Какое число циклов перезаписи информации поддерживает память prom
Содержание
История
Разработка ячеек памяти EPROM началась с расследования дефектности интегральных схем, в которых затворы транзисторов оказались разрушенными. Хранимые заряды в этих изолированных затворах изменили их свойства. EPROM был изобретён Довом Фроманом (Dov Frohman-Bentchkowsky (англ.)) из Intel в 1971 году, за что он получил в 1972 году патент США № 3660819.
Принцип действия
Каждый бит памяти EPROM состоит из одного полевого транзистора. Каждый полевой транзистор состоит из канала в полупроводниковой подложке устройства. Контакты истока и стока подходят к зонам в конце канала. Изолирующий слой оксида выращивается поверх канала, затем наносится проводящий управляющий электрод (кремний или алюминий), и затем ещё толстый слой оксида осаждается на управляющем электроде. Плавающий затвор не имеет связи с другими частями интегральной схемы и полностью изолирован от окружающих слоёв оксида. На затвор наносится управляющий электрод, который затем покрывается оксидом.
Переключение состояния полевого транзистора управляется напряжением на управляющем затворе транзистора. Наличие напряжения на этом затворе создаёт проводящий канал в транзисторе, переключая его в состояние «включено». По сути накопленный заряд на плавающем затворе позволяет пороговому напряжению транзистора программировать его состояние.
Для запоминания данных требуется выбрать нужный адрес и подать более высокое напряжение на транзисторы. Это создаёт лавинный разряд электронов, которые получают достаточно энергии, чтобы пройти через изолирующий слой окисла и аккумулироваться на управляющем электроде . Когда высокое напряжение снимается, электроны оказываются запертыми на электроде. Из-за высокой изолирующей величины оксида кремния, окружающего затвор, накопленный заряд не может утечь, и данные в нём хранятся в течение десятилетий.
В отличие от памяти EEPROM, процесс программирования в EPROM не является электрически обратимым. Чтобы стереть данные, хранящиеся в матрице транзисторов, на неё направляется ультрафиолетовый свет. Фотоны ультрафиолетового света рассеиваясь на избыточных электронах, придают им энергию, что позволяет заряду, хранящемуся на плавающем затворе, рассеяться. Так как вся матрица памяти подвергается обработке, то все данные стираются одновременно. Процесс занимает несколько минут для УФ-ламп небольших размеров. Солнечный свет будет стирать чип в течение нескольких недель, а комнатная люминесцентная лампа — в течение нескольких лет. Вообще, для стирания чипы EPROM должны быть извлечены из оборудования, так как практически невозможно вставить в УФ-лампу какой-либо блок и стереть данные только с части чипов. [Источник 2] .
Преимущества
- Возможность перезаписывать содержимое микросхемы. [Источник 3] .
Недостатки
- Небольшое количество циклов перезаписи.
- Невозможность модификации части хранимых данных.
- Высокая вероятность "недотереть" (что в конечном итоге приведет к сбоям) или передержать микросхему под УФ-светом (т.е. overerase - эффект избыточного удаления, "пережигание"), что может уменьшить срок службы микросхемы и даже привести к её полной негодности [Источник 3] .
Компоненты
Поскольку изготовление кварцевого окна стоит дорого, была разработана память PROM («одноразовая» программируемая память, ОПМ). В ней матрица памяти монтируется в непрозрачную оболочку, которая не может быть разрушена после программирования. Это устраняет необходимость тестирования функции стирания, что также снижает расходы на изготовление. ОПМ-версии производятся как для памяти EPROM, так и для микроконтроллеров со встроенной памятью EPROM. Однако, ОПМ EPROM (будь то отдельный чип или часть большого чипа) всё чаще заменяют на EEPROM при небольших объёмах выпуска, когда стоимость одной ячейки памяти не слишком важна, и на флеш-память при больших сериях выпуска.
Запрограммированная память EPROM сохраняет свои данные на десять-двадцать лет, и может быть прочитана неограниченное число раз. Окно стирания должно быть закрыто непрозрачной пленкой для предотвращения случайного стирания солнечным светом. Старые чипы BIOS компьютеров PC часто были сделаны на памяти EPROM, а окна стирания были закрыты этикеткой, содержащей название производителя BIOS, версию BIOS и уведомление об авторских правах. Практика покрытия чипа BIOS этикеткой часто встречается и на сегодняшний день, несмотря на то, что теперешние чипы BIOS изготавливаются по технологии EEPROM или как NOR флеш-память без каких-либо окон стирания.
Стирание EPROM происходит при длине волны света короче 400 нм. Экспозиция солнечным светом в течение 1 недели или освещение комнатной флуоресцентной лампой в течение 3 лет может привести к стиранию. Рекомендуемой процедурой стирания является воздействие ультрафиолетовым светом длиной волны 253,7 нм от 20 до 30 минут лампой со световым потоком не менее 15 вт-сек/см^2, размещённой на расстоянии около 30 сантиметров.
Стирание может быть также выполнено с помощью рентгеновских лучей:
Стирание может быть сделано не электрическими методами, так как управляющий электрод электрически недоступен. Освещение ультрафиолетовым светом любой части неупакованного устройства вызывает фототок, который течёт из плавающего затвора на кремниевую подложку, тем самым переводя затвор в исходное незаряженное состояние. Этот метод стирания позволяет осуществлять полное тестирование и коррекцию сложных матриц памяти до корпусования. После корпусования информация всё ещё может быть стёрта рентгеновским излучением, превышающим 5*104 рад, дозы, которая легко достигается коммерческими генераторами рентгеновского излучения. Иными словами, чтобы стереть EPROM, вы должны применить источник рентгеновского излучения, а затем поместить чип в духовку при температуре около 600 градусов по Цельсию (для отжига полупроводниковых изменений, вызванных рентгеновскими лучами). EPROM имеют ограниченное, но большое количество циклов стирания. Диоксид кремния около затвора накапливает постепенные разрушения при каждом цикле, что делает чип ненадёжным после нескольких тысяч циклов стирания. Программирование EPROM выполняется довольно медленно по сравнению с другими типами памяти, потому что участки с более высокой плотностью оксида между слоями соединений и затвора получают меньше экспозиции. Ультрафиолетовое стирание становится менее практичным для очень больших размеров памяти. Даже пыль внутри корпуса может препятствовать некоторым ячейкам памяти выполнить стирание.
Применение
Программируемые через маску ПЗУ при больших партиях выпуска (тысячи штук и более) имеют довольно низкую стоимость производства. Однако, чтобы их сделать, требуется несколько недель времени, так как нужно выполнить сложные работы для рисования маски каждого слоя интегральной схемы. Первоначально предполагалось, что EPROM будет стоить слишком дорого для массового производства и использования, поэтому планировалось ограничиться выпуском только опытных образцов. Вскоре выяснилось, что небольшие объёмы производства EPROM экономически целесообразны, особенно, когда требуется быстрое обновление прошивки.
Некоторые микроконтроллеры ещё до эпохи EEPROM и флэш-памяти использовали встроенную на чипе память EPROM для хранения своей программы. К таким микроконтроллерам относятся некоторые версии Intel 8048, Freescale 68HC11 и версии «С» микроконтроллеров PIC. Подобно чипам EPROM, такие микроконтроллеры перешли на оконную (дорогую) версию, что было полезно для отладки и разработки программ. Вскоре эти чипы стали делать по технологии PROM с непрозрачным корпусом (что несколько снизило стоимость его производства). Освещение матрицы памяти такого чипа светом могло также изменить его поведение непредсказуемым образом, когда производство переходило с изготовления оконного варианта на безоконный. [Источник 4] .
Размеры и типы чипов EPROM
Изготавливаются несколько вариантов EPROM, отличающиеся как по физическим размерам, так и по ёмкости памяти. Хотя партии одного типа от разных производителей совместимы по чтению данных, есть небольшие различия в процессе программирования.
Большинство чипов EPROM программисты могут распознать через «режим идентификации», подавая 12V на контакт A9 и считывая два байта данных. Однако, поскольку это не универсально, программное обеспечение также позволяет ручную настройку на производителя и тип устройства микросхемы для обеспечения правильного режима программирования.
Тип Eprom | Размер(бит) | Размер(байт) | Длина(hex) | Последний адрес(hex) |
---|---|---|---|---|
1702A | 2 Кбит | 256 Кбайт | 100 | FF |
2704 | 4 Кбит | 512 Кбайт | 200 | 1FF |
2708 | 8 Кбит | 1 Кбайт | 400 | 3FF |
2716, 27C16 | 16 Кбит | 2 Кбайт | 800 | 7FF |
2732, 27C32 | 32 Кбит | 4 Кбайт | 1000 | FFF |
2764, 27C64 | 64 Кбит | 8 Кбайт | 2000 | 1FFF |
27128, 27C128 | 128 Кбит | 16 Кбайт | 4000 | 3FFF |
27256, 27C256 | 256 Кбит | 32 Кбайт | 8000 | 7FFF |
27512, 27C512 | 512 Кбит | 64 Кбайт | 10000 | FFFF |
27C010, 27C100 | 1 Мбит | 128 Кбайт | 20000 | 1FFFF |
27C020 | 2 Мбит | 256 Кбайт | 40000 | 3FFFF |
27C040, 27C400 | 4 Мбит | 512 Кбайт | 80000 | 7FFFF |
27C080 | 8 Мбит | 1 Мбайт | 100000 | FFFFF |
27C160 | 16 Мбит | 2 Мбайт | 200000 | 1FFFFF |
27C320 | 32 Мбит | 4 Мбайт | 400000 | 3FFFFF |
Интересные факты
Подавляющее большинство микросхем имеют маркировку на своем полупроводниковом чипе: название микросхемы, иногда дату копирайта, выполненные металлическими дорожками по той же технологии, по которой выполняется топология микросхемы. У большинства чипов после заливки в пластиковый корпус прочитать маркировку становится нельзя, но микросхемы EPROM относятся к тому редкому исключению, у которых это возможно. Поскольку для чтения имени чипа нужен мощный оптический микроскоп, обычно дающий перевернутое изображение, обычной практикой бывает нанесение имени чипа в перевернутом, "зеркальном" варианте, тогда в микроскоп надпись читается в нормальном виде.
Первые советские микросхемы EPROM на практике имели ресурс всего 2-3 стирания и были очень чувствительны к передозировке экспозиции.
Эта статья содержит краткое описание популярных семейств микросхем энергонезависимой памяти, т.е. памяти, способной хранить информацию в отсутствие электропитания. Довольно часто, в качестве обобщенного названия этого класса микросхем используют аббревиатуру "ПЗУ" - Постоянное Запоминающее Устройство (по англ. ROM - Read Only Memory - память только для чтения). Следует заметить, что это не совсем корректно. Первые, наиболее старые представители энергонезависимой памяти, действительно использовались в аппаратуре только в режиме чтения, а их запись (программирование) осуществлялась либо в процессе изготовления кристалла, либо перед установкой в аппаратуру с помощью довольно сложного прибора - программатора. В дальнейшем, по мере совершенствования технологии производства и упрощения методов и алгоритмов записи, их современные модификации все чаще стали использовать в приборах и устройствах в режимах записи, стирания и перезаписи. Например, в модулях фискальной памяти кассовых аппаратов, в них заносится итоговая информация о дневной выручке и количестве покупок. В телевизорах ПЗУ используют для хранения различных настроек, а в телефонных аппаратах - для хранения и быстрого набора часто используемых телефонных номеров (записная книжка). Все эти применения противоречат самому смыслу понятия "память только для чтения". Попытки устранить это противоречие привели к обрастанию аббревиатуры "ПЗУ" уточняющими приставками: ППЗУ - программируемые ПЗУ, СППЗУ - стираемые ППЗУ, РПЗУ - репрограммируемые ПЗУ (PROM - Programmable ROM, EPROM - Erasable PROM, EEPROM - Electrically Erasable PROM) и т.д. Однако, наиболее точным обобщающим названием этого класса приборов является "энергонезависимая память". Этого понятия, применяя сокращение ЭП, мы и будем придерживаться в данной статье.
MaskROM - Масочные ПЗУ
Это наиболее старое семейство микросхем ЭП. Информация в такую память заноситься в процессе изготовления кристалла и в дальнейшем не может изменяться. Многолетняя популярность MaskROM обуславливалась низкой ценой при крупносерийном производстве. В настоящее время, в связи с резким снижением цен на программируемую и перепрограммируемую память, применяются редко. Наиболее распространенные микросхемы этого семейства - серия 23xxx.
PROM - Программируемые ПЗУ
Первыми программируемыми ПЗУ, пришедшими на смену MaskROM, стали микросхемы памяти на базе плавких перемычек (например, распространенные десять лет назад отечественные серии К556 и К1556). Возможность самостоятельной записи информации в них делало их пригодными для штучного и мелкосерийного производства. Наиболее существенными недостатками были большой процент брака и необходимость специальной длительной термической тренировки, без которой надежность хранения данных была невысокой. В настоящее время, также почти не применяются.
Различные источники по разному расшифровывают аббревиатуру EPROM - Erasable Programmable ROM или Electrically Programmable ROM (стираемые программируемые ПЗУ или электрически программируемые ПЗУ). Обычно, так называют популярные микросхемы серии 27xxx (отечественный аналог - серия К573).
Основу этой серии составляют ПЗУ, стираемые ультрафиолетовым излучением. Корпуса таких микросхем имеют окно из кварцевого стекла. Данные хранятся в виде зарядов плавающих затворов МОП-транзисторов, упрощенно говоря, представляющих собой конденсаторы с очень низкой утечкой заряда.
Многие производители памяти выпускают серию 27xxx также в исполнении "OTP" - One Time Programmable - однократно программируемые (те же кристаллы, но в дешевом пластиковом корпусе без кварцевого окна).
В последнее время получили широкое распространение электрически стираемые модификации EPROM производства фирм Winbond и SST, также выпускаемые в пластиковых корпусах.
Non-volatile RAM (NVRAM), FRAM
Понятие "Энергонезависимое ОЗУ" (Non-volatile RAM или NVRAM) включает в себя несколько подсемейств памяти. Все они отличаются от других видов ЭП моментальной записью. Поэтому, вместо термина "программирование", по отношению к этим микросхемам обычно применяют термин "запись".
Первая разновидность NVRAM представляет собой обычные статические ОЗУ со встроенным элементом питания (чаще всего литиевым) и усиленной защитой от искажения информации в момент включения и выключения питания. Важным преимуществом этих микросхем является неограниченное количество циклов перезаписи (для EPROM, Flash и EEPROM оно обычно составляет от одной тысячи до 100 миллионов). Мировым лидером производства такой памяти является фирма Dallas Semiconductor.
Другой разновидностью NVRAM являются микросхемы, содержащие на одном кристалле энергозависимое ОЗУ (RAM) и резервную EEPROM-память, с возможностью сохранения (копирования) содержимого ОЗУ в EEPROM и обратного восстановления данных из EEPROM в ОЗУ. Многие из этих микросхем имеют функцию автоматического восстановления данных из EEPROM в ОЗУ при включении питания. Подразделяются на последовательные и параллельные.
Новое поколение NVRAM, при изготовлении которых используются самые современные технологии с применением материалов - ферроэлектриков (FRAM), не требуют для хранения информации никакого элемента питания, сохраняя все остальные свойства обычных ОЗУ. Часто выпускаются в виде микросхем, полностью совместимых по расположению выводов, алгоритмам и протоколам, и даже совпадающие по маркировке с последовательными и параллельными EEPROM. Примером может служить серия 24Cxx фирмы Ramtron. Количество циклов перезаписи для FRAM обычно составляет 10 миллиардов.
Внутренняя память микроконтроллеров
Большинство современных микроконтроллеров имеют встроенную энергонезависимую память программ (MaskROM, OTP EPROM, Flash или EEPROM), а многие - также дополнительную память данных (EEPROM или Flash). Все вышеописанные свойства этих видов ЭП относится и к встроенной памяти микроконтроллеров.
Фирма Atmel использует для своих программируемых в процессе производства и однократно программируемых пользователем микроконтроллеров термин QuickFlash. По своим свойствам такая память полностью соответствует MaskROM или OTP EPROM.
Понятие FlexROM используется фирмой Microchip для обозначения программируемых в процессе изготовления PIC-контроллеров. Аналогично MaskROM.
Таблица 1 резюмирует особенности каждого типа памяти, описного выше, но имейте в виду, что различные типы памяти служат разным целям. Каждый тип памяти имеет свои сильные и слабые стороны. Сравнение «один к одному» не всегда эффективно.
Таблица 1. Характеристики различных типов памяти.
Barr, Michael. "Memory Types," Embedded Systems Programming, May 2001, pp. 103-104.Related items
Comments
Вот недавно столкнулся с NVRAM .Вышла ошибка : "Warning ! NVRAM battery low or not detected"
На модуле , которому принадлежал NVRAM была RTOS система VxWorks . На определенные контакты NVRAM
сверху 4-я ножками крепился пластиковый корпус с кварцевыми часами и батарейкой .
Заменили батарейку , восстановили данные
и все заработало .
alexandershahba zov, а что за девайс такой с операционной системой?
Кстати есть еще FRAM или FeRAM
Кусок из энциклопедии на Академике:
"Сегнетоэлектрическая память FRAM (англ. Ferroelectric RAM) — статическая оперативная память с произвольным доступом, ячейки которой сохраняют информацию, используя сегнетоэлектрич еский эффект («ferroelectric » переводится «сегнетоэлектри к, сегнетоэлектрич еский», а не «ферромагнетик» , как можно подумать). Ячейка памяти представляет собой две токопроводящие обкладки, и плёнку из сегнетоэлектрич еского материала. В центре сегнетоэлектрич еского кристалла имеется подвижный атом. Приложение электрического поля заставляет его перемещаться. В случае, если поле «пытается» переместить атом в положение, например, соответствующее логическому нулю, а он в нём уже находится, через сегнетоэлектрич еский конденсатор проходит меньший заряд, чем в случае переключения ячейки. На измерении проходящего через ячейку заряда и основано считывание. При этом процессе ячейки перезаписываютс я, и информация теряется(требуе тся регенерация). Исследованиями в этом направлении занимаются фирмы Hitachi совместно с Ramtron, Matsushita с фирмой Symetrix. По сравнению с флеш-памятью, ячейки FRAM практически не деградируют — гарантируется до 1010 циклов перезаписи."
Принципиально микросхемы памяти делятся на энергонезависимые, не теряющие информацию при выключении питания, и энергозависимые, содержимое которых при каждом включении считается неопределенным. Первые из них предназначены для хранения программ, констант, таблиц и других, не меняющихся или редко меняющихся данных, и называются ПЗУ (постоянные запоминающие устройства). Вторые предназначены для временного хранения данных, возникающих в процессе функционирования устройства, и называются ОЗУ (оперативные запоминающие устройства). В свою очередь, ПЗУ классифицируются по способу занесения информации и по способу ее стирания, если только такая возможность существует в данном классе ПЗУ. Самым дешевым способом записи является масочное программирование в процессе изготовления кристалла. Микросхемы ЗУ с <прошитой> информации - ROM (Read Only Memory) - невозможно перепрограммировать, и применяются они только при массовом производстве, большой серийности и гарантированной безошибочности заносимого текста. Следующая разновидность ПЗУ - PROM (Programmable Read Only Memory) - поставляется в <чистом> виде и предоставляет пользователю возможность самостоятельно, с помощью программатора, занести требуемое содержимое. Если этот процесс необратим, то такие микросхемы называются OTP (One Time Programmable) - однократно программируемые. Если существует возможность очистки содержимого с последующим занесением нового, то микросхемы называются EPROM (Erasable Programmable Read Only Memory). И, наконец, в зависимости от способа стирания они могут быть либо UV-EPROM, с ультрафиолетовым стиранием, либо EEPROM, с электрическим стиранием. Однако, сложившаяся за последние годы терминология чаще использует аббревиатуру EEPROM за определенной разновидностью памяти, которая, в каком-то смысле, может считаться энергонезависимым ОЗУ.
Собственно ПЗУ с электрическим стиранием принято называть Flash памятью. Отличия между ними достаточно велики. EEPROM допускает при записи произвольный доступ к ячейкам памяти, Flash память предполагает только страничный, то есть с разбивкой на сектора, доступ при стирании/записи. Переписать содержимое единственной ячейки памяти невозможно. При чтении принципиальной разницы между ними нет. Кроме того, программирование Flash памяти - это целый процесс, который требует дополнительных программных шагов для перевода микросхемы в режим программирования и контроля его окончания. В итоге, область применения Flash памяти - тексты программ, таблицы и другие данные, изменение которых или не предполагается вовсе, или допускается, но весьма редко. EEPROM память используется для текущего запоминания данных в процессе работы, при смене констант, настроек (например в телевизоре), с автоматическим их сохранением при выключении питания. В то же время Flash память обладает большей емкостью и меньшей ценой при пересчете на стоимость хранения одного байта информации.
Оперативная память (RAM - Random Access Memory) принципиально делится на два типа: статическая - SRAM и динамическая - DRAM. Первая, при наличии питающего напряжения, может сохранять записанную информацию как угодно долго без всяких обращений к ней. Запоминающей ячейкой является триггер. Вторая требует постоянной <регенерации>, то есть считывания и повторной записи в соответствующие ячейки. Это связано с физической основой хранения, которой в DRAM является конденсатор ничтожно малой емкости, включенный на пересечении строк и столбцов матрицы. Этим достигается сверхвысокая плотность упаковки и большая удельная информационная емкость микросхемы. Платой является необходимость периодически осуществлять цикл регенерации. Также приходится жертвовать энергопотреблением. Микросхемы DRAM применяются сегодня практически только в компьютерах и другой вычислительной технике.
Для нас больший интерес представляют микросхемы SRAM, которые, в свою очередь подразделяются на микромощные со сравнительно небольшим (55 - 120 нс) быстродействием и высокоскоростные (7 - 25 нс) со значительно большим энергопотреблением.
Существуют и другие разновидности ОЗУ, например «Zero-Power» со встроенной литиевой батареей или «Dual-Port» с отличной от обычных системой доступа к информации.
- информационная емкость. Cпособность хранить определенное число бит двоичной информации;
- организация микросхем ЗУ. Она может быть различной при одном и том же объеме памяти. Например, 65 536 бит могут выглядеть как 4 096 х 16, или как 8 192 х 8, или в другом сочетании. Внутренняя организация запоминающей матрицы при этом остается неизменной, изменяется только внешний интерфейс и, соответственно, число внешних выводов;
- время выборки. Bремя от подачи последнего из сигналов, разрешающих чтение до появления на выходе устойчивых данных;
- потребляемая мощность. Как обычно, существует компромисс между потребляемой мощностью и быстродействием микросхемы;
- напряжение питания. Общая тенденция к снижению напряжения питания привела к появлению микросхем ЗУ, работающих при 3,3, 2,5 и даже 1,8 вольт;
- температурный диапазон. Коммерческий, индустриальный или расширенный.
В заключение, необходимо отметить, что микросхемы EEPROM и Flash типов часто имеют последовательный внешний интерфейс обмена данными. Это значительно уменьшает скорость обмена, но, в тех применениях, где она не критична, позволяет экономить число внешних выводов микросхем, занимаемую на печатной плате площадь, число паек.
Читайте также: