Каким будет потомство при опылении нормальных растений пыльцой мозаичных растений
На самых ранних этапах развития генетики стало очевидно, что наследование некоторых признаков не зависит от хромосомных компонентов клеток и не подчиняется законам Менделя при распределении хромосом во время мейоза.
— это явление, когда в наследовании признака участвуют компоненты цитоплазмы.
За хранение и передачу наследственной информации отвечает молекула ДНК
Молекула ДНК есть не только в ядре. В клетках есть органеллы, имеющие свою собственную ДНК:
-
— их ДНК немного отличается от двухцепочечной спирали — это кольцевые молекулы (больше похоже на нуклеойд бактерий);
- пластиды — (лейкопласты, хромо — и хлоропласты)- их ДНК тоже имеет форму колечка.
Это явление назвали цитоплазматической (внеядерной, нехромосомной) наследственностью .
Характерная черта цитоплазматической наследственности — это наследование по материнской линии
Почему? Потому что яйцеклетка отличается от сперматозойда большим количеством цитоплазмы, в которой содержатся эти органеллы. Митохондрии есть и в сперматозойде, но в жгутике, а он при оплодотворении отваливается, так что эти митохондрии просто не попадают в новый организм.
Примеры цитоплазматической наследственности у растений:
- Пластидное (хлоропластное) наследование — пестролистность — в растении есть два вида пластид — зеленых хлоропласты и бесцветные лейкопласты. Клетки при делении образуют гаметы зеленого, бесцветного и смешанного цвета. Соответственно, образуются растения разной окраски. Наследование цветов передается через материнский организм.
При вегетативном размножении, естественно, такое не наблюдается…
Примеры цитоплазматической наследственности у животных:
- форма ракушки у малого прудовика — лево- и правозакрученная — определяется геном D: все потомство Х d X d буду с левозакрученной раковиной, Х D X d и Х D X D — правозакрученные;
- е сли эвглену зеленую поместить в темноту и там она будет размножаться, то новые дочерние организмы не будут содержать в клетке хлоропласты;
- есть даже митохондриальные (цитоплазматические наследственные) заболевания человека: митохондриальный сахарный диабет, рассеянный склероз, тунельное зрение и т.д.
Влияет ли цитоплазматическая наследственность на другие виды наследственности?
Было доказано, что хромосомная и нехромосомная наследственность могут взаимодействовать, приводя к более сложным случаям наследования.
Пример вопроса части С ЕГЭ:
Не забудьте, что в клетках растений есть и хлоропласты, и митохондрии, просто хлоропластов больше
Наиболее характерный пример пластидной наследственности — наследование пестролистности у ночной красавицы(Mirabilis jalapa). Этот процесс был изучен в начале XX века К. Корренсом (1908). Аналогичные исследования, но у растений герани (Geranium), проводил и Э. Бауэр (1909).
На зелёных листьях некоторых растений ночной красавицы имеются дефектные участки, лишённые пластид или содержащие дефектные пластиды — белые или жёлтые пятна, лишённые хлорофилла. При скрещивании зелёного материнского растения с пестролистным всё потомство было нормальным. Если же в качестве материнской формы взять цветки бесхлорофилльного побега и опылить их пыльцой нормального побега, то в F1 появятся только бесхлорофилльные формы, быстро гибнущие из-за неспособности к фотосинтезу. При опылении цветков пестролистного побега пыльцой зелёной формы в F1 будут и нормальные, и пестролистные, и бесхлорофилльные формы.
Наследование пестролистности у ночной красавицы — пример материнского типа наследования. То, какие будут хлоропласты у потомка, целиком определяется тем, какие хлоропласты передаст ему материнское растение. У нормального материнского растения все хлоропласты недефектны, поэтому листья потомства будут зелёными. Если материнской побег несёт дефектные хлоропласты, то и у F1 все листья будут лишены хлорофилла. Пестролистное материнское растение может передать потомку как нормальные, так и дефектные хлоропласты (так как по современнм представлениям хлоропласты разделяются между дочерними клетками случайно при делении цитоплазмы), поэтому от скрещивания пестролистной материнской формы с нормальной в потомстве возможны все три варианта, а в реципрокном скрещивании все растения будут зелёными. При этом то, какие хлоропласты передаёт отцовская форма, не играет никакой роли в определениифенотипа потомства.
Но если у ночной красавицы пластиды передаёт только материнское растение, то у кипрея (Epilobium) их передаёт только отцовское растение (такой отцовский тип наследования встречается значительно реже материнского). Их могут передавать и оба родителя в равном отношении, или преимущественно отцовское растение, как у герани. Это обусловлено тем, какое количество цитоплазмы (а следовательно, и пластид) привносит в зиготу яйцеклетка и спермий.
Хромосомная теория объясняет большую часть наследования признаков, но и из неё бывают исключения. Причина – цитоплазматическая наследственность – передача потомкам генов, расположенных вне хромосом. Кроме наследования через цитоплазму плазмид, белков-прионов и внутриклеточных симбионтов, большинство случаев цитоплазматической наследственности связано с двумя клеточными структурами – пластидами (у растений) и митохондриями (у подавляющего большинства эукариот).
Внеядерные генетические элементы вместе носят название плазмонов, а отдельные их составляющие называют плазмогенами.
Когда была открыта цитоплазматическая наследственность?
Нехромосомная, внеядерная, или цитоплазматическая наследственность была открыта в 1909 г. немецкими генетиками Карлом Корренсом (1864–1933) и Эрвином Бауэром (1875–1933). Э. Бауэр первым указал на хлоропласты как на генетические детерминанты изучавшегося им признака – пестролистности растений, поэтому его считают первооткрывателем пластидной наследственности.
Эрвин Бауэр — жертва репрессий, он был расстрелян в Ленинграде в 1938 г.
Подробно цитоплазматическая наследственность бала изучена Рут Сагер, которая в 60-70 гг XX века, невзирая на всеобщие насмешки, построила первую карту генов хлоропластов хламидомонады – одноклеточной зелёной водоросли.
Рут Сагер, американский генетик.
Автор фото: Gobonobo
Митохондриальные гены обычно передаются по материнской линии
Митохондриальная ДНК в большинстве случаев представлена кольцевыми молекулами, лишь у немногих видов, в частности некоторых кишечнополостных, эти молекулы линейные. У животных размеры молекул мтДНК варьируют незначительно, обычная их величина – около 16 т.п.н.(тысяч пар нуклеотидов). Молекулы мтДНК грибов больше (у дрожжей Saccharomyces cerevisiae около 85 780 п.н.).
Схема митохондриального генома человека.
Автор: Shureg
В мтДНК млекопитающих и других животных 37 генов:
- 13 генов кодируют субъединицы белков – ферментов окислительного фосфорилирования;
- 2 гена кодируют рибосомные РНК;
- 22 небольших гена – транспортные РНК.
Такой же набор генов присутствует в мтДНК высших растений, к нему добавляется еще ген 5S РНК. По размеру молекул мтДНК растений значительно больше, чем мтДНК животных: от 200 т.п.н. у видов капусты до 2500 т.п.н. у арбуза. Увеличение размера молекул мтДНК происходит за счет некодирующих последовательностей, кроме них в мтДНК растений включены фрагменты хлоропластной ДНК.
Строение митохондрии.
Автор: Borrow-188
Органеллы наследуются только от одного из родителей, как правило от матери. Зигота получает равное количество генов от каждой из родительских гамет, но все свои митохондрии она получает из яйцеклетки, которая содержит гораздо больше цитоплазмы, а значит и органелл. Наследование митохондрий по отцовской линии наблюдается гораздо реже, но оно встречается у мидий, некоторых насекомых и даже, хотя и редко, у млекопитающих. При дроблении зиготы митохондрии расходятся в бластомеры случайным образом.
В результате митохондрии в каждой клетке взрослого организма могут быть прослежены до исходной материнской. Поскольку митохондриальные гены отвечают за синтез белков, связанных с выполнениями митохондриями функций клеточного дыхания, их мутации часто ведут к нарушениям этих функций. Сильнее всего такие мутации проявляются в тех клетках, потребность которых в энергии велика, в мышечных и нервных. У человека известно несколько наследственных болезней, передающихся с мтДНК по линии матери. Они отличаются мышечной дистрофией, умственной отсталостью, слепотой.
Оптическая нейропатия (LHON) Лебера наследуется по материнской линии. Генетическая основа этого заболевания – мутантный аллель кодирующий NADH-дегидрогеназу. Мутантный аллель снижает эффективность переноса электронов в цепи, уменьшая общее производство АТФ. Особенно чувствительны к снижению количества АТФ некоторые нервные клетки зрительной системы. Это приводит к дегенерации зрительных нервов.
Способ однополого наследования называется материнским. Больная мать будет передавать её всему своему потомству, в то время как больной отец не передаст её никому. В отличие от наследования, связанного с полом, при материнском наследовании в равной степени страдают все потомки.
У растений мутации митохондриальных генов могут вызывать явление цитоплазматической мужской стерильности (ЦМС) – нарушение развития пыльцы, неспособной к оплодотворению. Такое состояние цитоплазмы обозначают буквой S. Буквой F (фертильный) обозначают отсутствие стерильности пыльцы. Однако существует ядерный ген, способный восстанавливать нормальное состояние пыльцы. Он обозначается буквами Rf или rf. Ген-репрессор восстанавливает фертильность растения, но не мешает сохранению мутантных генов митохондрий, которые могут передаваться потомству.
Внеядерный генотип обозначают одной буквой, так как для цитоплазматических генов нет понятия диплоидности.
Кроме редких болезней, мутации в митохондриальных ДНК матери могут привести к некоторым случаям диабета, болезни сердца, к расстройству Альцгеймера и др.
Гены пластид также могут передаваться на уровне одного пола
Хлоропластная ДНК (хлДНК) представлена двуцепочечными кольцевыми молекулами. Их размер у высших растений варьирует от 120 до 200 т.п.н. В подавляющем большинстве случаев в этих молекулах обнаруживаются повторы противоположной ориентации длиной 20–30 т.п.н., разделенные уникальными последовательностями.
В молекулах хлДНК насчитывается около 140 генов, в число которых входят гены, обеспечивающие синтез белка в органеллах (аппарат транскрипции и трансляции), и гены белков, участвующих в процессе фотосинтеза.
Обозначения к рисунку
Строение пластид:
1. наружная мембрана 2. межмембранное пространство
3. внутренняя мембрана (1+2+3: оболочка)
4. строма (жидкость)
5. тилакоид с просветом (люменом) внутри
6. мембрана тилакоида
7. грана (стопка тилакоидов)
8. тилакоид (ламела)
9. зерно крахмала
10. рибосома
11. пластидная ДНК
12. пластоглобула (капля жира).
Автор схемы: Эммануэль.boutet
В 1909 г Карл Корренс впервые выдвинул идею, что пластиды ответственны за передачу пестролистности ночной красавицы (Mirabilis jalapa), так как потомство показывало фенотип матери, независимо от мужского фенотипа. У ночной красавицы встречаются листья с участками белого цвета, лищёнными хлорофилла.
Если в качестве материнского берут пестролистное растение, всё потомство также имеет пёстрые листья. Однако, если материнское растение имеет зелёные листья, а отцовское пёстрые, то всё потомство будет иметь зелёные листья. Корренс, однако, неправильно с современной точки зрения интерпретировал наблюдаемое им явление и честь открытия собственно пластидной наследственности принадлежит Э. Бауру.
Ночная красавица (Mirabilis jalapa)
Автор: LucaLuca
По материнской линии передаётся пестролистность и у герани. А у кипрея (Epilobium) — по отцовской.
Особенности внеядерной наследственности
- В клетке находится много митохондрий (иногда тысячи) и десятки пластид. В каждой из них несколько молекул ДНК. Значит в клетке сотни и тысячи копий митохондриальных и пластидных ДНК, а не два аллеля, как чаще бывает в ядерной.
- Митохондрии и пластиды делятся независимо от ядра и распределяются в дочерние клетки случайным образом. Если клетка при делении по какой-то причине лишилась этих органоидов, то приобрести их она уже никак не сможет.
- В них нет ни митоза, ни мейоза, ни кроссинговера. Это значит, что для внеядерных генов не существует тех процессов рекомбинации, которые лежат в основе менделеевских закономерностей.
- Все зиготы получают митохондрии и пластиды только от яйцеклетки, органеллы мужских половых клеток при оплодотворении не попадают в зиготу. Митохондрии сперматозоидов находятся в жгутиках, а они при проникновении внутрь яйцеклетки отбрасываются. Это справедливо только для гетерогаметных организмов.
- К пестролистности приводит соматическое расщепление. Значит, и при вегетативном размножении признак передастся.
- Передаётся внеядерная ДНК от одного из полов, хотя есть и исключения.
Судить о передаче признака именно при помощи генов цитоплазмы очень сложно. Здесь нельзя полагаться только на один из критериев. Иногда даже все признаки вместе не дают правильной картины. Самый надёжный способ — генетический анализ.
Недавно было выяснено, что существует поток генов. В ходе эволюции некоторые гены могут перемещаться из хлоропластов в митохондрии (но не наоборот), из хлоропластов и митохондрий в ядро. Именно с этим связано существование не только пластидной, но и митохондриальной пестролистности. Существуют формы пестролистности, вызываемые ядерными генами, а также вирусами.
Вирусная мозаичная пестролистность.
Собственно цитоплазматическая наследственность
В цитоплазме бактерий кроме основной ДНК находятся плазмиды – кольцевые ДНК, в клетках дрожжей в цитоплазме есть ДНК, которые обеспечивают устойчивость дрожжей к токсическим веществам. Наследование генов гиалоплазмы нестойкое и затухает спустя несколько поколений. Например, гены, что отвечают за направление закручивания раковины(D – правозакрученная, d – левозакрученная) прудовика, находятся в гиалоплазме. Передаются они с яйцеклеткой, а значит по материнской линии.
В клетке, помимо ядра, митохондрий и пластид, могут присутствовать и необязательные для неё генетические элементы — плазмиды, вирусоподобные частицы, эндосимбионты (бактерии или одноклеточные водоросли, например, хлорелла). Если их присутствие сопровождается фенотипическими отличиями от обычной клетки или организма, то при гибридологическом анализе можно проследить наследование этих отличий, а значит, и наследование самого генетического элемента. Это и есть собственно цитоплазматическая наследственность.
Наследование завитка раковины у прудовика
Взаимодействие ядерной и хромосомной наследственности
Ядерные и хромосомные гены могут взаимодействовать, приводя к более сложным случаям наследования. Большинство белков митохондрий закодировано в ядерных генах и наследуется по правилам Менделя. В митохондриях находятся гены ферментов, обеспечивающих клеточное дыхание и гены ферментов, противостоящих некоторым неблагоприятным факторам.
Такое важнейшее свойство клетки, как ее способность к фотосинтезу, определяется взаимодействием генов хромосом, структурных элементов цитоплазмы и условий внешней среды.
Для чего изучается цитоплазматическая наследственность?
Передача цитоплазматических генов по линии матери и отсутствие их явной рекомбинации позволяет использовать митохондриальные, реже пластидные ДНК для идентификации видов и построения филогенетических рядов.
Филогеография (направление эволюционной генетики) появилось в 1990-е годы. Она занимается соотнесением организмов к генеалогическим группам, родственным по женской линии. В настоящее по этому принципу время исследуются сотни популяций и десятки видов.
- Мутации цитоплазматической мужской стерильности растений
Более чем у 150 видов растений из 20 различных семейств обнаружено явление цитоплазматической мужской стерильности (ЦМС). Она проявляется в недоразвитости тычинок и пыльников или в образовании неполноценной, абортивной пыльцы либо в ее полном отсутствии.
Мужское соцветие маиса (кукурузы).
Автор: Tyler ser Noche
Явление ЦМС широко используется в селекции растений, когда для получения гибридных семян нужно избежать самоопыления растений.
С мутациями в мтДНК, и точковыми, и делециями, связан ряд заболеваний человека. Все они передаются по женской линии, хотя проявляются у лиц и женского и мужского пола. Особенностью митохондриальных мутаций является их варьирующая в ряду поколений экспрессивность. Клетки больных обычно являются гетероплазмонами, т. е. они содержат смесь митохондрий с нормальной и мутантной ДНК. При образовании яйцеклеток происходит случайное распределение нормальных и мутантных мтДНК и их соотношение может существенно изменяться. При увеличении дозы мутантных мтДНК симптомы заболевания усиливаются, при уменьшении – сглаживаются.
Наследственные заболевания, связанные с мутациями мтДНК, встречаются чаще, чем 1 на 10 000, т. е. оказываются достаточно распространенным явлением.
Вам будет интересно
При селекционной и экспериментальной работе часто бывает нужно определить генотип особи с доминантными признаками. При…
Изменчивость – это совокупность различий по тому или иному признаку между особями одного вида или…
Подумайте! Когда нужно начинать ориентироваться – до похода или тогда, когда уже заблудился? Какие способы…
Картографические проекции сегодня – это математические способы изображения всего земного эллипсоида или его части на…
Чтобы измерить расстояние по плану, карте или глобусу, нужно знать, что такое масштаб и уметь…
На самых ранних этапах развития генетики стало очевидно, что наследование некоторых признаков не зависит от хромосомных компонентов клеток и не подчиняется законам Менделя при распределении хромосом во время мейоза.
— это явление, когда в наследовании признака участвуют компоненты цитоплазмы.
За хранение и передачу наследственной информации отвечает молекула ДНК
Молекула ДНК есть не только в ядре. В клетках есть органеллы, имеющие свою собственную ДНК:
-
— их ДНК немного отличается от двухцепочечной спирали — это кольцевые молекулы (больше похоже на нуклеойд бактерий);
- пластиды — (лейкопласты, хромо — и хлоропласты)- их ДНК тоже имеет форму колечка.
Это явление назвали цитоплазматической (внеядерной, нехромосомной) наследственностью .
Характерная черта цитоплазматической наследственности — это наследование по материнской линии
Почему? Потому что яйцеклетка отличается от сперматозойда большим количеством цитоплазмы, в которой содержатся эти органеллы. Митохондрии есть и в сперматозойде, но в жгутике, а он при оплодотворении отваливается, так что эти митохондрии просто не попадают в новый организм.
Примеры цитоплазматической наследственности у растений:
- Пластидное (хлоропластное) наследование — пестролистность — в растении есть два вида пластид — зеленых хлоропласты и бесцветные лейкопласты. Клетки при делении образуют гаметы зеленого, бесцветного и смешанного цвета. Соответственно, образуются растения разной окраски. Наследование цветов передается через материнский организм.
При вегетативном размножении, естественно, такое не наблюдается…
Примеры цитоплазматической наследственности у животных:
- форма ракушки у малого прудовика — лево- и правозакрученная — определяется геном D: все потомство Х d X d буду с левозакрученной раковиной, Х D X d и Х D X D — правозакрученные;
- е сли эвглену зеленую поместить в темноту и там она будет размножаться, то новые дочерние организмы не будут содержать в клетке хлоропласты;
- есть даже митохондриальные (цитоплазматические наследственные) заболевания человека: митохондриальный сахарный диабет, рассеянный склероз, тунельное зрение и т.д.
Влияет ли цитоплазматическая наследственность на другие виды наследственности?
Было доказано, что хромосомная и нехромосомная наследственность могут взаимодействовать, приводя к более сложным случаям наследования.
Пример вопроса части С ЕГЭ:
Не забудьте, что в клетках растений есть и хлоропласты, и митохондрии, просто хлоропластов больше
Читайте также: