до 1200 мм при оснащении рабочего места принтером.
11.3. Высота края стола, обращенного к работающему с ПЭВМ, и высота пространства для ног должны соответствовать росту обучающихся в обуви в соответствии с таблицей приложения 4 к СанПиН 2.2.2/2.4.1340-03 (обязательное):
Для нормальной работы компьютера, напряжение питающей сети должно быть достаточно стабильным, а уровень помех в ней не должен превышать предельно допустимой величины. При подключении компьютера к сети переменного тока, от которой питаются устройства большой мощности, перепады напряжения, возникающие при включении и выключении этого оборудования, немедленно сказываются на его работе. При работе мощных агрегатов в сети могут возникать переходные процессы (всплески напряжения) амплитудой до 1000 В и выше, которые могут просто вывести из строя блок питания компьютера. Если для питания компьютера используется отдельная линия, то и это не исключает появления в ней выбросов напряжения, поскольку это зависит от качества всей сети энергоснабжения здания или района. Выбирая место и способ подключения системы к сети, необходимо соблюдать следующие правила:
- подключение компьютеров осуществлять к отдельным линиям питания со своими предохранителями (желательно автоматическими);
- перед подключением необходимо проверить сопротивление шины заземления (оно должно быть низким);
- выходное напряжение линии должно находиться в допустимых пределах, и не должно быть помех и всплесков напряжения;
- подключение компьютера к сети должно производится с помощью трехштырьковых вилок, нельзя пользоваться переходниками для розеток с двумя гнездами, поскольку система при этом останется
без заземления;
- не пользуйтесь без крайней необходимости удлинителями (выбирайте те из них, которые рассчитаны на подключение мощных потребителей энергии) ведь уровень помех в сети возрастает при увеличении внутреннего сопротивления линии, т.е. чем длиннее соединительные провода и чем меньше их сечение, тем он выше;
- для подключения устройств, не имеющих отношения к компьютерам, лучше использовать другую розетку.
Холодильники, кондиционеры, кофеварки, копировальные аппараты, лазерные принтеры, обогреватели, пылесосы и мощные электроинструменты тоже отрицательно влияют на качество питающего компьютер напряжения. Любое из этих устройств, включенное в одну розетку с компьютером, может стать причиной его сбоя. Кроме того копировальные аппараты и лазерные принтеры потребляют слишком большую мощность, и их только из-за этого уже не стоит включать в одну розетку с компьютером. Нельзя, чтобы вся электросеть офиса представляла собой последовательную цепочку проводов и розеток, в этом случае, качество напряжения для компьютеров, подключенных к последним розеткам в этой цепи оставляет желать лучшего.
В компьютерах может эпизодически возникать ошибка контроля на четность с произвольными неповторяющимися адресами, что обычно свидетельствует о неприятностях в цепях электропитания. Например, ошибка четности возникала каждый раз, когда рядом включали копировальный аппарат, и она перестала появляться сразу же, как только компьютер подключили к отдельной линии.
Радиочастотные помехи возникают в том случае, если поблизости расположен мощный источник радиоизлучения, но и радиоизлучение гораздо меньшей мощности может сказываться на работе компьютера (работа радиотелефона, мобильного телефона). Бороться с такими явлениями сложно, иногда удается избавиться от помех, просто развернув компьютер, поскольку степень воздействия радиосигнала на компьютер зависит от его ориентации. Иногда, например, для устойчивой работы клавиатуры помогает использование экранированного кабеля для ее подключения. Хороший эффект подавления помех может быть получен если пропустить соединительный кабель через ферритовое кольцо (подавляются как внешние помехи, воздействующие на систему, так и ее собственное электромагнитное излучение). Радикально решить проблему, связанную с помехами, можно, только устранив их источник.
Если компьютер предполагается эксплуатировать в неблагоприятных условиях, то стоит подумать о покупке системы, разработанной специально для этого (такие компьютеры стоят значительно дороже, но они надежно защищены). Для таких компьютеров существуют и специальные клавиатуры, защищенные от попадания в них влаги и грязи. Одни из них представляют собой плоские панели с клавишами мембранного типа. Набирать на них довольно трудно, поскольку приходится сильно нажимать на клавиши. Другие похожи на обычные, но все клавиши на них закрыты тонким пластмассовым чехлом-крышкой. Таким чехлом можно закрыть и стандартную клавиатуру, чтобы защитить ее от пыли и грязи.
Даже самые надежные современные отказоустойчивые серверы или дисковые массивы RAID не могут функционировать без надежного электропитания. Если ваше оборудование не снабжено автономными носителями энергии, перебои в работе используемых источников питания могут приводить к остановке системы. Молния вероятно может ударить где-нибудь поблизости от вашего здания, вызывая броски напряжения, обрушивающие тысячи дополнительных вольт на ваши силовые и телефонные линии. Проблемы с электропитанием могут повреждать компьютеры и портить данные. Современная техника представляет достаточно много способов решения этих проблем, некоторые из них основываются на обыкновенном понимании того, как электропитание устроено, и опыте эксплуатации компьютерных систем.
Проблемы электропитания импортного оборудования компьютерных систем ощущается особенно остро так как обеспечение нормальным питанием рассматривается, естественно, с позиций того окружения, в котором работает пользователь зарубежный. Но в российских электросетях более высокое напряжение питания 220 В (колеблется в пределах 210 - 230 В), иная частота сети - 50 Гц против 60 Гц. Такое отличие частот может вызвать повышенную нагрузку на трансформаторы блоков питания. Большой проблемой является для нас небрежный, а часто и неквалифицированный монтаж сети. Только сравнительно недавно электропроводку стали выполнять трехжильным проводом, в котором кроме нейтрали и фазы присутствует еще и земля (куда эта земля будет подключена это отдельный вопрос). Доступность трехфазных электропроводок облегчает решение вопроса предельно допустимой нагрузки на сеть, но порождает ряд других проблем иного рода. Случается, что из-за низкой квалификации, самоуверенности и торопливости при монтаже, разные розетки в одной комнате подключаются к разным фазам, напряжение между которыми составляет 380 В. При небрежном заземлении, которое осуществляется порой в разных точках, могут возникнуть опасные ситуации, поэтому в наших условиях проблему энергоснабжения обычно приходится начинать не с выбора источника бесперебойного питания (ИБП), а с перепланировки силовой электросети. К серьезнейшим недостаткам нашей электросети следует отнести даже не сбои в питании, а импульсы и перенапряжение. Даже для современных устройств с автоматической настройкой на напряжение сети значительно повышенное питание может привести к выходу их из строя. В этой связи при выборе устройства ИБП необходимо поинтересоваться и тем, как оно справляется с повышенным напряжением и с высоковольтными импульсами.
Проблемы с электропитанием можно подразделить на две основные группы: проблемы, ведущие к повреждениям оборудования, и проблемы, вызывающие повреждение данных или приводящие к некорректной работе. Любое напряжение выше 230 В является повышенным, любое напряжение ниже 205 В - пониженным. Повышенное напряжение может привести к выходу из строя источников питания компьютеров и другого оборудования. Электромоторы перегреваются при пониженном напряжении. Для микрокомпьютеров обычно используют источники питания с автонастройкой, которые, к счастью, устойчивы к пониженному напряжению.
Аномалия в электропитании, которая особенно опасна для компьютеров и электроники вообще - это импульс, известный также как кратковременное повышение, выброс или колебание напряжения.
Импульс - это очень короткое повышение напряжения, причиной которого может служить удар молнии в силовую линию, включение определенного типа силовых устройств либо управление двигателем переменной скорости. Типичный импульс, величина которого может составлять от нескольких сотен до нескольких тысяч вольт, вызывает серьезное нарушение в работе сети переменного тока, но только на несколько микросекунд.
Отключение энергии - проблема, требующая наиболее пристального внимания. Не заметить полную потерю питания действительно довольно сложно. Кратковременное отключение энергии - длящееся лишь от полупериода до пары периодов волны - часто называют выпадением питания.
Радиочастотная интерференция ведет к возникновению электрошума, который накладывается на предполагаемо чистую, синусоидальную волну при частоте 50 Гц. И если этому шуму удастся пройти через блок питания в питающую шину компьютера, компьютер может ошибочно интерпретировать его как данные.
Когда отдельный компьютер или сеть компьютеров заземляют в нескольких точках, образуются нежелательные контуры заземления. Предполагается, что монтаж разводки питания в доме или офисе заземляется через одну точку - вход питания (другими словами, через главную распределительную панель, по которой электроэнергия подводится к зданию). Если монтаж сети переменного тока в здании выполнен так, что заземление осуществляется в двух или большем числе точек, то формируется замкнутая цепь, позволяющая токам циркулировать через заземление. Проблема токов в земле возникает потому, что все провода обладают различным сопротивлением, и токи, циркулирующие в цепи, вызывают различное падение напряжения в заземленных проводах. И это несмотря на то, что все они, как предполагается, имеют нулевой потенциал. Различие напряжений может вызвать все что угодно, начиная от биений с тактовой частотой 50 Гц до высокочастотных шумов, которые могут вести к неправильной интерпретации данных компьютером.
Существует несколько путей борьбы с проблемами электропитания. Первым шагом должна быть корректная оценка исходной ситуации, в которой вы находитесь. Сначала надо удостовериться в правильном подведении проводки ко всем электрическим выходам (в США, например, правильное подсоединение цепи переменного тока с напряжением 120 В обеспечивается трехпроводной розеткой, в которой нейтраль - слева, фаза - справа, отверстие снизу - земля, если смотреть на розетку, установленную в стене). Обычные ошибки в подключении проводки проявляются в том, что оказываются перепутаны фаза с нейтралью или заземление с нейтралью. Некоторые фирмы изготавливают системы мониторинга сети переменного тока, вставляющиеся в розетки. Некоторые из этих устройств даже снабжены самописцами, отмечающими на бумаге происходящие скачки и другие аномалии напряжения. Имеются также системы мониторинга, представляющие собой стационарные устройства, сохраняющие полученные данные в памяти. Большинство силовых систем мониторинга - это самостоятельные устройства, которые попросту подключаются к силовой розетке и измеряют напряжение. Такие устройства можно использовать без риска быть пораженным током. То же самое относится и к тестерам полярности проводов. Не следует пытаться протестировать розетку или распределительную панель ручным вольтметром до тех пор, пока вы точно не будете знать, что вы делаете. При измерении напряжения необходимо установить многие парамегры. Какова его полярность? Постоянно ли напряжение или изменяется во времени? Отклоняется ли оно от номинального? Особенно пристальное внимание надо обратить на напряжение в точке использования - розетке, в которую подключен компьютер, а следовательно, проследить правильность подсоединения концов ветвей контура, питающих наиболее важные системы. С целью диагностики может оказаться полезным измерить напряжение на входе питания.
Можно установить питающий контур, который снабжает энергией только компьютеры и никакое другое электрооборудование. Это потребует прокладки пары проводов и заземления электрического выхода от главной распределительной панели до компьютеров. При таком соединении вы избавлены от падения напряжения при включении других типов потребителей, поскольку их в этом контуре попросту нет.
Обычно, чтобы защититься от бросков напряжения, используют проходной фильтр (импульсный подавитель - transient suppressor). «Активной составляющей» импульсного подавителя обычно служит металло-оксидный варистор, являющийся нелинейным резистором. Металло-оксидный варистор подсоединяется как шунт между фазой и нейтралью и обладает очень высоким сопротивлением, пока напряжение остается ниже некоторого порогового значения, например 280 В. Однако, если напряжение превышает это значение, то сопротивление варистора резко падает и он передает импульс на нейтраль. Еще один тип импульсных подавителей - это активный электронный контур, блокирующий цепь от воздействия импульсов.
Радиочастотные фильтры (RFI), сделанные из катушек индуктивности и конденсаторов, проводят радиочастоты ниже определенного значения (например, 1 КГц) и сглаживают сигналы выше этой частоты. Частота поставляемого промышленно напряжения (50 Гц) значительно ниже отсекаемой частоты, поэтому она передается прямо через фильтр, между тем как радиочастотное колебание, которое обычно меняется в пределах от килогерц до мегагерц, блокируется.
В зависимости от конструктивного исполнения, импульсные подавители и радиочастотные фильтры могут не отсекать синхронные импульсы или синхронные радиосигналы. Синхронные сигналы - это сигналы, которые достигают фазы и нейтрали одновременно. Устройством, которое может использоваться для фильтрации синхронных сигналов, является трансформатор. В трансформаторе, в зависимости от тока, текущего в первичной обмотке и образующего магнитное поле, индуцируется напряжение во вторичной обмотке. Синхронные же импульсы, возникающие в первичной обмотке, не вызывают в ней тока, поэтому на вторичной обмотке напряжение не индуцируется. Несмотря на то, что синхронные сигналы не пропускаются трансформатором индуктивно, они могут частично проходить через трансформатор из-за наличия емкостных связей. В большинстве трансформаторов первичная и вторичная обмотки причиняют неприятности друг другу, находясь одна над другой. Изоляция обмоток делает работу трансформатора более эффективной. Однако физическая изоляция двух обмоток делает возможным емкостное пропускание синхронных сигналов с первичной на вторичную обмотку и наоборот. Трансформаторы с изоляцией снабжены электростатической защитной оболочкой (обычно это лист тяжелой медной фольги), расположенной непосредственно между двумя обмотками или между обмоткой и железной сердцевиной. Чтобы обеспечить отвод высокочастотной составляющей, защитная оболочка заземляется; это делается вместо замыкания на другую обмотку.
Существуют и иные силовые защитные приспособления, известные как регуляторы мощности или линейные регуляторы. Регуляторы мощности часто содержат изолированные трансформаторы; многие из них включают в себя импульсные подавители и радиочастотные фильтры. Некоторые регуляторы снабжены многопозиционными трансформаторами, способными посредством переключателей настраивать выходное напряжение.
Читайте также: